
water

Article

Impact of Different Reanalysis Data and
Parameterization Schemes on WRF Dynamic
Downscaling in the Ili Region

Yulin Zhou and Zhenxia Mu *
College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China;
zhouyulin19921103@126.com
* Correspondence: muzhenxia@126.com; Tel.: +86-139-9922-7089

Received: 22 October 2018; Accepted: 22 November 2018; Published: 26 November 2018 ����������
�������

Abstract: Different reanalysis data and physical parameterization schemes for the Weather Research
and Forecasting (WRF) model are considered in this paper to evaluate their performance in
meteorological simulations in the Ili Region. A 72-hour experiment was performed with two domains
at the resolution of 27 km with one-way nesting of 9 km. (1) Final Analysis (FNL) and Global
Forecast System (GFS) reanalysis data (hereafter, WRF-FNL experiment and WRF-GFS experiment,
respectively) were used in the WRF model. For the simulation of accumulated precipitation, both
the WRF-FNL (mean bias of 0.79 mm) and WRF-GFS (mean bias of 0.31 mm) simulations can
display the main features of the general temporal pattern and geographical distribution of the
observed precipitation. For the simulation of the 2-m temperature, the simulation of the WRF-GFS
experiment (mean warm bias of 1.81 ◦C and correlation coefficient of 0.83) was generally better
than that of the WRF-FNL experiment (mean cold bias of 1.79 ◦C and correlation coefficient of 0.27).
(2) Thirty-six physical combination schemes were proposed, each with a unique set of physical
parameters. Member 33 (with the smallest mean-metric of 0.53) performed best for the precipitation
simulation, and member 29 (with the smallest mean-metric of 0.64) performed best for the 2-m
temperature simulation. However, member 29 and 33 cannot be distinguished from the other
members according to their parameterizations. For this domain, ensemble members that contain the
Mellor–Yamada–Janjic (MYJ) boundary layer (PBL) scheme and the Grell–Devenyi (GD) cumulus
(CU) scheme are recommended for the precipitation simulation. The Geophysical Fluid Dynamics
Laboratory (GFDL) radiation (RA) scheme and the MYJ PBL scheme are recommended for the 2-m
temperature simulation.
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1. Introduction

Precise flood and drought forecasts are particularly difficult due to the scarcity of observation
data and the complex topography over the Ili Region [1]. To improve runoff predictions, accurate and
high-resolution meteorological data are essential. To date, no dynamic downscaling model studies
have been conducted to record high-resolution climate data in the region. Thus, a WRF model study of
the hydrological climate of the Ili Region is needed.

As a mesoscale downscaling technique, the WRF model has been widely used in both studying
and forecasting a variety of meteorological events [2]. Many studies [3–5] have indicated that many
climatic factor forecasts (such as those of heavy rainfall, maximum and minimum temperature, and
wind speed) can be improved using WRF ensemble model techniques. The WRF mesoscale model
systems can provide useful probability information for rainfall and runoff forecasting [6–8]. Therefore,
based on the existing literature, the regional model performs quite well in this area.
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However, many questions remain, including the selection of various physical schemes and
boundary conditions (LBCs) and decisions on the domain size and resolution, which challenge the
WRF model’s attempts for precise simulation. (1) For the sensitivity analysis of various physical
schemes on the WRF model, the simulation of mesoscale convective system (MCS) characteristics is
highly sensitive to the parameterization scheme choice over southeast India [9]. The model provided
better forecasting of heavy rainfall events using the logical combination of Goddard microphysics,
Yonsei University (YSU) PBL, and Noah land surface model (LSM) schemes over India [10]. The CU
and PBL schemes have important implications for the simulation of the rainfall in Andalusia, while
there is no significant difference between microphysics (MP) schemes [11]. There are different choices
for the physics and dynamics of the WRF model, enabling users to optimize the model for specific
geographies [12]. As the number of parameterization schemes increases, it becomes more and more
difficult to determine the optimal combination of physical parameterization schemes. Therefore, the
selection of various physical schemes is of great significance for the simulation of climatic factors.
(2) For studies on the evaluation of different initial boundary conditions and LBCs in the WRF model,
reanalysis data, such as NCEP [13,14], FNL [15], CMIP5 [16], GFS [17], ERA-40 [18], and NARR [19], are
widely used to validate the performance of the WRF model because they minimize the error of LBCs.
The WRF model is simulated using different reanalysis data, and the results show that the WRF model
has significant differences in precipitation and temperature. [20]. Therefore, selecting different LBCs
is necessary for estimates over the Ili Region. (3) For the impact of different horizontal and vertical
resolutions on the WRF model, the resolution of the model seriously affects the rainfall simulation, and
there are large differences in the propagation of simulated metrics between model structures [21]. To
analyze the effect of the model resolution, two different downscaling ratios (1:3 and 1:9) are employed.
The results show that higher downscaling ratio leads to higher variability, which leads to a larger bias
in the model simulation. The effect of small changes in the regional resolution on the simulation of
the precipitation spatial pattern is greater than the impact on the predicted rainfall [22]. Finding the
optimal set of physical parameterization schemes (and selecting appropriate model grid resolutions
and LBCs) to simulate rainfall events and understanding the impact of different parameterization
schemes on rainfall simulation in the Ili Region would be a valuable study.

