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Abstract: Robust calibration of hydrologic models is critical for simulating water resource
components; however, the time-consuming process of calibration sometimes impedes the accurate
parameters’ estimation. The present study compares the performance of two approaches applied to
overcome the computational costs of automatic calibration of the HEC-HMS (Hydrologic Engineering
Center-Hydrologic Modeling System) model constructed for the Tamar basin located in northern Iran.
The model is calibrated using the Particle Swarm Optimization (PSO) algorithm. In the first approach,
a machine learning algorithm, i.e., Artificial Neural Network (ANN) was trained to act as a surrogate
for the original HMS (ANN-PSO), while in the latter, the computational tasks were distributed among
different processors. Due to inefficacy of preliminary ANN-PSO, an efficient adaptive technique
was employed to boost training and accelerate the convergence of optimization. We found that
both approaches were helpful in improving computational efficiency. For jointly-events calibrations
schemes, meta-models outperformed parallelization due to effective exploration of calibration space,
where parallel processing was not practical owing to the time required for data sharing and collecting
among many clients. Model approximation using meta-models becomes highly complex, particularly
in the presence of combining more events, because larger numbers of samples and much longer
training times are required.

Keywords: parallel processing; Particle Swarm Optimization; machine learning; Artificial Neural
Network; HEC-HMS

1. Introduction

Hydrologic process simulation models have brought about opportunities for watershed
management policies and decision making analysis. However, taking advantages of these models
is highly dependent upon parameter estimation in a mechanism called “calibration”. Automatic
calibrations are usually carried out through linking a simulation model (e.g., a hydrological model)
with heuristic evolutionary optimization algorithms. Having not guaranteed finding the global
solutions, evolutionary algorithms have been considered as efficient tools for the purpose of solving
highly nonlinear or non-convex equations, which are the cases many modelers encounter. Despite
advantages, implementing these techniques necessitates solving thousands of functions which results
in the calibration procedure becomes time-consuming. Thus, it is inevitable to benefit from some
state-of-the-art methods for reducing computational costs.
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Schemes used to alleviate the computational cost of simulation-optimization framework can be
categorized into four broad research classes: (1) implementing meta-modeling approaches; (2) utilizing
parallel computing computer architecture; (3) developing computationally efficient algorithms; and
(4) using opportunistically evading models [1].

In the first class, meta-models attempt to develop and utilize cheaper “surrogates” of the costly
simulation models to lessen the overall computational costs [2]. The idea of deploying an approximate
model for optimization of computationally expensive functions was first propounded by Jones et al. [3].
This approach is per se categorized into two main groups including a sampling and control strategy.
While the former focuses on how efficiently the task of experiments design functions, the latter
concentrates on how to manage the surrogate model [4].

The second class, i.e., parallel processing cuts the computational cost by means of the concurrent
use of more than one computer, several central processing units (CPUs), or a multi-core processor.
Parallelization using multiple computers needs several computers (one as a server and the others as
clients) including a local-area network which makes it possible to send and receive data. Multiple
CPU-based techniques advocate a computer’s main board using several CPUs. A multi-core
processor consisting of two or more independent actual central processing units acts as an integrated
computing system.

The third class is designed to locate optimal or near-optimal solutions by virtue of a limited
number of model evaluations, and finally the last class has been proposed to intelligently avoid
unnecessary model evaluations.

Many studies have reported exploring methods for improving computational efficiency by
implementing parallelization and meta-model techniques in water resources and rainfall–runoff
modeling. Her et al. [5] and Rouholahnejad et al. [6] applied parallel computing approaches to
decrease the computation cost of Soil and Water Assessment Tool (SWAT) model. Rao [7] ported a
parallel platform to a two dimensional finite element hydrodynamic model and found that enhancing
the efficiency was nearly proportional to the number of processors used. Muttil et al. [8] and
Sharma et al. [9] utilized the parallel schemes of Shuffled Complex Evolutionary algorithm for model
calibration. Zhang et al. [10] compared two machine learning algorithms namely Artificial Neural
Network (ANN) [11] and Support Vector Machine (SVM) [12] for automatic calibration of the SWAT
model. Mousavi and Shourian [4] presented an adaptive sequentially space filling approach — for
optimization of a river basin decision support system—by which the process was adaptively performed
via identifying regions needed more training. Shourian et al. [13] implemented the integrated ANN
and Particle Swarm Optimization (PSO) [14] algorithm into a framework modeling for optimum water
allocations on a basin scale.

