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Abstract: Streamflow simulation gives the major information on water systems to water resources
planning and management. The monthly river flows in dry season often exhibit high autocorrelation.
The headwater catchment of the Yellow River basin monthly flow series in dry season exhibits this
clearly. However, existing models usually fail to capture the high-dimensional, nonlinear dependence.
To address this issue, a stochastic model is developed using canonical vine copulas in combination
with nonlinear correlation coefficients. Kendall’s tau values of different pairs of river flows are
calculated to measure the mutual correlations so as to select correlated streamflows for every month.
Canonical vine copula is used to capture the temporal dependence of every month with its correlated
streamflows. Finally, monthly river flow by the conditional joint distribution functions conditioned
upon the corresponding river flow records was generated. The model was applied to the simulation of
monthly river flows in dry season at Tangnaihai station, which controls the streamflow of headwater
catchment of Yellow River basin in the north of China. The results of the proposed method possess a
smaller mean absolute error (MAE) than the widely-used seasonal autoregressive integrated moving
average model. The performance test on seasonal distribution further verifies the great capacity of
the stochastic-statistical method.

Keywords: monthly river flow simulation; canonical vine copula; Kendall’s tau value; Akaike
information criteria

1. Introduction

With the global population continuing to increase, water resources are becoming ever more vital
by more demand for urbanization and agricultural intensification [1,2]. In water resources planning,
streamflow simulation in dry season is a paramount process in water and drought management,
determination of river water flow potentials, environmental flow analysis, agricultural practices, and
hydro-power generation [3,4].

Compared with models which consider relatively steady physiographic, geological, soil, land use,
and plant cover attributes in a site or watershed, the statistical models are simpler and more reliable
for their principle of identifying relations between output variables with their predictors without
any explicit knowledge of the physical processes [5,6]. The traditional statistical model consists of
the parametric and nonparametric models. The most famous parametric models are autoregressive
moving average models and autoregressive integrated moving average models proposed by Box
and Jenkins [7]. They are established based on the linear regression method with auto-correlation
function and partial autocorrelation function. The models and their variants are widely used for
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their practical nature, but also show limits such as normal assumption and linearity or inaccuracy
coursed by transformation [8]. Lall and Sharma [9] proposed the nonparametric model of nearest
neighbor resampling method to fit the skewed marginal distribution and nonlinear structure of river
flow. This kind of nonparametric model performs well in inheriting statistic features of historical
record in case of the high-class dataset. However, the temporal evolution of streamflow is highly
non-linear and involves uncertainty, which could be the major hindrances to synthesize accurate and
reliable river flow time series for those traditional models [10,11].

Copula functions have a flexible structure with different families for different dependence
structures and do not restrict the shape of posterior distributions permitting separate analysis
of marginal distributions and dependence structure [12–14]. They exhibit a powerful capacity
of detecting correlations as they allow for nonlinear and asymmetric cross-sectional and serial
dependence [15–17]. In order to escape the gap of inaccuracy on skewed distribution, nonlinearity,
and tail dependence for river flow distribution, copulas have become a popular approach to detect
temporal dependence of streamflow. Madadgar and Moradkhani [18] developed an approach to
integrate copula functions into a Bayesian model averaging (BMA). The model overcomes the limits of
certain distribution and biased forecasts in BMA. The results of streamflow simulations for 10 river
basins demonstrate that the predictive distributions are more accurate and reliable, less biased, and
more confident with smaller uncertainty after Cop-BMA application. Kong, et al. [19] proposed a
maximum entropy-Gumbel-Hougaard copula (MEGHC) method for monthly streamflow simulation.
The marginal distributions of monthly streamflows are estimated through the maximum entropy
(ME) method, and the joint distributions of two adjacent monthly streamflows are constructed using
the Gumbel-Hougaard copula (GHC) method. The goodness-of-fit statistical tests of a case study of
monthly streamflow simulation in Xiangxi river show that the MEGHC method can reflect dependence
structure in adjacent monthly streamflows of Xiangxi river, China. Singh and Zhang [20] combined the
entropy theory and the copula theory in river flow simulation. The entropy theory was extensively
applied to derive the most probable univariate distribution, and bivariate copulas were applied to
multivariate modeling in water engineering. This study evaluated the copula–entropy theory using a
flood dataset from the experimental watershed at Walnut Gulch, Arizona. The most entropic canonical
copula (MECC) successfully modeled the joint distribution of bivariate random variables.