This study used two reanalysis datasets and thirty-six members of a multiphysics ensemble for
the WRF model simulation. The layout of this article is as follows: Section 2 provides a description
of the reanalysis data used in the model, and the model configurations, sensitivity of physical
parameterization schemes, and experimental setup are also discussed; the sensitivity of the WRF
simulation to different LBCs and parameterization schemes is discussed in Section 3; and a summary
of this research and proposed future study directions are included in Section 4.

2. Materials and Methods

2.1. Study Area and Observational Data

The Ili Region is located in the hinterland of Tianshan in Xinjiang between 80.1–84.5◦ E and
42.1–44.5◦ N (Figure 1). The study area is approximately 9460 km2 and is the area with the
most abundant precipitation in Xinjiang, with an annual precipitation between 200 and 550 mm,
but the precipitation distribution in this area is uneven. To evaluate the performance of WRF
model simulations, we used measurements of the hourly precipitation and hourly temperature
from 131 stations, which consist of 121 telemetric stations and 10 climate stations that span
across the Ili Region (Figure 1). The observation data were provided by the China Meteorology
Administration (CMA).
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Figure 1. The study area (the points are telemetric stations, and the triangles are climate stations). 
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analyzed. All the WRF simulations were initialized on 17 June 2013 and ended on 20 June 2013. 

This study includes two different PBL schemes: the YSU scheme [23] and MYJ scheme [24]. Two 
different CU parameterization schemes are used: the Kain–Fritsch (KF) scheme [25] and the Grell–
Devenyi (GD) scheme [26]. Three different microphysics parameterization (MP) schemes are used: 
the WRF Single Moment 6-class (WSM6) scheme [27], Thompson (THM) scheme [28], and Purdue 
Lin (Lin) scheme [29]. Four different longwave and shortwave radiation (RA) schemes are used: the 
Dudhia scheme [30], Rapid Radiative Transfer Model (RRTM) scheme [31], GFDL scheme [32], and 
New Goddard scheme [33]. A total of thirty-six members were produced for the simulation domain, 
as shown in Table 2. 

Using the above settings, we performed two 3-day simulations spanning from 20130617 0:00 
UTC to 20130620 0:00 UTC. The two experiments have identical settings with the exception of the 
initial and boundary conditions. One experiment (WRF-FNL experiment) used the FNL reanalysis 
data with a spatial resolution of 1° × 1° and a temporal interval of 6 h. The other experiment (WRF-
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interval of 6 h. 
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Figure 1. The study area (the points are telemetric stations, and the triangles are climate stations).

2.2. Model Configuration and Experimental Design

The WRF model configurations are shown in Table 1. The spatial setup consists of two domains, a
parent domain of a 27-km resolution with 100 × 120 grid points, and a one-way nested 9-km resolution
with 72× 69 grid points. The time steps of the two domains are 180 seconds and 60 seconds respectively.
This study focuses on high-resolution integration, so only the 9-km domain was analyzed. All the
WRF simulations were initialized on 17 June 2013 and ended on 20 June 2013.