Despite extensive studies conducted to bring down the computational cost of hydrological model
calibrations, most analyses have evaluated one of the aforementioned classes. Comparison studies
have only deployed different techniques which all fall within one category/class. However, nowadays
with evolving new generation of super computers on one side, and proposing advanced methods to
improve the competency of meta-models on the other side, the outperformance of one approach to the
other remained unsolved.

To fill the above-mentioned lacuna, this study aims to compare the performance of two well-known
techniques: meta-model and parallel processing to reduce the computational costs for the purpose of
automatic calibration of the Hydrologic Engineering Center-Hydrologic Modeling Systems (HEC-HMS)
using PSO (hereafter, HMS-PSO). Owing to limitations of calibration techniques available in HMS, it is of
paramount importance to benefit from high-skill optimization algorithms to boost up the auto-calibration
of this versatile hydrologic event-based model [15,16]. While auto-calibration of HMS is a fascinating
subject, like for many other hydrological models [15], a dramatic rise in computational cost has stagnated
applicability of such schemes, particularly when it comes to simulation of hydrographs stemmed from
multi-event storms. Therefore, to accelerate the calibration process, two approaches were put into
practice. In the first approach, ANN, deploying a sequential sampling strategy, was used to approximate
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HMS, while in the second application, parallel computing was implemented. The results of both methods
were presented and their pros and cons of each one was discussed as well.

2. Material and Methods

2.1. The Hydrologic Modeling System

HMS is developed by the Hydrologic Engineering Center of the United States Army Corps
of Engineers and widely used as a standard and versatile model for hydrologic simulations [17].
HEC-HMS, known for being a semi-distributed conceptual hydrological model, simulates discharge
hydrographs. The required inputs include: daily precipitation and physiographic information of
the watershed to simulate time series of discharge as output [18]. The model architecture consists
of a watershed model, meteorological model, control specifications, and input data (time series
data) [18]. Except for the soil moisture accounting model, all other hydrologic models used in HMS are
event-based. Direct runoff is converted to a discharge hydrograph by a user-selected transformation
model. The transform algorithms encompass various unit-hydrograph approaches, the Clark time-area
method, and a kinematic wave model. The model is also able to estimate downstream processes such
as channel and reservoir routing [16].

2.2. Particle Swarm Optimization

PSO is a population-based optimization technique introduced by Eberhart and Kennedy [14].
It was firstly propounded by collective and social behavior of bird flocking or fish shoaling [19]. The
PSO algorithm is initialized with a population (swarm) of random solutions (particles) and searches for
optima by updating particles’ locations (values) within the parameters space. The algorithm updates
the particle’s locations in each iteration through two best particles including (1) “Pbest” which is the
best solution achieved so far by a particle and (2) “Gbest” that is the best solution obtained so far
among all particles in the swarm. After determining the Gbest and Pbest values, each particle updates
whose velocity and position according to Equations (1) and (2):

Vij(t) = We × Vij(t − 1) + C1 × rand ×
[
Pbestij(t)− Xij(t − 1)

]
+ C2 × rand

×
[
Gbestj − Xij(t − 1)

] (1)

Xij(t) = Xij(t − 1) + Vij(t) (2)

where i states the particle’s number in a swarm, j is the particle’s dimension (here number of parameters)
and t is the iteration number. Vij and Xij are particle’s velocity and positions respectively. The velocity
drives the optimization process by reflecting experiential knowledge. We is the weighting factor and
C1 and C2 are learning factors. The total numbers of particles and also maximum iterations assumed
for PSO algorithm were 18 and 200, respectively. Mean Square Error (MSE) was selected as a statistic
metric to assess the degree of match between the measured and simulated series of the variable of
interest (here discharge).