Research reviewed above proves the powerful function of copulas for river flow simulation.
However, traditional, vine-based simulation models are limited to bivariate or D-vine copulas.
More effort is supposed to be paid to multivariate copulas so as to excavate the capacity of different
copulas with stronger functions. Canonical vine copula detects high-dimensional structures with a
more flexible structure composed of a hierarchy of conditional bivariate copulas [21]. They differ from
traditional Markov trees and Bayesian belief nets in that the concept of conditional independence
is weakened to allow for various forms of conditional dependence [22]. Canonical vine copula is
supposed to be a more useful and skillful tool for simulation of monthly river flow in dry season which
is closely related to previous months [23].

The goal in this study is to apply canonical vine copulas to the simulation of monthly river flows
in dry season which highly depends on previous months. The proposed model was applied to monthly
streamflow data in dry season (Nov–May) at Tangnaihai station in Yellow River basin to test the
performance of the model.

2. Materials and Methods

2.1. Study Area and Data

The Yellow River is located in northern China with a length of 5464 km. It is the second longest
river in China and the fifth longest river in the world. With the rapid development of agriculture and
industry and population growth, water resources are under increasing pressure, particularly, in arid
and semi-arid areas, including the Yellow River basin [24]. A series of cascade reservoirs has been built
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along the Yellow River which plays an important role in the basin water resources comprehensive
utilization. Longyangxia Reservoir is the leading reservoir with carryover storage capacity located in
the Upper Yellow River. The control site of input flow for the reservoir is the Tangnaihai Site which has
been selected as a case study. The catchment upstream of the Tangnaihai hydrological station covers
an area of 121,972 km2 that accounts for 16% of the total area of the Yellow River Basin and yields
35% of the total runoff of the Yellow River [25]. Runoff in this region also undergoes large seasonal
fluctuations consisting of a peak in July and a trough in February [26]. The rational use of the storage
is vital to the operation of the whole cascade reservoirs. The locations of the site and the reservoir
at the Yellow River basin are shown as Figure 1. Fifty-five years of monthly river flow data in dry
season (Jan, Feb, Mar, Apr, May, Nov, and Dec) spanning over a period of 1956–2010, without missing
values used, which were obtained from Yellow River Conservancy Commission of the Ministry of
Water Resources.
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Figure 1. Map of the Yellow River and the location of Tangnaihai Site.

2.2. Methods

A general framework is developed to simulate monthly river flow in dry season. The approach
establishes sub-models for different months. Every sub-model consists of selecting corelative months
based on Kendall’s tau values which are based upon a predetermined significance level (herein α = 1%).
Then, the dependence structure of the current month with the selected related months in each
sub-model is exploited using canonical vine copulas. Finally, the monthly river flow is generated
by the conditional quantile functions of canonical vine copulas built for 7 months conditioned upon
historic flows of correlated months.
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2.2.1. Canonical Vine Copulas

Copulas are multivariate cumulative distributions on the unit hypercube [0, 1]d with arbitrary
marginal distributions [27]. The famous theorem of Sklar [28] gives the strong function for copulas that
a copula is capable of linking the joint cumulative distribution function to their marginal distribution
functions. Therefore, they often used in modeling multivariate distributions.

Bivariate copulas are simple forms, including Gaussian copula, Student t copula, Clayton
copula [29], Gumbel copula [30], Frank copula [31], Joe copula, BB1 copula, BB6 copula, BB7 copula,
BB8 copula, and the rotated ones [27]. The general bivariate copulas can be expressed as:

F(x1, x2) = C(F1(x1), F2(x2)), (1)

where F(·, ·) is the joint distribution and for the continuous marginal distribution F1 for X1 and F2

for X2, copula function C(·, ·) is unique. If F(·, ·) is absolutely continuous, the density of a bivariate
copula, c(·, ·), is given by Joe [32] and Neslen [33]:

c(u1, u2) =
∂C(u1, u2)

∂u1∂u2
, (2)

where u1 = F1(x1) and u2 = F2(x2). The detail inference of bivariate copulas is shown in Table 1 [27].

Table 1. Bivariate copula families.