This study includes two different PBL schemes: the YSU scheme [23] and MYJ scheme [24].
Two different CU parameterization schemes are used: the Kain–Fritsch (KF) scheme [25] and the
Grell–Devenyi (GD) scheme [26]. Three different microphysics parameterization (MP) schemes are
used: the WRF Single Moment 6-class (WSM6) scheme [27], Thompson (THM) scheme [28], and Purdue
Lin (Lin) scheme [29]. Four different longwave and shortwave radiation (RA) schemes are used: the
Dudhia scheme [30], Rapid Radiative Transfer Model (RRTM) scheme [31], GFDL scheme [32], and
New Goddard scheme [33]. A total of thirty-six members were produced for the simulation domain,
as shown in Table 2.

Using the above settings, we performed two 3-day simulations spanning from 20130617 0:00 UTC
to 20130620 0:00 UTC. The two experiments have identical settings with the exception of the initial
and boundary conditions. One experiment (WRF-FNL experiment) used the FNL reanalysis data
with a spatial resolution of 1◦ × 1◦ and a temporal interval of 6 h. The other experiment (WRF-GFS
experiment) used the GFS reanalysis data with a spatial resolution of 0.5◦ × 0.5◦ and a temporal
interval of 6 h.

Table 1. Model configurations.

Model Options Dataset or Value

Domains 2
Grid resolution (spacing) 27:9 KM

Initial conditions 1. Final Analysis (FNL) (1◦ × 1◦, 6 h); 2. Global Forecast System GFS (0.5◦ × 0.5◦, 6 h)
boundary layer (PBL) schemes 1. Yonsei University (YSU); 2. the Mellor–Yamada–Janjic (MYJ)

Cumulus (CU) schemes 1. Kain–Fritsch (KF); 2. Grell–Devenyi (GD)
Microphysics (MP)schemes 1. the WRF Single Moment 6-class (WSM6); 2. Thompson (THM); 3. Purdue Lin (Lin)

Shortwave/Longwave radiation
(RA)schemes

1. Dudhia/Rapid Radiative Transfer Model (RRTM); 2. The Geophysical Fluid
Dynamics Laboratory (GFDL)/The Geophysical Fluid Dynamics Laboratory (GFDL);

3. New Goddard/New Goddard
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Table 2. Ensemble design, physics options for PBL: YSU and MYJ; CU scheme: KF and GD; MP scheme:
WSM6, THM, and Lin; RA schemes: Dudhia/RRTM, GFDL/GFDL, New Goddard/New Goddard.

Member PBL CU MP RA

1 YSU KF WSM6 Dudhia/RRTM
2 YSU KF WSM6 GFDL/GFDL
3 YSU KF WSM6 New Goddard/New Goddard
4 YSU KF THM Dudhia/RRTM
5 YSU KF THM GFDL/GFDL
6 YSU KF THM New Goddard/New Goddard
7 YSU KF Lin Dudhia/RRTM
8 YSU KF Lin GFDL/GFDL
9 YSU KF Lin New Goddard/New Goddard
10 YSU GD WSM6 Dudhia/RRTM
11 YSU GD WSM6 GFDL/GFDL
12 YSU GD WSM6 New Goddard/New Goddard
13 YSU GD THM Dudhia/RRTM
14 YSU GD THM GFDL/GFDL
15 YSU GD THM New Goddard/New Goddard
16 YSU GD Lin Dudhia/RRTM
17 YSU GD Lin GFDL/GFDL
18 YSU GD Lin New Goddard/New Goddard
19 MYJ KF WSM6 Dudhia/RRTM
20 MYJ KF WSM6 GFDL/GFDL
21 MYJ KF WSM6 New Goddard/New Goddard
22 MYJ KF THM Dudhia/RRTM
23 MYJ KF THM GFDL/GFDL
24 MYJ KF THM New Goddard/New Goddard
25 MYJ KF Lin Dudhia/RRTM
26 MYJ KF Lin GFDL/GFDL
27 MYJ KF Lin New Goddard/New Goddard
28 MYJ GD WSM6 Dudhia/RRTM
29 MYJ GD WSM6 GFDL/GFDL
30 MYJ GD WSM6 New Goddard/New Goddard
31 MYJ GD THM Dudhia/RRTM
32 MYJ GD THM GFDL/GFDL
33 MYJ GD THM New Goddard/New Goddard
34 MYJ GD Lin Dudhia/RRTM
35 MYJ GD Lin GFDL/GFDL
36 MYJ GD Lin New Goddard/New Goddard