One shortcoming of the PSO algorithm is the stagnation of particles before a good or near-global
optimum is reached. To overcome this issue, algorithm was equipped with Turbulent PSO [20] and
elitist-mutation strategies [21]. By using the Turbulent PSO strategy, lazy particles are triggered and
allowed to better explore solutions. To do so, the velocities of lazy particles namely velocities which
are smaller than a threshold Vc are updated as follows:

Vij =

{
Viji f

∣∣Vij
∣∣ ≥ Vc

u(−1, 1)Vmax
ρ i f

∣∣Vij
∣∣ ≤ Vc

(3)

where µ(−1,1) is a random number, ρ states a scaling factor which controls the domain of particle’s
oscillation with respect to Vmax.
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Likewise, by applying the elitist-mutation strategy, the worst particles in the swarm are
pre-determined their positions are replaced with that of the mutated Gbest particle [21]. This process
of random perturbation will lead to an improved solution resulted from maintaining diversity in the
population and exploring new regions in the whole search space. More details on implementing these
two strategies are explained by Kamali et al. [16].

2.3. Parallel Processing Technique

In the current study, parallel processing was based on distributing simulations amongst three,
six, and nine computers bearing the same configuration. The 18 particles of each iteration were
divided by the number of PCs involved in the procedure. The PC, recognized as server, sent particle to
different clients and the results (simulated discharge) were received after running the HMS model.
The major advantage of the implemented parallelization was that the server could participate to the
simulation process. In such a method, the available PCs are efficiently used. This leads to a reduction
in total simulation time. Here, the used desktop PCs were equally configured as follow: Windows
7 Ultimate 32-bit, 3.00 GHz processor (2 CPUs), 2 GB RAM. The parallelization tasks (distributing
simulations among PCs and collecting the outputs) were undertaken by executing a program written
in the C# language. Figure 1 illustrates the schematic representation of parallel processing for the
HMS calibration.

Figure 1. Schematic representation of tasks assigned to the server and different clients for automatic
calibration of HEC-HMS (Hydrologic Engineering Center-Hydrologic Modeling System).

2.4. Artificial Neural Network (ANN)

ANN is accepted as a universal approximator for its ability in representation of both linear and
complex non-linear relationships. The algorithm is applied to many fields and particularly time series
prediction, classification, pattern recognition as well as model’s function approximation [22]. The input
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data vector (here HMS parameters) is connected to the objective function used in this study namely
MSE values through a number of processing elements called Neurons [11]. There are different types
of neural network architectures. Among them, the popular Multi-layer Perceptrons (MLPs) is the
most well-known algorithm. A MLP network consists of an input layer, one or more hidden layers
of computation nodes, and one output layer. The input signal propagates through the network in a
forward direction. It has been proven that the standard feed-forward MLP with a single hidden layer
can approximate any continuous function to any desired degree of accuracy [23].

MLPs were trained by means of the Levenberg-Marquardt (LM) or damped Gauss-Newton
algorithm which often have been reported to have outperformance over other nonlinear optimization
methods such as the classical back-projection method [24], even though it requires more computational
memory resources rather than other algorithms [25]. Moreover, in this study, Tansig referring to
hyperbolic tangent sigmoid, was selected as a transfer/activation function.

To set up an ANN model, the primary goal is to come up with the optimum architecture of the
ANN in order to ensure a solids and plausible relationship between the input and output variables.
Ascertaining the number of layers and the number of neurons in the hidden layers is accounted for
a formidable challenge [11]. Since hidden layers have a considerable impact upon the output of the
interested variable (e.g., discharge) as well as the performance of the ANN, both the number of hidden
layers and the number of neurons for each hidden layer should be plausibly determined. Benefiting
from too few neurons in the hidden layers will lead to underfitting which can be seen once existing
too few neurons in the hidden layers do not allow to sufficiently capture the signals for a complex
dataset. Conversely, taking advantages of too many neurons in the hidden layers will cause overfitting
where the neural network includes too much information processing capacity as the parsimonious
training information is not adequate to train all the neurons in the hidden layers [11]. To find out an
optimum number of hidden neurons, according to a trial-and-error procedure, some rule-of-thumb
methods were taken into consideration including: (1) the number of hidden neurons should fall within
the sizes of the input and output layers; (2) the number of hidden neurons should be two-third size
of the input layer, plus the size of the output layer, and (3) the number of hidden neurons should be
less than twice the size of the input layer [22]. Regarding the number of hidden layers, similar to most
ANN engineering applications where the number of hidden layers is one [22], this number was also
used to construct the ANN structure in this study. In accordance with other classical data partitioning,
70% of the total data was used for training/calibration and the remaining data, i.e., 30% of the data,
was set aside for validation and test purposes.

