
water

Article

Monthly Streamflow Forecasting Using
EEMD-Lasso-DBN Method Based on Multi-Scale
Predictors Selection

Haibo Chu 1, Jiahua Wei 1,2,* and Jun Qiu 1,2

1 State Key Laboratory of Hydroscience & Engineering, Tsinghua University, Beijing 100084, China;
haibochu0613@163.com (H.C.); aeroengine@tsinghua.edu.cn (J.Q.)

2 State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
* Correspondence: weijiahua@tsinghua.edu.cn

Received: 3 October 2018; Accepted: 18 October 2018; Published: 22 October 2018
����������
�������

Abstract: For the inherent characteristics of a raw streamflow times series and the complicated
relationship between multi-scale predictors and streamflow, monthly streamflow forecasting is
very difficult. In this paper, an method was proposed integrating the ensemble empirical mode
decomposition (EEMD), least absolute shrinkage and selection operator (Lasso) with deep belief
networks (DBN) for forecasting monthly streamflow time series, which is EEMD-Lasso-DBN (ELD)
method. To develop the ELD model, the raw streamflow time series was resolved into different
elements, including intrinsic mode functions (IMFs) and residue series, using the EEMD technique.
The predictors of each IMF element and residue were screened using the Lasso technique from a
large number of candidate predictors, respectively. Then, the DBN models were built to simulate
the complex relationship between the resolved elements and the selected predictors, respectively.
The predicted results of the IMFs and residual series were assembled as an ensemble forecast for
the raw streamflow time series and were compared with the other models. The monthly streamflow
series from Tennessee, in the USA, were investigated using the ELD method. It was found that
each IMF has different characteristics and physical meaning, corresponding to different predictors.
The proposed ELD model can significantly improve the accuracy of monthly streamflow forecasting.

Keywords: streamflow forecasting; Lasso; deep belief networks; EEMD; Tennessee River Basin

1. Introduction

Monthly streamflow forecasting is essential for water resources’ planning and management, such
as dam construction, reservoir operation, and flood control [1,2]. However, streamflow forecasting is
difficult because there are non-stationary characteristics of the raw monthly streamflow time series for
intrinsic characteristics, a complex relationship between the impact predictors and monthly streamflow
for an external environment, and multi-scale impact predictors, including atmospheric oscillations,
sea surface temperatures, and precipitation. This influence also has the characteristics of uncertainty,
temporal and spatial variation at different scales, and time-invariance, i.e., it may be different in
different seasons [3,4]. Therefore, the selection of multi-scale predictors and forecasting methods are
essential challenges that need to be solved in monthly streamflow forecasting.

The candidate predictors for streamflow forecasting has a wide range from local to global scales,
and the selection of predictors has already been shown to be effective in improving the accuracy of
streamflow forecasting. In previous studies, rainfall is often chosen as a predictor because it has a
strong correlation with historical streamflow, however, the impact of other predictors on streamflow
should not be ignored. Recently, some research has incorporated teleconnection predictors, such as
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atmospheric oscillations and sea surface temperature (SST), into streamflow forecasting. Therefore,
how to screen the predictors is a problem that needs to be further studied. Techniques, such as
correlation and composite analysis, principal component analysis, and singular value decomposition
(SVD) analysis, have been investigated to identify predictors for streamflow. Opitz-Stapleton et al. [5]
used correlation and composite analysis to reveal the physical relationships between different climate
factors and streamflow. Amigo et al. [6] used canonical correlation analysis to express deep insight
into the link between different physicochemical properties and the concentration of metals in an
estuary. Risko et al. [7] used singular value decomposition analysis to select the predictors of seasonal
streamflow in West-Central Florida. Composite analysis requires limited data and is vulnerable to
leveraging under the influence of a single large anomaly. SVD analysis needs evidence of coupling
between the two datasets by the other methods. Lasso has been shown to be a useful technique in
identifying significant predictors [8]. Previous studies attempted to identify substantial climatic factors
(predictors) that drive streamflow variability in the raw time series. At different periodicity, climatic
factors have different impacts on streamflow variability. In this paper, Lasso was used to select the
predictors that significantly correlate with the different time series resolved from monthly streamflow
representing the characteristics of a different periodicity.