2.3. Evaluation Statistics

The ability of the thirty-six members to simulate the precipitation and temperature of the two
experiments were evaluated by the Bias (the mean bias), MAE (the mean absolute error), and RMSE
(the root means square error):

Bias =
1
N ∑N

i=1 Mi −Oi, (1)

MAE =
1
N ∑N

i=1|(Mi −Oi)|, (2)

RMSE =

√
1
N ∑N

i=1(Mi −Oi), (3)

The spatial similarity at the grid cell level is measured with R (the pattern correlation coefficient)
(Equation (4)) and the standard deviation ratio between the modeled value and the observation value
(Equation (5)), and they can be reflected on Taylor diagrams (Section 3.2):

R =
∑N

i=1(Mi −M)
(
Oi −O

)√
∑N

i=1
(

Mi −M
)2
√

∑N
i=1
(
Oi −O

)2
, (4)
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σ =

√
∑N

i=1 (Mi −M)
2√

∑N
i=1 (Oi −O)

2
, (5)

where N is the total number of comparisons, M is the simulations, M is average of simulations, and O
is the observations, O is average of observations.

The mean-metric is calculated to determine the overall performance of the best integrated
members in the simulation of the precipitation and 2-m temperature, and the mean-metrics used
for the ranking are the RMSE, MAE, and R score. Before sorting the collection members, we need to
align the measurements: the RMSE and MAE scores were standardized by their respective maximum
values, and the R score was inverted, so that a smaller value represents a better simulation effect. Now,
the three indicators are all in the range of 0–1, and the simulation with the lowest average mean-metric
is the best performing simulation.

3. Results

3.1. Verification of WRF Simulations

3.1.1. Climatological Spatial Pattern of Precipitation and 2-m Temperature

Figure 2 shows the performance of the precipitation simulation for the WRF-FNL experiment
and WRF-GFS experiment. The average statistical indicators include the Bias (Equation (1)), MAE
(Equation (2)), and R (Equation (4)). They were calculated for the modeled value and for the
observations of the hourly rainfall of 131 stations that were then averaged.Water 2018, 10, x FOR PEER REVIEW  6 of 15 
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The average statistics of the WRF-FNL experiment and the WRF-GFS experiment show no
significant difference. The mean of the WRF-FNL experiment is slightly worse. The Bias (0.79 mm) and
MAE (9.01 mm) of the WRF-FNL experiment are larger than the Bias (0.34 mm) and MAE (7.93 mm) of
the WRF-GFS experiment, and the correlation coefficients are 0.24 and 0.21, respectively. The R of the
WRF simulations is not good due to the deviation in the parameterization scheme selection or the lack
of a high horizontal grid spacing.

The main difference is that the geographical distribution of the WRF-FNL simulation precipitation
generally decreased in the northeast and southwest and increased in the northwest and southeast.
Furthermore, the WRF-GFS simulation precipitation generally decreased in the north and increased in
the south. Therefore, WRF-FNL was generally similar to WRF-GFS for the precipitation simulation.