Copula C(u,u*) Generator ϕ(t) Tail Dep.
(Lower, Upper) Parameter Range

Gaussian 0 θ > (−1, 1)

Student-t 2tν+1

(
−
√

ν + 1
√

1−θ
1+θ

)
θ > (−1, 1), ν > 2

Clayton Copula max
[(

u−θ + u∗−θ − 1
)− 1

θ , 0
]

1
θ

(
t−θ − 1

) (
2−

1
θ , 0
)

θ > 0

Gumbel Copula exp
{
−
[
(− ln u)θ + (− ln u∗)θ

] 1
θ

}
(− ln t)θ

(
0, 2−2

1
θ

)
θ ≥ 1

Frank Copula − 1
θ ln
[

1 + (e−θu−1)(e−θu∗−1)
e−θ−1

]
− ln e−θt−1

e−θ−1 (0, 0) θ ∈ R{0}

Joe − ln
[
1− (1− t)θ

] (
0, 2−2

1
θ

)
θ > 1

Clayton-Gumbel
(

t−θ − 1
)δ (

2−
1
θδ , 2−2

1
θ

)
θ > 0, δ ≥ 1

Joe-Gumbel
(
− ln

[
1− (1− t)θ

])δ (
0, 2−2

1
θδ

)
θ ≥ 1, δ ≥ 1

Joe-Clayton

(
1− (1− t)θ

)−δ
−

1

(
2−

1
θ , 2−2

1
θ

)
θ ≥ 1, δ > 0

Joe-Frank − ln
[

1−(1−δt)θ

1−(1−δ)θ

]
(0, 0) θ ≥ 1, δ ∈ (0, 1]

A vine is one of the multivariate copulas with a graphical structure for dependent random
variables which generalize the Markov trees [22]. Joe [32] first derived the class of m-variable
distributions with given margins and m × (m − 1)/2 dependence parameters, one parameter
corresponding to each bivariate margin. Bedford and Cooke [34] expressed these high-dimension joint
distributions graphically with sequences of trees with undirected edges and nodes which are called
vine trees. The nodes are actually the marginal distributions or conditional distributions of variables
and the edges represent the correlations denoting the indices used for the conditional copula densities.
Since trees in vine copulas can be decomposed into a series of pair copulas (building blocks), vine
copulas are also called pair copulas. Canonical vine copula is a special case of the regular vine copulas
which share special structures as Figure 2 shows.
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linear reservoir model for base flow generation. Base flow at the catchment scale could be represented 
as [36,37]: 

b=t tS aQ , (5)

Figure 2. A canonical vine with 5 variables, 4 trees, and 10 edges. T1 has nodes N1 = {1, 2, 3, 4, 5} and
edges E1. For i = 2, . . . , 4 the tree Ti has nodes Ni = Ei−1 and edge set Ei. The edge represents the
conditional distribution, e.g. 23|1 represent the bivariate conditional density copula c(F1, F3|F2).

Based on bivariate copulas and their conditional forms, the density distribution of an n-dimension
canonical vine copula can be expressed as [22]:

f (x1, . . . , xn) =
n

∏
k=1

fk(xk)
n−1

∏
j=1

n−j

∏
i=1

cj,j+i|1,...,j−1(F(xj|x1, . . . , xj−1), F(xj+i|x1, . . . , xj−1)), (3)

where index j identifies the trees, while i runs over the edges of each tree Xt; cj,j+i|1,...,j−1 varies
according to subscript; F(·|·) represents the conditional distributions of density distribution for
canonical vine given by Aas, et al. [35]:

F
(

xj|x1, . . . , xj−1
)

=
∂Cj,j−1|1,...,j−2{F(xj |x1,...,xj−2),F(xj−1|x1,...,xj−2)}

∂F(xj−1|x1,...,xj−2)
(4)

where j = 2, . . . , n.

