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Abstract: Generic habitat suitability criteria (HC) are often developed from spatially and temporally
variable hydroecological datasets to increase generality, cost-effectiveness, and time-efficiency of
habitat models. For benthic macroinvertebrates (BMIs), however, there is no prior knowledge on
the spatiotemporal variation in their habitat preferences and how this may be reflected in the final
environmental flow (e-flow) predictions. In this study, we used a large, spatiotemporally variable
BMI-hydroecological dataset and developed generic, local, and season-specific subsets of HC for
three seasons and two river types within various data pre-treatment options. Each subset was used
to train a fuzzy habitat model, predict the habitat suitability in two hydrodynamically-simulated
river reaches, and develop/compare model-based e-flow scenarios. We found that BMIs shift their
habitat preferences among seasons and river types; consequently, spatiotemporally variable e-flow
predictions were developed, with the seasonal variation being greater than the typological one. Within
this variation, however, we found that with proper data pre-treatment, the minimum-acceptable
e-flows from the generic models mostly (65–90%) lay within the acceptable e-flows predicted by
the local and season-specific models. We conclude that, within specific limitations, generic BMI-HC
can be used for geographically extended, cost-effective e-flow assessments, compensating for the
within-limits loss of predictive accuracy.

Keywords: environmental flows; habitat models; seasonal; habitat preferences; model uncertainty;
macroinvertebrates

1. Introduction

Spatiotemporal variation has long been a subject of discussion in physical habitat modelling [1–7].
From a management-oriented perspective, the use of multiple local and season-specific habitat
suitability criteria to develop model-based environmental flow recommendations is considered
unrealistic [2,3]; usually, the costs and time required to generate site- and season-specific habitat
preferences cannot be covered by the limited funding available and, thus, the ability to develop
appropriate local hydroecological datasets is also limited [3]. Research, however, suggests that aquatic
organisms often shift their habitat preferences among seasons and may have different requirements
in different geographical locations. This has been repeatedly confirmed for fish, as there is a
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complete agreement between studies on different species and from different regions [1,8–11], and thus,
in fish-based studies, site- and season-specific habitat suitability criteria have been preferred over
generic ones [12,13]. In contrast, the fewer available studies on benthic macroinvertebrates (BMIs) reach
contrasting conclusions; although most studies suggest increased performance of habitat models when
local and season-specific criteria are applied [4,5,11,14], others conclude that the observed differences
are not significant enough to inhibit the application of generic habitat suitability criteria [2,3,15].
However as Kelly et al. indicate [14], ‘some balance needs to be found between generality and
specificity’ to widen the applicability of model-based environmental flow assessments.

Typically, habitat preference datasets consist of microhabitat samples relating the flow velocity
(V), the water depth (D) and the type of substrate (S) with a habitat suitability value, calculated
either by using the abundance of target aquatic organisms or by applying traits- or metrics-based
approaches. These preferences are often visualized in the two-dimensional space as habitat suitability
curves [4,16,17] but other approaches have been also implemented [18–20]. The habitat preference
datasets are then used as training data in hydraulic habitat models, that is, the reference data
which will be used by the model to predict the habitat suitability (K) in samples/microhabitats
with known V, D, and S values and unknown K. Currently, there are various alternatives available
for the development of habitat suitability criteria, reflecting the aforementioned challenging effort to
balance the sources of error and variation towards cost-effectiveness and time-efficiency. In this effort,
hydroecological data from geographically and hydrologically various river types and in different time
periods, often collected within different projects, are either treated separately to develop site- and
season-specific criteria or are aggregated to increase sample size and/or extend the geographical and
typological applicability of a model [21–23]. In BMI-based studies, typical aggregation schemes include
spatiotemporal pooling-of samples from different sites and/or seasons-without pre-treatment [17,24];
spatial aggregation of samples only from specific, usually low-flow periods [25,26]; and spatiotemporal
pooling of samples after proper pre-treatment [4,19,27].

Although it has been previously acknowledged that spatial and temporal variation may result
in error and uncertainty in model-based environmental flow predictions [28,29], case studies
including and quantifying this spatiotemporal component are currently missing. Do benthic
macroinvertebrates shift their habitat preferences among seasons and in different geographical
locations? Will a model-based environmental flow assessment reach similar prediction by applying
local and season-specific-versus generic habitat suitability criteria? Are the possible differences in
the predictions variable enough to inhibit the application of generic habitat suitability criteria? Can
a generic dataset be treated appropriately to enable its use in multiple locations? These questions
have not been properly addressed due to the lack of relevant comparative assessments, but within
the context of ‘trading-off between modelling accuracy and generality’ [30], such assessments are
necessary to properly guide future habitat modelling efforts.

The purpose of this study was (i) to explore the possible seasonal and typological variation in the
habitat preferences of benthic macroinvertebrates and (ii) to investigate whether this spatiotemporal
variation can be—at least partially—omitted to facilitate the development of generic BMI habitat
suitability criteria. Based on a large BMI-hydroecological dataset collected from Greek streams and
rivers, we developed local and generic habitat suitability criteria for benthic macroinvertebrates,
including (i) three seasons, (ii) two river types, and (iii) five K-calculation alternatives. With the
application of a two-dimensional hydrodynamic habitat model, we used these criteria to develop
model-based environmental flow predictions in two river reaches in Greece. Our ultimate goal was
to calculate the probability of agreement between the environmental flow predictions based on the
different habitat suitability criteria. Low probability would suggest that local and season-specific
habitat suitability criteria cannot be replaced by generic ones due to the high loss in the model’s
predictive accuracy. High probability of agreement would suggest that generic habitat suitability
criteria can be used in model-based EFAs within the concept of balancing between a model’s predictive
performance, generality, cost-effectiveness, and time-efficiency.
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2. Materials and Methods

2.1. Overview of the Analysis

The steps followed to implement our analysis are outlined below:

1. Development-acquisition of a benchmark microhabitat preference dataset.
2. Calculation of habitat suitability (κ) for each microhabitat sample using BMI metrics.
3. Normalization of κ in the 0–1 scale, using five alternatives-options.
4. Training of a habitat model using each of the five κ-normalization options within three seasons

and two river types.
5. Application of hydrodynamic simulations in two river reaches to acquire V and D values in

multiple discharges.
6. Prediction of κ in the two reaches using the various training alternatives (subsets).
7. Development of spatially and temporally varying environmental flow scenarios, comparisons

and discussion on the selection of the minimum acceptable and optimal environmental flows
within the various subsets.