3. Study Area and Model Set-Up

The study area is Gorganroud River Basin located in Iran extending from north-west of Khorasan
province to eastern coastal of Caspian Sea (Figure 2a,b). Because of recurrent flash floods occurrence
and consequent damages, there is an urgent need for a flood control management plan in this
region [26]. Having a calibrated rainfall-runoff model will be an essential and inevitable asset to help
policy and decision-makers better plan strategies for water resource management. The Gorganroud
River Basin is divided into three sub-basins namely, Tamar, Tangrah, and Galikesh. Out of which
the Tamar basin (hereafter it is called basin instead) covering an area of 1530.6 km2 was selected for
this study mainly due to its reliable data (Figure 2b). To set up the HMS model of the Tamar basin,
the Tamar basin was divided into seven sub-basins according to the topographic map available for this
region (Figure 2c). Table 1 presents the physiographic information of these seven sub-basins.

Four flood events (Event 1, Event 2, Event 3, and Event 4) were available for the region. Figure 3
gives a brief schematic of hydrographs and hyetographs which are correspondent to the four mentioned
storm events. More details on the different characteristics of events are found in Kamali et al. [16].

Afterwards, among ten loss estimation algorithms available in HMS, the SCS-CN method, as the
most commonly used model, was selected. The successful performance of this approach has been
extensively reported by previous studies. Moreover, this method is easy to be set-up and needs readily
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available data [27]. The two parameters of the SCS-CN method are: Curve Number (CN) and initial
abstraction (Ia) which are interrelated using the following equation:

Ia = α ×
(

1000
CN

− 10
)

(4)

where α is the loss coefficient. We considered CN for seven sub-basins as a calibration parameter
(parameter number 1–7 in Table 2, CN1–CN7). The upper and lower bounds for CN were adopted from
the recommended SCS values taken from the study conducted by Kamali et al. [16]. Assuming a value
of 0.2 for loss coefficient [28], the value of Ia is then calculated accordingly.

Table 1. Physiographic information of seven sub-basins in the Tamar Basin.

Sub-Basins Area (km2) Slope (%)

Sub-Basin 1 307.7 20.99
Sub-Basin 2 129.9 31.61
Sub-Basin 3 341.1 13.85
Sub-Basin 4 455.7 79.52
Sub-Basin 5 135.2 24.8
Sub-Basin 6 117.4 18.4
Sub-Basin 7 43.6 2.9

Figure 2. Geographical location of the Tamar basin on Iran’s map and its representation in HEC-HMS.

Similarly, by the fact that there are seven rainfall-runoff transformation models existing in HMS,
Clark hydrograph was chosen. The method is frequently used to model the direct run-off which is
generated from an individual storm. It is computed via two parameters namely time of concentration
(Tc) and Clark storage coefficient (R). Tc was calculated using the SCS synthetic unit hydrograph
method proposed by Chow et al. [29] and whose relationship with R is given as follows [30]:

R
R + Tc

= cons. (5)
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By considering cons as a calibration parameter in the seven sub-basins (parameter number 8–14 in
Table 2), the storage coefficient is also calibrated correspondingly. The initial values of cons deferring
in each sub-basin are in range of 0.2–0.65 (Table 2). Regarding channel routing, the Muskingum model
was appointed among eight routing methods available in HMS. This model was selected mainly due to
containing fewer parameters which are needed to be estimated, in comparison with the other channel
routing models available in HMS. Although it is a parsimonious model, it is still extensively used
and incorporated in a number of river-modelling software packages [31]. The Xm of the Muskingum
routing method, representing the flood peak attenuation and hydrograph shape flattering of a diffusion
wave in motion, was considered as parameter numbers of three reaches (parameter number 15–17
in Table 2, Xm1–Xm3). More details on parameter calibration and the upper and lower bounds of the
parameter values were further explained by Mousavi et al. [15].