2.2.2. Monthly River Flow Simulation Using Canonical Vine Copulas

Streamflows in dry season exhibit high autocorrelation, which could be explained using the linear
reservoir model for base flow generation. Base flow at the catchment scale could be represented
as [36,37]:

St = aQt
b, (5)

where St represents the aggregate storage of the basin in month t; Qt is the amount of outflow from
groundwater in month t, which is equal to base flow of month t in dry season; a, b are watershed
parameters. In dry season, mass balance can be written as:

St = St−1 −Qt−1, (6)

for the linear reservoir, b = 1, and hence Qt =
St
a . This allows (6) to be rewritten as:

Qt = Qt−1(a− 1), (7)
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more generally, the autocorrelation function would be

ρk = (a− 1)k, (8)

since a is typically small, i.e., S� Q, the autocorrelation in the dry season is high.
Suppose Xt, denoting the variable representing the streamflow of month t, is correlated to river

flows of (d− 1) previous successive months. The dependence structure could be built using the
canonical vine copula with the nodes in an order of Xt−1, . . . , Xt−d+1, Xt, which is shown in Figure 3,
and the multivariate density distribution can be expressed by Equation (3).
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In a case of d = 4, the multivariate density distribution for the month t can be expressed using
canonical vine copulas as:

f (xt−1, xt−2, xt−3, xt) = ft−1(xt−1) · ft−2(xt−2) · ft−3(xt−3) · ft(xt)·
c(F(xt−1), F(xt−2)) · c(F(xt−2), F(xt−3)) · c(F(xt−3), F(xt))·
ct−2,t−3|t−1(F(xt−2|xt−1), F(xt−3|xt−1)) · ct−2,t|t−1(F(xt−3|xt−1), F(xt|xt−1))·
ct−3,t|t−1,t−2(F(xt−3|xt−1, xt−2), F(xt|xt−1, xt−2))

(9)

where for t = 1, 2, . . . , 12, the lower case letter xtrefers to the value taken by the corresponding
variable Xt.

The general algorithm to generate river flow of month t, which is conditioned on the
(d−1)observations, can be expressed as:

xt = F−1(wt|xt−d+1, . . . , xt−1), (10)

where wt is a uniform random number; F−1(·|·) is the inverse function of Equation (4) for canonical
vine copulas.

The procedure to determine marginal distribution, choose corelative variables, specify tree
structure, and estimate parameters is shown by the following steps:

Step 1—Determination of marginal distributions and corresponding parameters.

The common families of marginal distributions for river flows of different months are determined
by cumulative distribution plots. The corresponding parameters are supposed to be estimated by the
maximum likelihood method expressed as:

Θ̂ = argmaxL(Θ), (11)

where Θ is the vector of parameters of marginal distributions.

Step 2—Selection of historical monthly river flows correlated to month t.
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The correlated flow variables are selected from previous months which are successive using
Kendall’s tau method. The empirical version of Kendall’s tau measuring dependence based on ranks
for n observations is given by Genest and Favre (2007):

τn =
Pn −Qn(

n
2

) =
4

n(n− 1)
Pn − 1, (12)

where Pn and Qn represent the number of concordant and discordant pairs, respectively.
The null hypothesis H0 : C = Π is independent between X1 and X2, the distribution of τn is close

to normal with zero mean and variance 2(2n+5)
9n(n−1) . Therefore, H0 would be rejected at the approximate

level α = 5% if

|Z| =

√
9n(n− 1)
2(2n + 5)

|τn| > 1.96, (13)

Step 3—Specification of vine structures and estimation of parameters.

The families and parameters of copulas are estimated using the Akaike information criteria (AIC)
and the maximum log-likelihood method, respectively. For streamflow simulation, the bivariate
building block copulas are chosen from different bivariate copulas, such as Gaussian copula, Student t
copula, Clayton copula, Gumbel copula, Frank copula, Joe copula and the rotated forms of Clayton
copula, and Gumbel copula [21,38]. The commonly used fitting error functions consist of the root mean
square error (RMSE), the Akaike information criteria (AIC), and Bayesian information criteria (BIC).
AIC considers both the likelihood function and the number of free parameters in such a way as to
maximize the probability that the candidate model has generated the observed data [39,40]. Therefore,
the bivariate copula family with the lowest AIC value will be chosen as building blocks in canonical
vine structures. AIC for the vine copula with (d + 1) variables can be calculated as [41,42]:

AIC = −2 log(L(θ|data)) + 2V, (14)

where L is the likelihood function and V is the number of free parameters. For canonical vine of the
month t, the log-likelihood of the chosen bivariate copula with parameters θ given the data vectors x1

and x2 is:

log(L(θ|x1, x2)) =
n

∑
k=1

log(c(u1,t, u2,t, θ)), (15)

Step 4—Generation of monthly river flow in dry season.