2.2. Development/Acquisition of a Benchmark Microhabitat Preference Dataset

The habitat preferences of benthic macroinvertebrates were acquired from the benthos-GR dataset
(https://github.com/chtheodoro/benthos-GR) [18], consisting of 380 microhabitat samples collected
from 9 reference (unpolluted) sites in Greece (max. 20 microhabitats per site) (see Table S1 for the
complete BMI taxalist). The dataset spans three seasons (spring, summer, and autumn of 2015) and
three river types, based on Van de Bund [31], (i) RM-1 (10–100 km2, altitudes between 200–800 m
a.s.l., mixed geology), (ii) RM-2 (100–1000 km2, altitude < 600 m a.s.l., mixed geology), and (iii) RM-4
(10–1000 km2, altitudes between 400–1500 m a.s.l., mixed geology). Each sample, delineated as a
0.25 × 0.25 m2 rectangular area, relates V, D, and S to a habitat suitability value calculated using
commonly applied BMI-community metrics [32–35] (No. of families, Shannon-Wiener’s diversity
index, No. of Ephemeroptera-Plecoptera-Trichoptera families, total community abundance). As the
samples from RM-1 and RM-2 types were disproportionately lower than the RM-4 samples, they
were merged to a single RM1-2 category including middle and lowland sites with medium-sized
catchments, in contrast to the smaller-catchment, highland sites of the RM4 type. Thus, the number
of microhabitat samples per season and per river type in the dataset (n) were (i) spring samples
(n = 160), (ii) summer samples (n = 160), (iii) autumn samples (n = 60), (iv) RM1-2 samples (n = 100),
(v) RM4 (n = 280) (Figure 1). Two-dimensional representations (scatterplots) of the hydroecological
relationships between the abiotic predictors (V, D, S) and the selected BMI metrics are shown in the
Appendix A (Figures A1–A5).

Figure 1. Three-dimensional representation of the 380 microhabitat samples of the benthos-GR dataset
spanning three seasons (a) and two river types (b). V: flow velocity, D: water depth, S: substrate type.

https://github.com/chtheodoro/benthos-GR
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2.3. Calculation of Habitat Suitability Using BMI Metrics

As detailed in Theodoropoulos et al. [18], for the calculation of habitat suitability, each of the
aforementioned metrics was weighted based on a combination of expert-judgment and previous
literature [32–36] to reflect its relevant contribution-significance, and the final, unnormalized κ has
been calculated as follows:

κ = 0.4 ni + 0.3 Hi + 0.2 EPTi + 0.1 αi

where κ is the unnormalized habitat suitability of the ith microhabitat; ni denotes the number of BMI
taxa (families) found at the ith microhabitat; Hi denotes the Shannon’s diversity index for the ith
microhabitat; EPTi is the number of EPT taxa found at the ith microhabitat; αi is the abundance of
benthic macroinvertebrates found at the ith microhabitat.

As the unnormalized κ values arbitrarily ranged from 0 to higher than 3000, and in accordance
with previous literature on the calculation of K [16,36–39], a normalization process was afterwards
applied to scale the κ values to the 0–1 range. Correlations between the abiotic predictors and the
selected BMI metrics are shown in the Appendix A (Table A1).

2.4. Normalization of κ in the 0–1 Scale, Using Five Alternatives

We applied five alternatives to normalize the unnormalized habitat suitability values:

1. The unnormalized habitat suitability values are divided by the maximum κ observed at the whole
dataset (seasonal and typological variation not accounted; no seasonal grouping, no typological
grouping applied—hereafter called maxall).

Ki =
0.4 ni + 0.3 Hi + 0.2 EPTi + 0.1 αi

κmax

Ki is the normalized habitat suitability of the ith microhabitat ranging from 0 to 1; ni denotes the
number of BMI taxa (families) of the ith microhabitat; Hi denotes the Shannon’s diversity index for the
ith microhabitat; EPTi is the number of EPT taxa found at the ith microhabitat; αi is the abundance of
benthic macroinvertebrates of the ith microhabitat; κmax denotes the maximum unnormalized habitat
suitability value observed in the whole dataset.

2. The unnormalized habitat suitability values are divided by the maximum κ observed at each
season (seasonal variation; no typological grouping applied—hereafter called maxseason).

Kn
i =

0.4 nn
i + 0.3 Hn

i + 0.2 EPTn
i + 0.1 αn

i
κn

max

Kn
i is the normalized habitat suitability of the ith microhabitat at the nth season, ranging from

0 to 1; nn
i denotes the number of BMI taxa (families) found at the ith microhabitat at the nth season;

Hn
i denotes the Shannon’s diversity index for the ith microhabitat of the nth season; EPTn

i is the
number of EPT taxa found at the ith microhabitat at the nth season; αn

i is the abundance of benthic
macroinvertebrates of the ith microhabitat at the nth season; κn

max denotes the maximum unnormalized
habitat suitability value observed at the nth season.

3. The unnormalized habitat suitability values are divided by the maximum κ observed at each
river type (typological variation; no seasonal grouping applied—hereafter called maxtype).