The simulation bias of the geographical distribution of the 2-m temperature is reflected in
Figure 3. The average statistics of the WRF-FNL experiment and the WRF-GFS experiment show
significant differences. The WRF-FNL experiment had a mean cold bias of 1.79 ◦C, while the WRF-GFS
model predicted a mean warm bias of 1.81 ◦C in the region. The main difference is that the R
and MAE of the WRF-GFS experiment (0.83 and 2.16, respectively) were better than those of the



Water 2018, 10, 1729 6 of 14

WRF-FNL experiment (0.27 and 6.17, respectively). The geographical distribution of the WRF-FNL 2-m
temperature simulation generally decreased in the north and increased in the southwest. However, the
WRF-GFS 2-m temperature simulation generally increased over all the regions. In general, the 2-m
temperature simulation of the WRF-GFS experiment was better than that of the WRF-FNL experiment.
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The MAE (the absolute error) was calculated for the modeled value and for the observations of all
stations. According to the MAE, the precipitation simulation results were divided into three categories:
the first category was stations with the MAE value greater than 20 mm; The second type is stations
with the MAE between 10–20 mm; The third type is stations with the MAE less than 10 mm. The 2-m
temperature simulation results also can be divided into three categories: first, there was stations with
the MAE value greater than 4 ◦C; The second type of stations with the MAE value between 2–4 ◦C;
The third kind of stations with the MAE is less than 2 ◦C.

Table 3 shows the performance of the spatial simulation for the WRF-FNL experiment and
WRF-GFS experiment. For the simulation of precipitation, both the WRF-FNL and WRF-GFS
simulations were found to perform well. The GFS experiment did a little better because it had
the MAE of less than 10 mm for 93 stations (the mean MAE was 4.63 mm for 93 stations), and there
were 30 stations with MAE between 10 and 20 mm (of which the 30 stations had the mean MAE of
14.06 mm), and only 8 stations had an MAE greater than 20 mm (the mean MAE of these 8 stations
was 23.34 mm). In the simulation results of the WRF-FNL experiment, the number of stations with the
MAE of less than 10 mm (81 stations) was 12 fewer than the WRF-GFS experiment, and the number of
stations with the MAE of more than 20 mm (10 stations) was 2 more than the WRF-GFS experiment.
For the simulation of the 2-m temperature, the simulation of the WRF-GFS experiment (most of the
stations (121 stations) were less than 4 ◦C) was generally better than that of the WRF-FNL experiment
(most of the stations (95 stations) were greater than 4 ◦C). Therefore, the WRF-GFS experiment has a
better simulation effect from the overall simulation results.

Table 3. The results of spatial simulation of precipitation and 2-m temperature.

Variable Absolute Error
WRF-GFS Experiment WRF-FNL Experiment

Mean Number of Stations Mean Number of Stations

precipitation
>20 mm 23.34 mm 8 28.16 mm 10

10–20 mm 14.06 mm 30 13.81 mm 40
<10 mm 4.63 mm 93 4.28 mm 81

2-m temperature
>4 ◦C 4.63 ◦C 10 7.67 ◦C 95
2–4 ◦C 2.89 ◦C 58 2.98 ◦C 21
<2 ◦C 1.09 ◦C 63 1.1 ◦C 15

3.1.2. Temporal Characteristics of Rainfall Events

The WRF-FNL simulation results are shown in Figure 4. For the WRF-FNL simulation, the main
rainfall event started at 20130617 10:00 UTC and ended at 20130617 18:00 UTC, and between 20130618
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12:00 UTC and 20130619 12:00 UTC, with most simulations indicating 6 h earlier for the onset and
termination of the event. Most of the thirty-six members have the tendency to overestimate the
accumulated precipitation, particularly at 20130618 12:00 UTC to 20130619 0:00 UTC. The bias between
the thirty-six members of the WRF-FNL experiment and the observation data is reflected in Figure 4b,
indicating a range between −0.67 and 1.33 mm. The partial view highlights the two sets of simulations
(N1–9 and N19–27) that display a significant overestimation of the peak precipitation; these correspond
to the simulation of the KF scheme. The set of thirty-six members can obtain a smaller error for peak
precipitation, and those simulations (N10–18) are the YSU scheme in combination with the GD scheme.
In general, the GD scheme is slightly better than the KF scheme. The red line in Figure 4a is the mean
of the hourly precipitation simulations of the thirty-six members, displaying a temporal evolution of
the event very similar to that of the observations. However, none of the physics scheme combinations
stand out as the best performer.Water 2018, 10, x FOR PEER REVIEW  8 of 15 

 

 
Figure 4. (a) is the mean hourly precipitation (mm) of the WRF-FNL experiment for the thirty-six 
members; (b) is the bias (mm) for each hour of the thirty-six members. 