Data preprocessing methods, including moving average (MA), wavelet analysis (WA), singular
spectrum analysis (SSA), and principal component analysis (PCA), are useful tools for improving
the forecasting accuracy by extracting more trends information and eliminating noise from monthly
streamflow time series [9,10]. Wu et al. [11] investigated the performances of five models with SSA
and MA on two real monthly streamflow series. Zhang et al. [12] developed six hybrid models
with different combinations of wavelet analysis (WA), empirical mode decomposition (EMD), and
singular spectrum analysis (SSA), and two modeling methods (i.e., the Artificial Neural Network
(ANN) model and Autoregressive Integrated Moving Average (ARIMA) model). Mehr and Kahya [13]
proposed a Pareto-optimal moving average multigene genetic programming (MA-MGGP) approach
for single-station streamflow prediction as a parsimonious model. The EEMD, as an improved method
of empirical mode decomposition (EMD), is proposed for the analysis of nonlinear and non-stationary
time series, and it is useful to alleviate mode mixing issues by adding the noise to the raw data. EEMD
resolves a nonlinear and complex data time series into several IMFs and a residue, and those IMFs and
the residue reveal different characteristics [14–16].

The building of a model that simulates the complex relationship between the impact factors and
streamflow is a significant problem that needs to be studied continuously. Classical forecasting models,
such as auto-regression (AR), multiple linear regressions (MLR), and auto-regressive moving average
(ARMA), are easy to set up, but cannot deal with non-linear problems, like streamflow forecasting,
especially at monthly times scales [17–19]. Since the early 1990s, the ANN model has been devoted
to the improvement of streamflow time series forecasting [20]. Recently, several works have been
used to improve the forecasting abilities of the ANN model using EEMD. Wang et al. [21] coupled
the ANN model with EEMD to predict the annual runoff. Nevertheless, ANN has weaknesses in
determining the connection weight and the number of hidden layer nodes, and it also suffers from a
slow convergence speed and is easy to trap in a local optimum. The ddeep belief network (DBN) is one
of the most popular deep learning models, which has multiple hidden layers that can effectively and
flexibly simulate the nonlinear and complex relationships compared with the ANN [22]. The EEMD
and DBN should be coupled and adopted in the streamflow forecasting to enhance the accuracy.

The primary objective of this paper is to propose a new data-driven approach from predictors
screening to streamflow forecasting, which integrates the Lasso, EEMD, and DBN. In this study,
the EEMD method was applied to decompose the raw monthly streamflow time series into IMF
elements, and one residual element. Then, the Lasso method was employed to select the predictors
that significantly correlated with each extracted IMF element and the residual element of monthly
streamflow. With the screening predictors as the models’ input, the DBN model was used to predict
each extracted IMF element and the residual element, respectively. The prediction results of the IMFs
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and residual parts obtained by different DBN models were added up to assemble an output as the
final prediction result.

2. Materials and Methods

The flowchart of the EEMD-DBN forecasting model based on Lasso is demonstrated in Figure 1.

Water 2018, 10, x FOR PEER REVIEW  3 of 15 

 

and residual parts obtained by different DBN models were added up to assemble an output as the 

final prediction result. 

2. Materials and Methods 

The flowchart of the EEMD-DBN forecasting model based on Lasso is demonstrated in Figure 

1. 

 

Figure 1. Flowchart of EEMD-Lasso-DBN for monthly streamflow forecasting. 

From this figure, the presented EEMD-DBN based Lasso forecasting paradigm can be 

summarized as follows: Firstly, monthly streamflow data and candidate predictors, including 

precipitation, sea surface temperature for different regions, and atmospheric circulations, are 

collected. The EEMD method is applied to decompose the raw monthly streamflow time series, x(t), 

into m IMF elements, ci(t), i = 1, 2 …, m, and one residual element, r(t). Secondly, the Lasso method is 

employed to select the predictors that significantly correlated with each extracted IMF element and 

the residual element of the monthly streamflow. Thirdly, the DBN models are developed to model 

the relationship between climate variables and IMFs and the residual element, respectively. Finally, 

the prediction results of the IMFs and residual parts obtained by different DBN models were added 

up to assemble an output as the final prediction result. 