Kp
i =

0.4 np
i + 0.3 Hp

i + 0.2 EPTp
i + 0.1 α

p
i

κ
p
max
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Kp
i is the normalized habitat suitability of the ith microhabitat of the pth river type, ranging

from 0 to 1; np
i denotes the number of BMI taxa (families) found at the ith microhabitat of the

pth type; Hp
i denotes the Shannon’s diversity index for the ith microhabitat of the pth type; EPTp

i
is the number of EPT taxa found at the ith microhabitat of the pth type; αp

i is the abundance of
benthic macroinvertebrates found at the ith microhabitat of the pth type; κp

max denotes the maximum
unnormalized habitat suitability value observed of the pth type.

4. The unnormalized habitat suitability values are divided by the maximum κ observed at each site
at each season (seasonal and typological grouping—hereafter called maxsite).

Kj,n
i =

0.4 nj,n
i + 0.3 Hj,n

i + 0.2 EPTj,n
i + 0.1 α

j,n
i

κ
j,n
max

Kj,n
i is the normalized habitat suitability of the ith microhabitat at the jth site at the nth season

ranging from 0 to 1; nj,n
i denotes the number of BMI taxa (families) of the ith microhabitat at the jth site

at the nth season; Hj,n
i denotes the Shannon’s diversity index for the ith microhabitat of the jth site at

the nth season; EPTj,n
i is the number of EPT taxa found at the ith microhabitat of the jth site at the nth

season; αj,n
i is the abundance of benthic macroinvertebrates of the ith microhabitat at the jth site at the

nth season; κj,n
max denotes the maximum unnormalized habitat suitability value observed at the jth site

at the nth season.

5. The value of each metric is divided by the maximum value of this metric observed at each site at
each season (seasonal and typological grouping—hereafter called maxmetric).

Kj,n
i = 0.4

nj,n
i

nj,n
max

+ 0.3
Hj,n

i

Hj,n
max

+ 0.2
EPTj,n

i

EPTj,n
max

+ 0.1
α

j,n
i

α
j,n
max

Kj,n
i is the normalized habitat suitability of the ith microhabitat at the jth site at the nth season

ranging from 0 to 1; nj,n
max denotes the maximum number of BMI taxa (families) of the jth site at the nth

season; Hj,n
max denotes the maximum Shannon’s diversity index of the jth site at the nth season; EPTj,n

max

is the maximum number of EPT taxa found at the jth site at the nth season; αj,n
max is the maximum

abundance of benthic macroinvertebrates of the jth site at the nth season.

2.5. Training of a Habitat Model Using Each of the Five κ-Normalization Options within Three Seasons and
Two River Types

A fuzzy rule-based Bayesian algorithm (FRB) based on Brookes et al. [40], detailed in
Theodoropoulos et al. [18] and implemented in the HABFUZZ software [41] was trained and
cross-validated (see Supplementary Material—Table S2 for details). In brief, the FRB algorithm
applies a fuzzification process to convert the numerical input values of V and D to membership
degrees (MDs) in overlapping, trapezoidal-shaped fuzzy sets [19] (Table 1). By this process, each
numerical input is assigned to one or more fuzzy sets with a MD ranging from zero to one; K values are
also classified in five classes (0 ≤ bad ≤ 0.2; 0.2 < poor ≤ 0.4; 0.4 < moderate ≤ 0.6; 0.6 < good ≤ 0.8;
0.8 < high ≤ 1). The training dataset (in this case the multiple alternatives of the benthos-GR dataset),
with a priori calculated K values, is used to develop sets of data-driven IF-THEN rules (Table S2),
relating the simultaneous occurrence of a series of fuzzy sets to a specific K class. The fuzzy MD
of each input is afterwards accounted as the probability of occurrence of the particular fuzzy set,
such as ‘IF V is low with a MD of 1 AND D is moderate with a MD of 1 AND S is gravel with a
MD of 1 THEN K is good with a MD of 0.3 and moderate with a MD of 0.7’. The IF-THEN rules
are then combined using the Bayesian joint probability, so that (referring to the previous example)
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the probability of the specific microhabitat’s K being good is the joint probability that V is low AND
D is moderate AND S is gravel AND K is good (1 × 1 × 1 × 0.3 = 0.3), while the probability of K
being moderate is the joint probability that V is low AND D is moderate AND S is gravel AND K is
moderate (1 × 1 × 1 × 0.7 = 0.7). Based on a utility function [18,40], a score is assigned at each K class
(bad: 0.1; poor: 0.3; moderate: 0.5; good: 0.7; high: 0.9) and the habitat suitability for each microhabitat
is predicted using the following equation:

Kp = ∑ MijSij

where, Kp is the predicted habitat suitability; Mij denotes the joint probability of occurrence of each
κ class; Sij denotes the score of each κ class; For the previous example, Kp equals to 0.7 × 0.5 +
0.3 × 0.7 = 0.56.

Table 1. Class names and relevant class parameters of the hydraulic variables. Substrate type (S) and
habitat suitability (K) were treated as crisp (not fuzzy) sets. V: flow velocity; D: water depth.

Variable Classes and Class Properties

V (m/s) Very low
{0, 0, 0.05, 0.1}

Low
{0.05, 0.1, 0.15, 0.2}

Moderate
{0.15, 0.2, 0.4, 0.5}

High
{0.4, 0.5, 0.7, 0.8}

Very high
{0.7, 0.8, 0.8, 0.8}

D (m) Very shallow
{0, 0, 0.1, 0.15}

Shallow
{0.15, 0.2, 0.3, 0.35}

Moderate
{0.3, 0.35, 0.55, 0.6}

Deep
{0.55, 0.6, 0.7, 0.75}

Very deep
{0.75, 0.8, 0.8, 0.8}

S
Boulders {8} Large stones {7} Small stones {6} Large gravel {5} Medium gravel {4}

Fine gravel {3} Sand {2} Silt {1} - -

K Bad {0, 0.2} Poor {0.2, 0.4} Moderate {0.4, 0.6} Good {0.6, 0.8} High {0.8, 1}

The predicted K value is then compared with the K observed in the training dataset for the specific
microhabitat and the predictive accuracy of the algorithm is estimated within a three-K-class system
(low: 0–0.2; moderate: 0.2–0.6; acceptable: 0.6–1) (Table S2), using a 10-fold cross-validation process [42]:
The initial dataset is randomly partitioned in ten equal-sized subsamples. Nine subsamples are used as
the training dataset and the remaining subsample is used for model validation. This process is repeated
ten times (folds), using a different subsample for validation at each iteration. The performance of each
model is evaluated as the average percentage of the correctly classified instances (%CCI) between each
iteration of the ten-fold cross-validation process (Appendix A—Figures A6 and A7).