The WRF-GFS simulation results are shown in Figure 5. All of the thirty-six members show good 
performance in modeling the total accumulated precipitation. The bias between the WRF-GFS 
experiment members and the precipitation observations is reflected in Figure 5b, indicating a range 
between −0.48 and 1.45 mm. The capability of the WRF-GFS experiment is comparable to that of the 
WRF-FNL experiment. However, many of the thirty-six members have the tendency to overestimate 
a secondary event in the middle of the period. The red line in Figure 5a is the mean of the hourly 
precipitation simulations of the thirty-six members, displaying a very similar temporal evolution. 
Like the WRF-FNL experiment, the YSU scheme and the GD scheme can also obtain higher 
simulation accuracies. No preference for a particular MP scheme or RA scheme was found. 

Both the WRF-FNL simulation and the WRF-GFS simulation can capture the general temporal 
pattern of the rainfall event, characterized by peak rainfalls at 20130617 1200 UTC and 20130619 0:00 
UTC (Figure 4). The temporal patterns of rainfall from the WRF-FNL simulation are a better match 
to the observed values than those from the WRF-GFS experiment. However, both simulations 
overestimated the precipitation at 20130619 0:00 UTC, although the WRF-GFS simulation 
overestimated the precipitation by more than the WRF-FNL simulation. 

Figure 4. (a) is the mean hourly precipitation (mm) of the WRF-FNL experiment for the thirty-six
members; (b) is the bias (mm) for each hour of the thirty-six members.

The WRF-GFS simulation results are shown in Figure 5. All of the thirty-six members show
good performance in modeling the total accumulated precipitation. The bias between the WRF-GFS
experiment members and the precipitation observations is reflected in Figure 5b, indicating a range



Water 2018, 10, 1729 8 of 14

between −0.48 and 1.45 mm. The capability of the WRF-GFS experiment is comparable to that of the
WRF-FNL experiment. However, many of the thirty-six members have the tendency to overestimate
a secondary event in the middle of the period. The red line in Figure 5a is the mean of the hourly
precipitation simulations of the thirty-six members, displaying a very similar temporal evolution. Like
the WRF-FNL experiment, the YSU scheme and the GD scheme can also obtain higher simulation
accuracies. No preference for a particular MP scheme or RA scheme was found.Water 2018, 10, x FOR PEER REVIEW  9 of 15 
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Figure 5. (a) is the mean hourly precipitation (mm) of the WRF-GFS experiment for the thirty-six
members; (b) is the bias (mm) for each hour of the thirty-six members.

Both the WRF-FNL simulation and the WRF-GFS simulation can capture the general temporal
pattern of the rainfall event, characterized by peak rainfalls at 20130617 1200 UTC and 20130619
0:00 UTC (Figure 4). The temporal patterns of rainfall from the WRF-FNL simulation are a better
match to the observed values than those from the WRF-GFS experiment. However, both simulations
overestimated the precipitation at 20130619 0:00 UTC, although the WRF-GFS simulation overestimated
the precipitation by more than the WRF-FNL simulation.

In Figure 6a, the black columns are the bias of the cumulative precipitation error of the thirty-six
members in the WRF-FNL experiment and the red columns are the same for the WRF-GFS experiment.
The WRF-FNL simulation indicates a range between −2.99 and 4.52 mm and the WRF-GFS simulation
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indicates a larger range between −4.78 and 6.24 mm. Large positive biases are shown for both the
WRF-FNL simulation and the WRF-GFS simulation when using the KF scheme, whereas the GD
scheme is associated with slightly smaller biases in G10–18 and G28–36. The bias values of the hourly
mean for the 2-m temperature are shown in Figure 6b. The WRF-FNL simulation overestimates the
2-m temperature to some degree in almost all case studies, indicating a range between −2.41 and
−1.20 ◦C. The WRF-GFS simulation tended to underestimate the 2-m temperature in all case studies,
indicating a range between 1.25 and 2.62 ◦C. None of the physics scheme combinations stand out as
the best performer.Water 2018, 10, x FOR PEER REVIEW  10 of 15 
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3.2. Impact of Different Parameterization Schemes