2.1. Ensemble Empirical Mode Decomposition (EEMD) 

Ensemble empirical mode decomposition (EEMD) can be an effective tool to deal with non-linear 

and non-stationary time series, which is proposed in the improvement of the empirical mode 

decomposition (EMD) approach [23]. For the EMD approach, it is likely that there are similar 

oscillations in different modes or very different oscillations in a mode, so it cannot accurately reflect 

Figure 1. Flowchart of EEMD-Lasso-DBN for monthly streamflow forecasting.

From this figure, the presented EEMD-DBN based Lasso forecasting paradigm can be summarized
as follows: Firstly, monthly streamflow data and candidate predictors, including precipitation, sea
surface temperature for different regions, and atmospheric circulations, are collected. The EEMD
method is applied to decompose the raw monthly streamflow time series, x(t), into m IMF elements,
ci(t), i = 1, 2 . . . , m, and one residual element, r(t). Secondly, the Lasso method is employed to select
the predictors that significantly correlated with each extracted IMF element and the residual element
of the monthly streamflow. Thirdly, the DBN models are developed to model the relationship between
climate variables and IMFs and the residual element, respectively. Finally, the prediction results of the
IMFs and residual parts obtained by different DBN models were added up to assemble an output as
the final prediction result.

2.1. Ensemble Empirical Mode Decomposition (EEMD)

Ensemble empirical mode decomposition (EEMD) can be an effective tool to deal with non-linear
and non-stationary time series, which is proposed in the improvement of the empirical mode
decomposition (EMD) approach [23]. For the EMD approach, it is likely that there are similar
oscillations in different modes or very different oscillations in a mode, so it cannot accurately reflect
the characteristics of the raw data. To overcome this drawback, EEMD calculates the IMF elements by
the mean of an ensemble of trials, while adding a white noise of a finite amplitude in each trial.
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Two conditions should be satisfied when the EEMD approach is used: (1) The mean of the upper
and lower envelopes must be equal to zero everywhere, and (2) the number of extreme data and the
number of zero crossing must be equal or differ at most by one [24,25]. EEMD can decompose the time
series into several IMFs, and an IMF means a simple oscillatory mode with a variable amplitude and
frequency over time [26,27]. A detailed description of the process of extracting the IMF modes can be
found in [28–30].

2.2. Least Absolute Shrinkage and Selection Operator (Lasso)

Least absolute shrinkage and selection operator, Lasso, is a popular statistical technique in
conjunction with generalized linear models for predictor selection by shrinking some coefficients to
zero. Lasso can constrain the regression coefficients by minimizing the residual sum of squares subject
to the sum of the absolute values of the coefficient being less than a constant [31,32].

The coefficient estimates (β) are often calculated by the ordinary least squares method, which can
be defined as:

L(β) =||Y− Xβ|| (1)

where L(β) is the loss function.
To select the predictors, a penalty term has been added:

L(β) =||Y− Xβ||+λβ (2)

where λ is a positive regularization parameter. The parameter, λ, controls the trade-off between the
bias and parsimony of a fitted Lasso model; the higher the penalty parameter, λ, is, the higher the
penalization on the predictors is, thus a sparser model will be screened with more coefficients shrank
to zero [33].

When the Lasso model assumes N pairs of samples, then Equation (3) can be alternatively
formulated as:

β = argmin

 N

∑
i=1

(
yi − β0 −

k

∑
j=1

β jxij

)2
 (3)

Subject to ∑k
j=1 β j ≤ λ (4)

Care should be taken to determine the values of λ, and it can effectively remove redundant
parameters from the model, while accurately estimating the remaining significant parameters.

2.3. Deep Belief Networks (DBN)

Deep belief networks (DBN) consist of an unsupervised restricted Boltzmann machine (RBM)
and a supervised network, as shown in Figure 2. Each RBM has a layer of input neurons and a single
hidden layer with hidden-to-all-visible connections [34,35]. The DBN model can achieve a better
performance with the initialization weight than that of the ANN model with random weights [36,37].