2.6. Hydrodynamic Simulation of Two River Reaches to Acquire V, D and S Values in Multiple Discharges (Q)

Topographic data (longitude, latitude, bottom elevation) and hydrometric data (Q, V and D at
randomly selected points in two different discharges), were recorded in two river reaches in Greece
(Parapeiros River and Oinoi Stream-Figure 2) at multiple sampling campaigns. The Blue Kenue
software [43] was used to construct a triangulated computational mesh for each river reach based on
the relevant topographic information (Parapeiros-reach mesh properties: 277-m long; 9875 elements;
5170 nodes, Oinoi-reach grid properties: 370-m long; 7140 elements; 3938 nodes). The TELEMAC 2D
hydrodynamic model (Electricité de France, Paris, France) [44] was afterwards used to simulate V
and D values at each node of each computational mesh in multiple discharges (11 Q scenarios for the
Parapeiros reach and 16 Q scenarios for the Oinoi reach). The models were calibrated-validated as
follows: initial values for the Manning’s roughness coefficient (n) were acquired from the tables given
in Chow [45] through an on-site visual estimation of the major types of substrate at each reach. The n
values were afterwards properly adjusted within multiple model runs until an acceptable agreement
was observed between the field-recorded and the simulated values of V and D at each of the randomly
selected points at each river reach. The models were calibrated in the lower discharges and validated
in the higher discharges. As this study is focused on habitat modelling, for further details on the
hydrodynamic simulations of the Parapeiros and Oinoi reaches, please refer to [23,46], respectively.
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Figure 2. The Parapeiros River and Oinoi Stream where the relevant reaches were hydrodynamically
simulated.

2.7. Prediction of K in the Two Test Reaches Using the Various Training Alternatives

Within the process mentioned in Section 2.4, we developed 20 training alternatives (subsets) to
explore the seasonal and typological variation in the BMI habitat preferences and the relevant variation
in the selection of the minimum acceptable and optimal environmental flow scenario within each
subset (Figure 3).
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Figure 3. Seasonal and typological subsets of the benthos-GR dataset developed within the various
κ-normalization methods. In total, 20 subsets were developed and 20 environmental flow assessments
were applied at each test case, using each subset as a training dataset for the habitat model.

As it is obvious, not all normalization alternatives can be used in all cases. For example, since
in the maxall option, the κ values are divided by the maximum observed κ at the whole benthos-GR
dataset, the maxall option cannot be applied only for the spring (or only for the RM4) samples;
in contrast, the maxseason, maxsite, and maxmetric options can be applied in a seasonal subset,
and likewise, the maxtype, maxsite, and maxmetric options can be applied in a typological subset.
Each of the aforementioned 20 subsets was used as a training dataset in the HABFUZZ habitat model,
based on which the integrated TELEMAC 2D + HABFUZZ model predicted K at each node of each
computational mesh according to the V, D, and S values simulated by TELEMAC 2D at each discharge.
In total, the K values in 540 discharge scenarios were simulated; 20 subsets × 11 Q scenarios for the
Parapeiros reach and 20 subsets × 16 Q scenarios for the Oinoi reach.

2.8. Development of Environmental Flow Scenarios

Similarly to the fish-based ‘Weighted Usable Area’ approach of Bovee [16], to advance from the
microhabitat scale to the reach scale, the K multimetric index (microhabitat scale) was combined with
abiotic metrics describing habitat connectivity, habitat availability, and the percentage of wetted nodes,
within the Optima Flow Scenario (OFS) index (reach scale) as follows:

1. Overall Suitability Index (OSI): OSI = ∑w
i=1 Ki

2. Normalized OSI (nOSI): nOSI = OSI
w

where Ki (from 0 to 1) denotes the habitat suitability at each node of the computational grid; w denotes
the total No. of wetted nodes in the computational grid at each Q scenario.

3. Certainty of prediction (COP): The ratio of the No. of microhabitat combinations actually found
in the training dataset to the total No. of nodes in the computational mesh; instead of requiring
the user’s interference to manually adjust the missing fuzzy rules, HABFUZZ is completely
data-driven and when a microhabitat combination is not found in the training dataset, instead



Water 2018, 10, 1508 9 of 26

of returning some arbitrary K value for a particular node (e.g., −1), it uses the K value of its
neighboring node in the mesh, with a simultaneous assessment of the relevant prediction error.

4. Percentage of wetted nodes in the computational mesh at each Q scenario (w).
5. Habitat connectivity (C): The ratio of connected (neighboring) nodes with K > 0.6 to the total

number of wetted nodes with K > 0.6.
6. Habitat availability (A): The ratio of connected (neighboring) nodes with K > 0.6 to the total

number of nodes in the study reach (wetted and dry).

OFSi = nOSIi × wi × Ci × Ai × COPi

All OFSi values were normalized in a 0–1 scale by dividing each OFSi with the maximum OFS
observed. Based on the status classification system introduced in the Water Framework Directive
2000/60/EC [47], all Q scenarios with OFS values higher than 0.6 were considered acceptable as
environmental flows; Seasonal and typological comparisons were applied based on the minimum
and optimal environmental flow predictions to ultimately explore the variation of the different
environmental flow scenarios developed by the various subsets, corresponding to spatially and
temporally different habitat suitability criteria.