The Taylor diagram (Figure 7) shows the σ (the standard deviation ratio, calculated by
Equation (5)) and R between the thirty-six members and the observations. (a) and (b) provide the
standard to evaluate the capability of the different parameter schemes for the WRF-FNL experiment,
and (c) and (d) show the same for the WRF-GFS experiment. The rainfall simulations of the
parameterization schemes are reflected in (a) and (c), and the 2-m temperature simulations are shown
in (b) and (d).

Small differences are observed in the performances of the various parameterizations. However,
differences between the performances of the MP schemes can be found in several simulations. This
finding is shown in Figure 7a, where Thompson (blue) performs better than WSM6 (red) or Lin (black).
For the rest of the simulation, these schemes perform similarly. The difference in the PBL schemes is
large (second only to MP schemes), but the simulation values of each PBL scheme are not very different.
The YSU scheme has marginally better performance (sometimes) in the WRF-FNL experiment for
the rainfall simulations, and the MYJ scheme performed the better WRF-GFS experiment for the
2-m temperature simulations. Therefore, the MYJ scheme outperformed the YSU scheme in these
comparisons. The RA and CU schemes both tended to have only small differences that are generally
not large enough to differentiate the two sets of simulations. Figure 7c shows a slight preference for
the GD scheme. Figure 7b shows small differences in the simulation quality produced.

A box diagram (shown in Figures 8 and 9) can reflect a whole process for selecting the best member.
After calculating the mean metric ranges of each physics parameterization scheme, the scheme with
the smallest mean metric can be then chosen. If one option of the physical scheme performs better (or
worse) than the other options and the value of the average metric range is smaller (or larger), then
this option is considered the preferred (or rejected) physical scheme. In the first step of this method,
the mean-metric ranges for all physics schemes are calculated, and then the best (or worst) physical
scheme was selected (or eliminated). In the next step, the mean metric ranges are calculated again
using the remaining members. This method was repeated until the best performing member was
selected, and each step provides the mean-metric of the chosen member.

Figure 8 shows box plots for the stepwise approaches to determine the best physical scheme for
the precipitation simulation, where the first row (Figure 8a–d) of each box plot shows the mean metric
of precipitation of all 36 ensemble members. When comparing ensemble members using the mean
metric of precipitation, both the minimum (0.53) and maximum (0.68) values for the GD CU scheme
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are smaller than the minimum (0.56) and maximum (0.90) values of the KF CU scheme. The mean
metric ranges of all the remaining physical parameterizations are not significantly different. Hence,
the second row (Figure 8e–g) of each box plot shows only models with the GD scheme. The third row
(Figure 8h,i) includes models with the GD CU scheme and the MYJ PBL scheme because the mean
metric ranges (0.53–0.62) of the MYJ PBL scheme are smaller than those (0.59–0.68) of the YSU PBL
scheme. The choice to remove the GFDL RA scheme is shown in Figure 8j, as its mean metric ranges
are only larger than those of the other RA schemes. This process results in six ensemble members
(28, 30, 31, 33, 34, and 36) that cannot be robustly differentiated based on their parameterizations. In
summary, the best scheme is member 33, but it cannot be distinguished from the other members (28,
30, 31, 34, and 36) according to its parameterizations.Water 2018, 10, x FOR PEER REVIEW  11 of 15 
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(triangle); numbers represent the RA schemes: RRTM (1), GFDL (2), and New Goddard (3).
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Figure 9. Box plots of the mean-metric of the 2-m temperature split by physical parameterization. In
(a–d), all 36 ensemble members are shown. In (e–g), the plots include only models with the GFDL
scheme. In (h), the plot includes models with the GFDL scheme and the MYJ scheme.