There is the pre-training part and fine-tuning part in the training process of the DBN model.
Firstly, the parameters of the DBN model are initialized in the pre-training part, and the network is
trained from layer to layer using the unsupervised learning method. When one layer of RBM is trained,
the output of RBM can be transferred to the input layer of the next RBM. Secondly, the gradient descent
method is used for the weights of the whole network. The fine-tuning process is similar to the training
process of the back propagation algorithm [38].
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Figure 2. Structure of the Deep Belief Networks (DBN) model with three hidden layers.

There is one visible layer and one hidden layer in the RBM. There are no connections between
neurons in the same layer, but full connections between neurons in different layers. The hidden and
visible neurons are binary and stochastic, and v and h can be defined as the visible layer vector and the
hidden layer vector, respectively. Then, the energy function of the RBM can be given by:

E(v, h|θ) = −
m

∑
i=1

aibi −
n

∑
j=1

bjhj −
m

∑
i=1

n

∑
j=1

viwijhj (5)

where θ =
(
wij, ai, bj

)
is defined as the parameter of the RBM; wij represents the weights between

visible neurons, i, and hidden neurons, j; ai is the bias parameter of ith visible neurons; is
the bias parameter of ith hidden neurons; and m and n are the numbers of visible and hidden
neurons, respectively.

Hence, one of the important steps is to calculate the corresponding parameter„ and a detailed
description of the process of calculating the parameters of the DBN model can be found in [39–41].

Different performance evaluation measures, including the root mean square error (RMSE), mean
relative error (MAE), Nash-Sutcliffe coefficient (NS), and correlation coefficient (R2) were employed to
assess the results of the models.

3. Study Area and Data

3.1. Study Area

The Tennessee River was chosen as the study region (Figure 3), and it has an area of approximately
106,200 km2. The river starts in eastern Tennessee and flows into the Ohio River. The basin is located
in the temperate climate, with warm summers and mild winters. Annual mean precipitation is about
1400 mm, and it ranges from 1350 mm to 1450 mm from east to west. The greatest rainfall occurs in
the winter and early spring, especially in March, while September and October are the driest months.
The average annual temperature in the area is 13.9 ◦C, and it ranged from 11.1 ◦C to 14.4 ◦C across
the area. The warmest months of the year are July and August, and the coldest months of the year
are typically January and February. There is one gauging station 06010201 (35.48◦, 87.82◦) in the
downstream of the Tennessee River. In the Tennessee River Basin, there are three main types of land
use, with forests, pastureland, and cropland covering more than 48%, 20%, and 19% of the Tennessee
River Basin, respectively. Developed land accounts for only about 8.6% of the area. The physiography
of the Tennessee River is similarly diverse. There are four ecoregions, including the Blue Ridge, Ridge
and Valley, South-west Appalachians, and Interior Plateau. The hydrological station is located in the
Interior Plateau, which has well-developed karst terrain with thin soils and low-gradient streams with
bedrock substrate covered by thin gravel deposits.
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Figure 3. Location of the study area.

3.2. Data

The datasets used in this study are: (1) Natural streamflow: The unimpaired United States
Geological Survey (USGS) stream discharge gauging stations in the Tennessee River watershed
(Figure 3). For this study, monthly streamflow values for one gauging station were used from
January 1950 through to December 2016; (2) precipitation: Monthly precipitation from 1950–2016
were obtained from the national climatic data center; and (3) large-scale climatic variability and
sea surface temperature (SST): Sea surface temperature data from 1950–2016 were obtained from
the Met Office Hadley Centre observation datasets. Large-scale climatic variability, including AO
(Arctic Oscillation), PNA (Pacific-North American Pattern), PDO (Pacific Decadal Oscillation), NAO
(North Atlantic Oscillation), SOI (Southern Oscillation Index), and AMO indices, can be obtained from
National Oceanic and Atmospheric Administration (NOAA)(http://www.esrl.noaa.gov/psd/data/
climateindi). The El Niño–Southern Oscillation (ENSO) index data were collected from the ERSSTv3b
dataset. The model has been coded by MATLAB software. MATLAB function regress, newrb, svmtrain,
and nnetfw is used to complete the analyses of MLR, RBFNN, SVR, and DBN models. The toolbox of
MATLAB for Lasso and EEMD were also used.