3. Results

The seasonal and typological OFS means and standard deviations (SD) within the various
κ-normalization alternatives (see Tables A2–A5 for the actual mean and SD values), along with
the OFS values for each discharge simulated in the various seasons and river types, are depicted in
Figures 4–6 for the Parapeiros reach and in Figures 7–9 for the Oinoi reach. Two trends are evidenced
in both reaches:

i. The seasonal differences in the OFS values for the same Q within the various subsets were
greater and more variable than the relevant typological differences. For example, in the
Parapeiros reach, the OFS value for Q = 0.3 m3/s was 0.18 in spring, 0.77, in summer and 0.04
in autumn (mean: 0.33; SD: 0.39; maxseason normalization). For the same Q, the OFS value
for the RM1-2 type was 0.46 and for the RM4 type was 0.86 (mean: 0.66; SD: 0.29; maxtype
normalization). In the Oinoi reach, the OFS value for Q = 0.05 m3/s was 0.91 in spring, 0.61 in
summer, and 0.26 in autumn (mean: 0.59; SD: 0.33; maxseason). For the RM1-2 type, the OFS
for Q = 0.05 m3/s was 0.89, and for the RM4 type it was 0.65 (mean: 0.77; SD: 0.17; maxtype).

ii. The observed seasonal and typological variation decreased when site-based or metric-based
normalizations were applied (maxsite and maxmetric, respectively) with the maxmetric
option mostly showing the lowest variation among seasons and river types. In the
seasonal comparisons of the Parapeiros reach, the maxmetric option had the lowest OFS-SD
for all Q values (100% lower SD) when compared with the maxseason option and for
7 out of 11 discharges (64%) when compared with the maxsite option. In the relevant
typological comparisons, the maxmetric option showed 81% lower SD, in comparison with
the maxtype option and 64% lower SD when compared with the maxsite option. The seasonal
comparisons for the Oinoi reach showed that the SD for the maxmetric option was 81% lower
(13 out of 16 Q values) when compared with both the maxseason and maxsite alternatives.
The relevant typological comparisons however, showed only 31% lower SD values (5 out of
16 Q values) in comparison with the maxtype option. The comparison between the maxsite
and maxmetric options, once again showed 68% lower SD for the maxmetric normalization.
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Figure 4. Graphical representation of the Seasonal optimal flow scenario (OFS) means (grey shaded)
and standard deviations within the various κ-normalization alternatives for the Parapeiros reach.
The OFS values of spring, summer and autumn for each discharge (Q) have been averaged.

Figure 5. Graphical representation of the typological OFS means (gray shaded) and standard deviations
within the various κ-normalization alternatives for the Parapeiros reach. The OFS values of RM1-2 and
RM4 types for each discharge (Q) have been averaged.
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Figure 6. Seasonal and typological variation in the selection of the OFS for the Parapeiros reach
within the various habitat-suitability calculation-normalization options (Sp: Spring; Su: Summer;
Au: Autumn).
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Figure 7. Graphical representation of the seasonal OFS means (gray shaded) and standard deviations
within the various κ-normalization alternatives for the Oinoi reach. The OFS values of spring, summer
and autumn for each discharge (Q) have been averaged.

Figure 8. Graphical representation of the typological OFS means (gray shaded) and standard deviations
within the various κ-normalization alternatives for the Oinoi reach. The OFS values of RM1-2 and RM4
types for each discharge (Q) have been averaged.
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Figure 9. Seasonal and typological variation in the selection of the optimal flow scenario (OFS) for the
Oinoi reach within the various habitat-suitability calculation-normalization options (Sp: Spring; Su:
Summer; Au: Autumn).

When comparing the seasonal and typological differences in the prediction of the minimum
acceptable environmental flows (OFS > 0.6) within the various κ-normalization options, it can be seen
that the predictions were highly variable; for the Parapeiros reach (Figure 10), the minimum acceptable
environmental flow varied from 0.01 m3/s (maxseason—spring) to 2 m3/s (maxsite—summer). For the
Oinoi reach (Figure 11) the minimum environmental flow varied from 0.01 m3/s (maxseason—spring;
maxtype—RM1-2) to 0.9 m3/s (maxsite—RM4).



Water 2018, 10, 1508 14 of 26

Figure 10. Overall comparison on the selection of the minimum acceptable and optimal environmental
flow in the Parapeiros River between the various habitat-suitability calculation-normalization
options including seasonal and typological variation (Sp: Spring; Su: Summer; Au: Autumn).
Predictions within the green area are considered acceptable (lying between the minimum and optimal
environmental flows).

Figure 11. Overall comparison on the selection of the minimum acceptable and optimal environmental
flow in the Oinoi Stream between the various habitat-suitability calculation-normalization options
including seasonal and typological variation (Sp: Spring; Su: Summer; Au: Autumn). Predictions
within the green area are considered acceptable (lying between the minimum and optimal
environmental flows).
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It must be noted that, within this variation, when environmental flows are predicted by pooling
all seasons and types under the various κ-normalization options, the minimum environmental flows
predicted within the maxsite and maxmetric alternatives in both reaches, mostly lay within the
acceptable environmental flows predicted by all other options (hereafter called between-models’
degree of agreement—DoA), in contrast to the other training alternatives (maxseason, maxtype,
maxall). In the Parapeiros reach, maximum DoA was reached by pooling the dataset within the
maxsite option (90%; within acceptable limits in 18 out of the 20 predictions). The maxmetric option
showed 65% DoA and all other alternatives had 35% agreement. In the Oinoi reach, the maxsite option
showed again maximum agreement (90%), with the maxmetric, maxseason, maxall, and maxtype
options showing 75%, 75%, 30%, and 15% DoA, respectively.