Figure 9 shows box plots for the stepwise approaches to determine the best physical scheme for
the 2-m temperature simulation. In Figure 9a–d, thirty-six ensemble members are shown. The GFDL
RA scheme with the smallest mean metric is the simulation with the best performance; thus, the GFDL
is selected, and Figure 9e–g includes only models with the GFDL RA scheme. The most robust choice
is the MYJ PBL scheme, as its ensemble member range (0.64–0.67) is smaller than that of the YSU
PBL scheme (minimum is 0.67); thus, these ensemble members (2, 5, 8, 11, 14, and 17) are removed.
In the final step (Figure 9h), the plot includes models with the GFDL RA scheme and the MYJ PBL
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scheme. This process results in six ensemble members (20, 23, 26, 29, 32, and 35) that cannot be robustly
differentiated based on their parameterizations, although the best scheme seems to be member 29.

4. Conclusions

Detailed climate scenarios are not available for the Ili Region because of the lack of observations
and the complex topography in the area. The global reanalysis data is too rough to accurately express
the hydrological climate of the Ili Region. To date, no dynamic downscaling studies have been
conducted to record high-resolution climates in the region. The present study using the WRF model
with 9-km high-resolution is the first to dynamically downscale the FNL and GFS datasets in the Ili
Region. Sensitivity studies were performed using the CU, PBL, RA, and MP schemes.

Two reanalysis datasets (including the FNL and GFS datasets) are provided to verify the simulation
effect of the WRF model. The results showed that the simulations of the WRF model have some
discrepancies from the observation data. For the precipitation simulation, both the WRF-FNL
simulation (mean bias of 0.79 mm) and the WRF-GFS simulation (mean bias of 0.31 mm) have weak
positive biases. However, the geographical distribution of the WRF-FNL simulation precipitation
shows a generally negative bias in the northeast and southwest and a positive bias in the northwest
and southeast. The WRF-GFS simulation precipitation generally decreased in the north and increased
in the south. For the simulation of the 2-m temperature, the WRF-FNL simulation predicted a mean
cold bias of 1.79 ◦C, and the WRF-GFS model predicted a mean warm bias of 1.81 ◦C. The geographical
distribution of the WRF-FNL simulation of the 2-m temperature generally showed decreases in the
north and increases in the southwest. However, the WRF-GFS simulation of the 2-m temperature
generally increased over all regions.

Some results were collected on the performances of the physical parameterization members.
The differences between the physical members of the simulated 2-m temperature are much smaller
than those of the precipitation simulation. For the WRF model parameterization study, none of the
physical members have the best performance in any situation, although different analyses reveal the
preferences of some physics schemes. In terms of the time process simulation, consistently identifying
well-performing physics combinations across all case studies is difficult. The overall bias analysis
shows that the rainfall simulation is more sensitive to CU schemes, and the bias of GD schemes is
generally lower. For the 2-m temperature, no physics scheme combination stands out as being the best
performer. A comparison of the MAE, RSME, and R can reveal a preference for the THM schemes, a
slight preference for the MYJ schemes, and unclear preferences for the RA and CU schemes.

By calculating the mean-metric range of each physics parameterization scheme, for the
precipitation simulation, ensemble member 33 performs the best. For the simulation of the 2-m
temperature, the best-performing member is 29. In the Ili Region, the MYJ and GD schemes were
recommended to simulate the precipitation, and the GFDL RA scheme and the MYJ PBL scheme are
recommended for the simulation of the 2-m temperature.

One of the limiting factors for this type of research is the lack of observations for proper verification
in the Ili Region. In addition, this study used only three days of simulation time. Further work is
ongoing to repeat this analysis for more events to more fully assess all rainfall patterns. The simulation
result will then be further analyzed to determine the impact of different parameterization schemes
on the performance of the WRF model, which is beyond the preliminary results of this paper. The
combination of better performing parameterization schemes found here will be used in multidecadal
simulations to further assess WRF’s capability to simulate the precipitation and 2-m temperature.
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