4. Results and Discussion

In this study, the monthly streamflow time series of one unimpaired station from January 1950
through December 2016 were used (Figure 4). The inter-annual variability of the monthly streamflow
time series of the station is large. For station 06010201, the minimum and maximum values in the entire
flow data are in the range of 40–2517 m3/s, and the average value and variance is 521 and 405 m3/s,
respectively. The Mann-Kendall test was used to study the trend characteristics of streamflow, and there
is a statistics value of −0.414, which means that the streamflow in station 6010201 has a downward
trend, but the trend is not significant.

http://www.esrl.noaa.gov/psd/data/climateindi
http://www.esrl.noaa.gov/psd/data/climateindi
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4.1. Investigation of Main Elements Decomposition

The results of the EEMD are shown in Figure 5. It can be seen that the raw time series were
resolved into eight IMFs and one residue, respectively. Each IMF has a different characteristic with a
different variable amplitude and wave-number. The variable amplitude and wave-number represent
the function of distance and their characteristic scales, so the IMFs are usually physically meaningful.
IMF1 has the characteristic of the maximum amplitude, highest frequency, and shortest wavelength.
The other IMF elements have a decreasing trend in amplitude and frequency, and an increasing trend in
wavelength. The residue part is a special element, which varies slowly around the long-term average.
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Figure 5. Resolved intrinsic mode functions (IMFs) of the streamflow data by Ensemble Empirical
Mode Decomposition (EEMD).

The Lasso method was employed to screen the predictors that significantly correlated with each
IMF and the residual element, respectively. The predictors of each IMF were different as shown in
Table 1. Each IMF has different characteristics and physical meanings, corresponding to different
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predictors. Most parts of IMF were affected by rainfall except for residue, and it indicated that rainfall
was necessary for different oscillatory modes. IMF1, IMF4, and IMF5 were only affected by rainfall,
while IMF2 and IMF3 were both significantly related with the SST of different regions. The term,
residue, correlated with large-scale atmospheric oscillations and SSTs except for rainfall. As the
wavelength increased, the number of significantly correlated predictors also increased. The possible
reason was that IMFs with long wavelengths have more complex physical meaning.

Table 1. The predictors of each IMF screened by Lasso.

Data Predictors

IMF1 rainfall
IMF2 rainfall, SST3, SST4, SST6, SST7, SST10
IMF3 rainfall, SST1, SST5, SST6, SST7, SST8, SST10
IMF4 rainfall
IMF5 rainfall
IMF6 rainfall, AO, PNA, PDO, NAO, NINO3, SST3, SST6, SST7, SST10
IMF7 rainfall, AO, PDO, NAO, SOI, NINO3, NINO3.4, SST1-4, SST6, SST10
IMF8 rainfall, AO, PDO, NAO, SOI, NINO3, NINO4, NINO3.4, SST1-3, SST6-10

Residue AO, PNA, PDO, SOI, NINO3, NINO4, NINO3.4, SST1-3, SST6-10

4.2. Investigation of Different Forecasting Methods

The multiple linear regression (MLR), radial basis function neural network (RBFNN), and support
vector regression (SVR) models were also built and compared on their performance with the DBN
model. Table 2 shows the forecasting performance evaluation of four models for station 06010201.
During the calibration period, the order of the MAE and RMSE values were as follows: MLR (0.848–310)
> RBFNN (0.741–278) > SVR (0.730–275) > DBN (0.637–251). During the validation period, the order of
the MAE and RMSE values were as follows: MLR (1.093–308) > RBFNN (0.965–287) > SVR (0.952–286)
> DBN (0.841–268). So, the order of the performance of the four models was: MLR < RBFNN < SVR <
DBN. Compared with the three other models, the DBN model performs better in the calibration and
validation period. The DBN models can discover the inherent features and hidden invariant structures
in data from layer to layer. Therefore, the performance of the DBN models exhibits superiority and
higher accuracy in monthly streamflow forecasting.

Table 2. Forecasting performance evaluation of four models for station 06010201.