4. Discussion

4.1. Seasonal and Temporal Variation in the Habitat Preferences of Benthic Invertebrates

The results of the study suggest that benthic macroinvertebrates shift their habitat preferences
among seasons and in different geographical locations, with the seasonal shifts being greater than the
typological ones (the between-seasons SD values were constantly higher than the between-types SD).
During summer, benthic invertebrates preferred faster-flowing and deeper habitats (the relevant
habitat suitability peaked at higher discharges, reflecting higher V and D values). During spring
and autumn, their preferences were more variable, but in general, a preference for shallower and
slow-flowing habitats was observed, with the habitat suitability peaking at the lowest discharges
mostly in spring. Although seasonal differences in macroinvertebrate-community abundance and
composition have long been reported in literature [48–52], community-shifts in their habitat preferences
have not been studied; we assume that such ‘shifting behavior’ may be associated with the seasonal
fluctuation of environmental variables, which are known primary drivers of BMI-community changes,
that is, shading, water temperature and dissolved oxygen [53]. As summer approaches, shading
from the surrounding riparian vegetation is reduced, the water temperature increases, the dissolved
oxygen concentration decreases [54] and consequently, faster flowing, deeper, better oxygenated
habitats provide shelter against the changing environment. In contrast to the under-studied seasonal
shifts, typological differences in the habitat preferences of BMIs have been previously documented,
suggesting a preference for shallower water depths and lower velocities in smaller rivers [15,55].
Our results also confirm this trend; the habitat suitability in the RM1-2 type, which includes mid- and
lowland sites draining larger catchments, peaked at higher discharges, reflecting a BMI preference for
higher velocities and water depths, in comparison to the RM4 type consisting of highland sites with
small-sized catchments.

4.2. Seasonal and Typological Variation in the Environmental Flow Predictions within the Various
κ-Normalization Options

As it was expected, the seasonal and typological variation in the habitat suitability of benthic
macroinvertebrates was highly reflected in the minimum acceptable and optimal model-based
environmental flow (e-flow) predictions. E-flow recommendations based on habitat suitability criteria
developed from spring samples only, were slightly or highly different than e-flow recommendations
based on habitat suitability criteria developed from summer or autumn samples of the same set of
sites (maxseason option-Figures 6 and 9). The same trend, but with smaller differences, was observed
with the use of habitat suitability criteria from different river types (maxtype option—Figures 6 and 9).
This suggests that local and season-specific habitat criteria should be used to increase predictive
accuracy-it also confirms most previous BMI-based studies (but see [56])—accounting for the observed
spatial and temporal variation [4,5,11,14].

However, despite the observed and acknowledged spatiotemporal variation, two key-findings
of our study support the use of generic habitat suitability criteria after proper data pre-treatment:



Water 2018, 10, 1508 16 of 26

(i) among the various κ-normalization options, the maxmetric option significantly reduced the observed
seasonal and typological variation (maxmetric-Figures 6 and 9), thus being a potential candidate for
generic applications; (ii) when the habitat suitability values in the reference dataset were normalized
per site or per metric (maxsite and maxmetric options, respectively) the final environmental flow
predictions mostly lay within the acceptable environmental flows range predicted by all other options.
This means that such a generic-criteria-based assessment will have a high probability, ranging from
65% (maxmetric) to 90% (maxsite) to develop environmental flow recommendations, which will
finally benefit the benthic-invertebrate community. Similarly to the majority-vote approach commonly
followed in machine-learning algorithms, all models, either season- or type-specific, agreed-voted
that the minimum acceptable e-flow predictions developed by pooling all samples, pre-treated using
the maxsite and maxmetric options were also acceptable (though not minimum) by the other models
(Figures 10 and 11). The fact that this trend was observed twice in this study (for both river reaches
studied) leads us to assume that it was not due to chance but future studies are of course required to
either further confirm or disprove the aforementioned trend. The use of generic habitat suitability
criteria has also been suggested by the results of Komínková et al. [56], which showed only 10%
seasonal variation in their BMI-based e-flow predictions for an urban creek, with the seasonal,
minimum-acceptable e-flows being almost equal.

4.3. Issues to Be Considered in Spatiotemporal Pooling of Hydroecological Data

Habitat models predict complex distributional patterns based on a reduced set of predictor
variables [28]. Due to the stochastic nature of hydroecological data [57], mismatches between the
models’ prediction and the actual observed are inevitable; spatiotemporal pooling of hydroecological
data has been considered as an additional source of prediction error [28]. The benefits and limitations of
spatiotemporal pooling have long been discussed in literature and despite the multitude of data-mining
methods, research on the development of robust data-mining applications is still ongoing [58].
Our study, inter alia, confirmed the aforementioned, showing varying results in many internal aspects
of the habitat modelling process, which should be taken into account when spatiotemporal pooling of
hydroecological data is attempted:

1. The fuzzy rules developed from the various κ-normalization options were very different;
the habitat suitability class for the same microhabitat combination varied from bad to high
(Table S2), reflecting the importance of the normalization process (seasonal, typological, site-
or metric-based). Theoretically, normalizing a spatially variable dataset, that includes multiple
river types, only by season, does not take into account the geographical-typological variation.
Normalizing a temporally variable dataset, that includes multiple seasons, only by type, does not
take into account the seasonal variation. The very low environmental flow values (0.01 m3/s)
predicted by the seasonal models are possibly indicative of a relevant inadequacy of these
κ-normalization options. We assume that a per-site or per-metric normalization could partially
account for both seasonal and typological variation, but in the absence of a field-validation for
our models (they were cross-validated but not field-validated), we can currently only discuss the
within-models-agreement trends on the final environmental flow prediction.

2. Low sample sizes often resulted in decreased cross-validation accuracy; this was evident by the
%CCI values of the autumn samples (n = 60; Figures A6 and A7), which were the lowest observed
within the various models developed, varying from 46% to 52%. The current FRB algorithm
requires 5 × 5 × 8 = 200 fuzzy rules to adequately predict the habitat suitability (although not all
rules may be necessary, for example, a microhabitat combination of very high V and very deep
D will rarely be observed in a river reach). Thus, a small dataset will be inherently incapable of
providing the observations required to develop an effective rules-database [28]. As the sample size
increases however, more microhabitat combinations will be included, the fuzzy-rules database
will increase, and the model’s performance is also expected to increase [59,60].
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4.4. Can We Use Generic Instead of Local and Season-Specific Habitat Suitability Criteria?