3. Results and Discussion

Monthly river flow in dry season of Tangnaihai station is simulated using the proposed model as
a case study. Dry season of river flow of Tangnaihai station are from November to June in which runoff
is highly dependent on previous months. For the first step, the river flows in dry season were fitted
into the appropriate marginal distribution. Lognormal distribution, gamma distribution, and Weibull
distribution were selected as candidates since they were widely used for river flow simulation [43].
According to the empirical probability and theoretical cumulative distributions for different months
in Figure 4 and results of Kolmogorov-Smirnov test shown in Table 2, lognormal distribution is
better fitted for Jan, Feb, Mar, Apr, May, and Nov, and gamma distribution is better fitted for Dec of
Tangnaihai site. The parameters of different months were estimated by Equation (11).
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Table 2. Kolmogorov-Smirnov test for different theoretical distributions.

Jan Feb Mar Apr May Nov Dec

Gamma 0.93 0.75 0.97 0.98 0.80 0.93 0.79
Lognormal 0.95 0.84 0.99 0.99 0.98 0.99 0.68

Weibull 0.66 0.34 0.59 0.62 0.35 0.51 0.61

For the second step, the dependence between different pairs of streamflows in adjacent months
was measured by Kendall’s tau value. According to Equation (13), Kendall’s tau values, which are
higher than 0.24, represent correlation relationship. The lag months with bold Kendall’s tau values
in Table 3 were selected as corelative months for the head month. The Kendall’s tau values for
different pairs indicate that river flows in dry season (Nov–June) is highly dependent on a series of
previous months. In spite of high lag 1 correlation between streamflows in wet season, we only focus
on the application of high-dimensional canonical vine copulas to multivariate dependence among
streamflows in dry season in this paper.
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Table 3. Correlation matrix measured by Kendall’s tau values.

Lag1 Lag2 Lag3 Lag4 Lag5 Lag6 Lag7 Lag8 Lag9 Lag10 Lag11 Lag12

Jan 0.747 0.722 0.702 0.586 0.459 0.449 0.147 0.146 0.117 0.213 0.092 0.135
Feb 0.803 0.746 0.681 0.665 0.574 0.447 0.423 0.126 0.223 0.174 0.233 0.135
Mar 0.681 0.693 0.656 0.617 0.594 0.501 0.393 0.310 0.113 0.116 0.075 0.167
Apr 0.340 0.336 0.371 0.280 0.333 0.308 0.217 0.255 0.198 0.114 0.096 0.142
May 0.454 0.284 0.312 0.311 0.262 0.287 0.256 0.241 0.061 0.099 0.040 0.111
Jun 0.356 0.187 0.308 0.345 0.298 0.342 0.350 0.350 0.268 0.152 0.159 0.022
Jul 0.372 0.203 0.154 0.361 0.374 0.350 0.368 0.354 0.363 0.286 0.139 0.126

Aug 0.384 0.055 0.115 0.142 0.108 0.073 0.092 0.076 0.126 0.099 0.022 −0.052
Sep 0.382 0.222 0.005 0.096 0.100 0.091 0.045 0.086 0.031 0.082 0.087 0.066
Oct 0.602 0.356 0.282 0.023 0.024 0.045 0.103 0.044 0.082 0.008 0.066 0.050
Nov 0.781 0.530 0.416 0.286 0.097 0.073 0.094 0.150 0.059 0.092 0.017 0.096
Dec 0.795 0.695 0.549 0.417 0.296 0.126 0.153 0.126 0.235 0.111 0.160 0.094

For the third step, the temporal dependence of the successive months was exploited using
canonical vine copulas, and the corresponding parameters were estimated. The canonical vine structure
of streamflow in Jan is shown as an example in Figure 5.
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Finally, the 7 quantile conditional distribution functions were developed for 7 monthly river flows
in dry season. 500 monthly river flow simulation ensembles in the dry season were generated.