Model Calibration Model Validation

MAE RMSE NS R2 MAE RMSE NS R2

MLR 0.848 310 0.420 0.629 1.09 308 0.400 0.594
RBFNN 0.741 278 0.534 0.742 0.965 287 0.479 0.627

SVR 0.730 275 0.542 0.745 0.952 286 0.483 0.649
DBN 0.637 251 0.618 0.790 0.841 268 0.546 0.723

4.3. Investigation of the Forecasting Models with EEMD

The MLR, RBFNN, SVR, and DBN models combined with EEMD were used to build the complex
relationship between the impact factors at different scales and streamflow. The RBFNN model consists
of one input layer, one hidden layer, and one output layer. There are two main parameters, including
the hidden neurons and the spread of the radial basis function. A hidden layer with 120 neurons was
used to develop the RBFNN model. The spread of the radial basis function was set at 0.9. The SVR
model was developed based on the Vapnik-Chervonenkis dimension theory and the structure risk
minimization principle, which has important parameters, including the regularization parameter, the
width of the tube in loss function, and the spread. In this study, the regularization parameter (20),
regression tube widths (0.001), and spread (0.8) were the optimal parameters.
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The results are shown in Table 3 and Figure 6. The performances of the MLR, RBFNN, SVR, and
DBN models during the calibration period were: As MAEs, 0.725, 0.699, 0.620, and 0.462; RMSEs, 274,
268, 247, and 202; NS, 0.546, 0.566, 0.632, and 0.754; and R2, 0.747, 0.758, 0.799, and 0.873, respectively.
During the model validation period, these models resulted in MAEs of 0.945, 0.913, 0.821, and 0.631;
RMSEs of 285, 282, 264, and 221; NS of 0.485, 0.498, 0.560, and 0.691; and R2 of 0.670, 0.710, 0.733, and
0.824, respectively. The results revealed that the forecasting models combined with EEMD can improve
the accuracy of streamflow forecasting compared to the forecasting models without EEMD.

Table 3. Forecasting performance evaluation of four models with EEMD for station 06010201.

Model Calibration Model Validation

MAE RMSE NS R2 MAE RMSE NS R2

EEMD-MLR 0.725 274 0.546 0.747 0.945 285 0.485 0.670
EEMD-RBFNN 0.699 268 0.566 0.758 0.913 282 0.498 0.710

EEMD-SVR 0.620 247 0.632 0.799 0.821 264 0.560 0.733
EEMD-DBN 0.462 202 0.754 0.873 0.631 221 0.691 0.824
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4.4. Investigation of the Forecasting Models with EEMD and Lasso

Table 4 shows the forecasting performance evaluation of four models with and without EEMD and
Lasso for station 06010201. The performances of the DBN, EEMD-DBN, and EEMD-Lasso-DBN models
during the calibration period results in MAEs of 0.637, 0.462, and 0.245; RMSEs of 251, 202, and 158;
NS of 0.618, 0.754, and 0.848; and R2 of 0.790, 0.873, and 0.922, respectively. During the model validation
period, these models resulted in MAEs of 0.841, 0.631, and 0.427; RMSEs of 268, 221, and 189; NS of
0.546, 0.691, and 0.775; and R2 of 0.723, 0.824, and 0.885. It showed that the EEMD-Lasso-DBN model
obtained a lower MAE and RMSE, and a higher NS and R2 during both the model calibration and
validation periods compared to DBN and EEMD-DBN. Tables 2–4 also indicated that the performances
of the EEMD-Lasso-forecasting model (DBN/ANN/RBFNN/MLR) performed better than those of the
EEMD-forecasting model, and each single forecasting model (DBN/ANN/RBFNN/MLR) performed
worst. This analysis also indicated that EEMD and Lasso could assist in improving the performance of
the forecasting models.

Table 4. Forecasting performance evaluation of four models with EEMD and Lasso for station 06010201.