Before answering, it must be noted that the comparisons applied in our study included
typologically different sites, but of similar hydromorphological and hydraulic properties, that is,
flow velocities ranging from 0 m/s to 1.2 m/s, water depths ranging from 0.01 m to 1 m and substrate
types consisting mainly of boulders, cobbles, pebbles, and gravel. It is obvious that the application of
generic habitat suitability criteria from these sites in rivers with completely different hydromorphology
(e.g., deep, slow-flowing habitats composed of sand and silt) is prohibitive.

The results of our study clearly showed spatial and temporal shifts in the habitat preferences of
benthic invertebrates. In combination, however, with the key-findings from the comparison between
the various κ-normalization options, and within the aforementioned limitations, the answer to the
question is the following: In ideal applications, local and season-specific habitat suitability criteria
should be used to maximize predictive performance and develop seasonally and typologically variable
environmental flow scenarios. In real-life applications, however, where a balance between predictive
accuracy, generality, cost-effectiveness, and time-efficiency is usually sought, generic habitat suitability
models, developed within proper data-treatment options to compensate between loss in performance
and generality, can be applied.

5. Conclusions

This study showed that:

• Benthic macroinvertebrates shift their habitat preferences among seasons and in different
geographical locations; this resulted in highly variable model-based environmental flow
predictions between the local, season-specific and generic habitat models.

• Local and season-specific habitat suitability criteria should be used to maximize predictive
accuracy, accounting for the observed spatiotemporal variation.

• Spatiotemporal data pooling increases sample size and, possibly, predictive accuracy, but has
inherent limitations, mainly associated with the normalization process, which should be carefully
selected within pooling attempts.

• With proper pre-treatment (per-site or per-metric κ-normalization), spatiotemporally variable
datasets can be aggregated to develop generic habitat suitability criteria that can be used
to implement model-based environmental flow assessments in multiple locations of similar
hydromorphological and hydraulic properties; the loss of predictive accuracy from the
data-aggregation process has a high probability ranging from 65% to 90% to lie within
the acceptable range of environmental flow predictions that would be made by local and
season-specific habitat models.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/10/11/1508/s1,
Table S1: The benthic-macroinvertebrate taxalist of the 380 microhabitats of the benthos-GR dataset (the derived
metrics can be accessed at https://github.com/chtheodoro/benthos-GR), Table S2: Hydroecological relationships
based on which the fuzzy rules were developed. In case of multiple observations of the same V, D, S combination,
the FRB algorithm uses the Bayesian joint probability to select the final habitat suitability class.
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Appendix A

Table A1. Statistically significant correlations (Spearman’s coefficient) between the three
hydrological-hydraulic variables and the four benthic-invertebrate metrics used to calculate the
microhabitat suitability.

Subset No. of Taxa Diversity No. EPT Taxa Abundance

Flow velocity (m/s) - - 0.109 * 0.108 *
Pooled (n = 380) Depth (m) −0.332 ** −0.235 ** −0.240 ** −0.268 **

Substrate class - - 0.112 * -

Flow velocity (m/s) - - - 0.180 *
Spring (n = 160) Depth (m) −0.285 ** −0.225 ** −0.285 ** −0.217 **

Substrate class - - – -

Flow velocity (m/s) - - 0.199 * 0.206 **
Summer (n = 160) Depth (m) −0.352 ** −0.261 ** −0.234 ** −0.307 **

Substrate class - - - -

Flow velocity (m/s) - - - -
Autumn (n = 60) Depth (m) −0.305 ** - −0.261 * -

Substrate class - - - -

Flow velocity (m/s) - - 0.252 * -
RM1-2 (n = 100) Depth (m) −0.274 ** - - −0.231 **

Substrate class - - - -

Flow velocity (m/s) - - - -
RM4 (n = 280) Depth (m) −0.318 ** −0.253 ** −0.292 ** −0.267 **

Substrate class - - 0.133 * -

* p < 0.05; ** p < 0.01; the (-) symbol indicates no correlation.

Table A2. Seasonal OFS means and standard deviations (SD) within the various κ-normalization
alternatives for the Parapeiros reach. The OFS values of spring, summer and autumn for each discharge
(Q) have been averaged.

Q (m3/s)
Maxseason Maxsite Maxmetric

Mean SD Mean SD Mean SD

0.01 0.48 0.50 0.04 0.05 0.12 0.09
0.1 0.31 0.31 0.10 0.05 0.40 0.29
0.2 0.35 0.36 0.19 0.15 0.56 0.28
0.3 0.33 0.39 0.22 0.21 0.64 0.29
0.6 0.47 0.40 0.50 0.37 0.85 0.13
0.8 0.63 0.40 0.59 0.30 0.88 0.03
1 0.86 0.15 0.80 0.34 0.96 0.07
2 0.73 0.42 0.71 0.18 0.92 0.14
3 0.36 0.40 0.51 0.30 0.63 0.09
5 0.31 0.47 0.46 0.48 0.44 0.04
7 0.46 0.33 0.27 0.26 0.24 0.06



Water 2018, 10, 1508 19 of 26

Table A3. Typological OFS means and standard deviations (SD) within the various κ-normalization
alternatives for the Parapeiros reach. The OFS values of RM1-2 and RM4 types for each discharge (Q)
have been averaged.