The seasonal autoregressive integrated moving average model (SARIMA) was also developed in
order to compare the performance of the proposed model which can be expressed as:

xt − xt−12 = et − 0.8565et−12, (16)

where xt represents streamflow in month t; et represents random errors.
Figure 6 shows the average of 500 monthly river flow simulation ensembles in dry season by

canonical vine copulas compared with observed streamflows and simulated streamflows by SARIMA
at Longyangxia station. The results prove the much better performance of the proposed model than
SARIMA since the time series synthesized based on canonical vines is closer to observation, especially
for the Jan, Feb, Mar, Apr, and Dec. The accurate descriptions of nonlinear and multivariate correlations
of streamflows in different months are the major cause of this much better performance of the proposed
model. Moreover, these better simulations, which occurred in months with lower streamflows, should
be contributed by the greater capacity of capturing seasonality characteristics since the model develops
different canonical vine structures for different months.Water 2018, 10, x FOR PEER REVIEW  11 of 17 
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Furthermore, three fitting error functions were calculated to test performance. The mean squared
error (MSE) and the related normalization, the Nash–Sutcliffe efficiency (NSE), are the two criteria
most widely used for calibration and evaluation of hydrological models with observed data [44].
The MAE values and NSE values are reported in Table 4, where the RMSE values are also shown to
give more reference. The stochastic model based on canonical vine copulas exhibits lower values of
both MAE and RMSE, and higher NSE than SARIMA. The general low NSE values could be because
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of the misrepresenting of extreme values as the fitting errors caused by extreme values are the majority
of the sum error. These errors are much smaller when calculated between mean observed streamflow
and extreme values since the simulated streamflow is closer to the mean of normal observed values
than mean of whole observation. Although the NSE value of the proposed model is low, the simulated
streamflow is capable of keeping more consistent with normal values, which serve as the main content
of the streamflow time series.

Table 4. Mean MAE, RMSE, and NSE of time series ensembles generated by different models.

SARIMA Canonical Vine

MAE 3.14 1.21
RMSE 3.79 2.48
NSE −0.76 0.11

A set of distributional statistics were calculated to evaluate the capacity of capturing seasonality
of the proposed model based on the canonical vine copulas. Five distributional statistics, including
monthly (1) mean, (2) standard deviation, (3) skewness, (4) maximum, (5) minimum, and (6) lag 1
correlation, were chosen which were interpreted using boxplots in Figure 7. The observed runoff falls
within boxplots in most dry season. There is one limitation on lag 1 correlation.

Figures 7 and 8 show that the mean and the standard deviation of the simulation are highly
consistent with observation in Jan, Feb, Mar, Apr, May, and Nov. Dec exhibits higher mean and lower
standard deviation; the skewness, as Figure 9 shows, in Jan, Mar, May, Nov, and Dec falls within the
boxplot, while Feb and Apr are lower caused by the mispresenting of extreme values; the max and
the min, shown in Figures 10 and 11, are accurate in most months; however, the performance on lag 1
correlation is poor except Mar and Apr as Figure 12 shows.
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4. Conclusions

This study develops a stochastic-statistical model based on canonical vine copulas, which is
capable of simulating monthly river flows in dry season. The main advantages are that the model
allows for arbitrary marginal distributions for river flow and is capable of exploiting the temporal
correlation in a nonlinear, high-dimensional scheme.

This paper explains the main mechanism and shows the step-by-step framework of the proposed
model. The correlations of different pairs of monthly river flow are first measured by Kendall’s tau
values based on ranks. Then, the joint distributions are detected by canonical vine trees comprised by
different bivariate copulas. Finally, the time series of monthly river flow is generated using the quantile
conditional functions of canonical vine copulas conditioned upon corelative flow records. Once the
model is trained, we can use this model to simulate different scenarios of river flow time series, which
are capable of inheriting the temporal dependence of historical data including consistent distributional
statistics and lag correlations. These streamflow time series scenarios can serve as different inputs for
reservoir operation and water allocation strategies in water resources planning and management.

A case study is carried out on the simulation of monthly river flows in dry season at Tangnaihai
station in the headwater catchment of the Yellow River basin. The MAE, RMSE, and NSE values
were calculated to compare the performance of the proposed model with the seasonal autoregressive
integrated moving average model (SARIMA). Moreover, a set of distributional statistics were calculated
to evaluate the capacity of capturing seasonality. The results verified the accuracy and powerful
function of the proposed model. The results also show the limitation to lag 1 correlation of the
proposed model. Further studies may focus on this issue.
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