Model Calibration Model Validation

MAE RMSE NS R2 MAE RMSE NS R2

EEMD-Lasso-MLR 0.674 261 0.586 0.770 0.884 277 0.515 0.712
EEMD-Lasso-RBFNN 0.544 225 0.694 0.838 0.728 243 0.627 0.766
EEMD-Lasso-SVR 0.413 187 0.788 0.892 0.580 210 0.722 0.822
EEMD-Lasso-DBN 0.245 158 0.848 0.922 0.427 189 0.775 0.885

Figures 7 and 8 illustrates the streamflow forecasts of 06010201 stations with and without EEMD
and Lasso during model calibration and validation using four different models. The R2 statistics of
different models are given in Figures 7 and 8, and the EEMD-Lasso-DBN model has the highest R2 in
model calibration and the validation period with the value of 0.922 and 0.885, respectively, and the
single MLR model has the smallest R2 in model calibration and the validation period with a value
of 0.629 and 0.594, respectively. The MLR model is often used to model linear relationships, but
the relationship between the streamflow and climate variables has non-linear, non-stationary, and
non-smoothness features, so the MLR model cannot be enough to deeply simulate the variability
features in the relationship. From the Figures, it is obvious that the DBN models provided better
performance than the other models in monthly streamflow forecasting, and EEMD-Lasso-DBN models
seem to be more adequate than the single model for forecasting monthly streamflow.

In general, the complex hydrological time-series can be resolved into a simple sub-series by
EEMD, and the characteristic can be seen more clearly at the daily, monthly, and annually periods
than the raw data. From a large number of predictors, different predictors were selected for different
scales by the Lasso method. Then, DBN models were developed for building the relationship between
the selection predictors and different sub-series at different scales, respectively. The performance of
the forecasting models has been improved compared to those of forecasting models that were built
directly by raw data because the features of the decomposed elements can be extracted. Actually,
monthly streamflow contains different frequency elements under the influence of multi-scale predictors.
It is very difficult to clarify the internal mechanism of the phenomenon just by the raw time series
when forecasting. Therefore, the EEMD-Lasso-DBN model performs better than the single model for
forecasting monthly streamflow.



Water 2018, 10, 1486 11 of 15
Water 2018, 10, x FOR PEER REVIEW  11 of 15 

 

 

Figure 7. Predicted and observed streamflow of the 06010201 station with and without EEMD and 

Lasso during model calibration using four different models. 
Figure 7. Predicted and observed streamflow of the 06010201 station with and without EEMD and
Lasso during model calibration using four different models.



Water 2018, 10, 1486 12 of 15

Water 2018, 10, x FOR PEER REVIEW  12 of 15 

 

 

Figure 8. Predicted and observed streamflow of the 06010201 station with and without EEMD and 

Lasso during model validation using four different models. 

  

Figure 8. Predicted and observed streamflow of the 06010201 station with and without EEMD and
Lasso during model validation using four different models.



Water 2018, 10, 1486 13 of 15

5. Conclusions

This study aimed to develop a new approach based on EEMD, Lasso, and DBN for improving
the accuracy of streamflow forecasting. In this paper, the EEMD method successfully resolved the
raw monthly streamflow time series into eight IMF elements and one residual element. Each IMF
and the residual may represent different possible physical meanings, which all have the respective
characteristics with amplitude, frequency, and wavelength. Then, the Lasso method was employed to
screen the predictors that significantly correlated with each IMF and the residual element, respectively.
The predictors of each IMF were different; most parts of IMF were affected by rainfall expect for
residue, and it indicated that rainfall was significant for different oscillatory modes. The predictor
selection can detect the underlying relationship between historical data to give the highest accuracy.

Furthermore, DBN models were developed to simulate the relationship between each IMF
and the corresponding predictors, respectively, so the tendencies of decomposed elements could
be predicted. Finally, the prediction results of all the decomposed elements were assembled to
produce an ensemble result for the raw monthly streamflow forecasting. Furthermore, four statistical
measures (MAE, RMSE, NS, and R2) were used to evaluate the forecasting performance of the different
models. The comparison results suggested that the ELD method significantly produced more accurate
forecasting than traditional forecasting models, and the single forecasting models without EEMD and
Lasso perform worst among the developed models.

For future work, the new proposed approach can be used in the prediction of other time series.
Furthermore, future improvement could be focused on predicting the decomposed elements by
different approaches to get a higher accuracy.
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