Q (m3/s)
Maxtype Maxsite Maxmetric

Mean SD Mean SD Mean SD

0.01 0.42 0.15 0.01 0.01 0.08 0.08
0.1 0.56 0.25 0.07 0.09 0.20 0.11
0.2 0.63 0.27 0.16 0.23 0.42 0.10
0.3 0.66 0.29 0.32 0.35 0.52 0.15
0.6 0.81 0.23 0.68 0.46 0.85 0.21
0.8 0.88 0.17 0.70 0.08 0.90 0.15
1 0.94 0.07 0.83 0.25 0.93 0.03
2 0.99 0.02 0.56 0.06 0.97 0.04
3 0.82 0.06 0.24 0.11 0.80 0.01
5 0.71 0.13 0.11 0.07 0.62 0.11
7 0.48 0.06 0.19 0.16 0.33 0.17

Table A4. Seasonal OFS means and standard deviations (SD) within the various κ-normalization
alternatives for the Oinoi reach. The OFS values of spring, summer and autumn for each discharge (Q)
have been averaged.

Q (m3/s)
Maxseason Maxsite Maxmetric

Mean SD Mean SD Mean SD

0.01 0.43 0.42 0.09 0.06 0.19 0.06
0.03 0.52 0.50 0.15 0.10 0.29 0.08
0.05 0.59 0.33 0.21 0.18 0.38 0.11
0.07 0.71 0.18 0.27 0.24 0.46 0.13
0.09 0.61 0.10 0.34 0.36 0.57 0.20
0.1 0.60 0.11 0.34 0.36 0.57 0.19
0.2 0.84 0.14 0.49 0.43 0.72 0.16
0.3 0.68 0.18 0.61 0.46 0.87 0.12
0.5 0.52 0.33 0.73 0.35 0.92 0.06
0.7 0.64 0.27 0.74 0.24 0.92 0.04
0.9 0.60 0.36 0.79 0.21 0.93 0.10
1 0.59 0.38 0.80 0.26 0.94 0.11

1.5 0.48 0.37 0.60 0.27 0.78 0.11
2 0.40 0.30 0.45 0.25 0.58 0.12
3 0.50 0.37 0.31 0.11 0.40 0.14
5 0.30 0.26 0.12 0.10 0.14 0.10

Table A5. Typological OFS means and standard deviations (SD) within the various κ-normalization
alternatives for the Oinoi reach. The OFS values of RM1-2 and RM4 types for each discharge (Q) have
been averaged.

Q (m3/s)
Maxtype Maxsite Maxmetric

Mean SD Mean SD Mean SD

0.01 0.64 0.23 0.02 0.02 0.16 0.17
0.03 0.72 0.20 0.06 0.08 0.27 0.20
0.05 0.77 0.17 0.10 0.13 0.35 0.20
0.07 0.82 0.14 0.13 0.18 0.43 0.20
0.09 0.86 0.11 0.17 0.24 0.51 0.18
0.1 0.86 0.09 0.18 0.26 0.52 0.17
0.2 0.93 0.06 0.31 0.33 0.71 0.15
0.3 0.97 0.03 0.45 0.29 0.85 0.14
0.5 0.99 0.01 0.71 0.19 0.97 0.04
0.7 0.97 0.04 0.82 0.16 0.95 0.02
0.9 0.98 0.02 1.00 0.00 0.96 0.06
1 0.98 0.00 0.95 0.07 0.93 0.04

1.5 0.93 0.09 0.75 0.21 0.78 0.04
2 0.85 0.11 0.50 0.18 0.60 0.12
3 0.68 0.02 0.30 0.24 0.34 0.16
5 0.40 0.13 0.10 0.11 0.11 0.10
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Figure A1. Hydroecological relationships developed from the spring samples (n = 160) of the
benthos-GR dataset between the three abiotic predictors and the four selected biotic response
variables-metrics. Substrate classes; 1: Silt, 2: Sand, 3: Fine gravel, 4: Medium gravel, 5: Large
gravel, 6: Small stones, 7: Large stones, 8: Boulders. EPT: Ephemeroptera, Plecoptera, Trichoptera.

Figure A2. Hydroecological relationships developed from the summer samples (n = 160) of the
benthos-GR dataset between the three abiotic predictors and the four selected biotic response
variables-metrics. Substrate classes; 1: Silt, 2: Sand, 3: Fine gravel, 4: Medium gravel, 5: Large
gravel, 6: Small stones, 7: Large stones, 8: Boulders. EPT: Ephemeroptera, Plecoptera, Trichoptera.
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Figure A3. Hydroecological relationships developed from the autumn samples (n = 60) of the
benthos-GR dataset between the three abiotic predictors and the four selected biotic response
variables-metrics. Substrate classes; 1: Silt, 2: Sand, 3: Fine gravel, 4: Medium gravel, 5: Large
gravel, 6: Small stones, 7: Large stones, 8: Boulders. EPT: Ephemeroptera, Plecoptera, Trichoptera.

Figure A4. Hydroecological relationships developed from the RM4-type samples (n = 280) of
the benthos-GR dataset between the three abiotic predictors and the four selected biotic response
variables-metrics. Substrate classes; 1: Silt, 2: Sand, 3: Fine gravel, 4: Medium gravel, 5: Large gravel,
6: Small stones, 7: Large stones, 8: Boulders. EPT: Ephemeroptera, Plecoptera, Trichoptera.
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Figure A5. Hydroecological relationships developed from the RM1-2-type samples (n = 100) of
the benthos-GR dataset between the three abiotic predictors and the four selected biotic response
variables-metrics. Substrate classes; 1: Silt, 2: Sand, 3: Fine gravel, 4: Medium gravel, 5: Large gravel,
6: Small stones, 7: Large stones, 8: Boulders. EPT: Ephemeroptera, Plecoptera, Trichoptera.

Figure A6. Mean (gray shaded columns) and standard deviation values from the 10-fold cross
validation process for each κ-normalization alternative (model) applied for the Parapeiros reach.
CCI: Correctly Classified Instances.
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Figure A7. Mean (gray shaded columns) and standard deviation values from the 10-fold cross
validation process for each κ-normalization alternative (model) applied for the Oinoi reach. CCI:
Correctly Classified Instances.
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