Figure 3. Hydrographs and hyetographs for the four flood events, occurred in a chronological order
denoted by (a), (b), (c), and (d) respectively, in Tamar sub-basin. The dark blue bars exhibit rainfall and
the dark curves represent the observed discharge hydrographs.

Table 2. The initial upper and lower bounds of the considered parameters for calibration in seven
sub-basins joined by three reaches.

Parameter Number Parameters Sub-Basin Upper Limit Lower Limit

1–7
curve number

(CN1–CN7)

Sub-Basin-1 91 60
Sub-Basin-2 91 61
Sub-Basin-3 87 58
Sub-Basin-4 85 60
Sub-Basin-5 84 50
Sub-Basin-6 91 70
Sub-Basin-7 91 70

8–14 cons (cons1–cons7) 7 Sub-Basins 0.65 0.2
15–17 (Xm1–Xm3) 3 reaches 0.5 0.2

4. Results

The calibration was carried out for four single storm events (Event 1, Event 2, Event 3, and Event 4)
and four jointly-events including: (1) Events 1 and 2 (JEvent 1,2); (2) Events 3 and 4 (JEvent 3,4);
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(3) Events 1 to 3 (JEvent 1–3); and (4) all four events (JEvent 1–4). The time required for a single-event
calibration on one PC is approximately 4000 s (Table 3) which increases to 18,697 s for JEvents 1–4
(containing four events). The required calibration time for single events on one PC, compared with
jointly event scenarios, demonstrates that the running time is not considerable (between 3900 s and
4200 s), however this increases linearly for the jointly event scenarios calibration. This affirms the
necessity of equipping the calibration process with solid techniques to noticeably bring down the
simulation time.

Table 3. The required time (given in second) for calibration of different single and jointly
events scenarios.

Single PC Three Parallel
PCs

Six Parallel
PCs

Nine Parallel
PCs

Single event

Event-1 4197 1579 943 770
Event-2 3910 1673 1103 732
Event-3 4034 1578 969 760
Event-4 4156 1836 959 763

Jointly events

JEvent 1,2 8737 2645 2282 1507
JEvent 3,4 8653 2861 2309 1523
JEvent 1–3 12,815 4175 2834 2259
JEvent 1–4 18,697 5422 3870 3041

4.1. Reducing Computational Costs Using Surrogate Model

To set up the ANN architecture as a surrogate for HMS to simulate rainfall-runoff process,
500 samples were generated by means of random and Latin Hypercube sampling (LHS) techniques.
The samples were firstly normalized to improve the algorithm performance and calculation time [32].
Afterwards, the trained ANN was linked to PSO to speed up the calibration process (hereafter
ANN-PSO). Comparing the results yielded by ANN-PSO with those of HMS-PSO indicates a poor
performance of ANN in estimation of discharge hydrographs (Figure 4). Increasing the sample
sizes by 1000, to improve the training of the constructed ANN, could not enhance the simulated
hydrographs for four single events. However, as the principal objective of the current study was to cut
the computational cost, adding more samples was not found to be plausible.

In order to explain the reasons for the ANN incompetence in modeling the hydrographs, we
compared the ‘Gbest’ of ANN-PSO (as the surrogate model) with HMS-PSO (as the original model)
at each iteration and found that in the preliminary iterations of PSO, both ANN-PSO and HMS-PSO
produced the same successful results. However, after some iterations, the ‘Gbest’ particle, identified
by ANN-PSO, differed from the one chosen by the original model because of the ANN failure in
approximating HMS (and therefore MSE). This reveals that the ‘Gbest’ particle was located in a region
that was not covered enough by the taken samples for the training of ANN. Thus, ANN did not
learn adequately to simulate HMS in the vicinity of ‘Gbest’. Consequently, the MSE was not properly
estimated and the particles were diverged from the space where ‘Gbest’ was located.

Increasing more samples will be probably helpful to advance the skill of the ANN-PSO model,
but it can be done only at a huge computational cost which has been assumed to be prohibitive in the
current study. To overcome this problem and improve the functionality of ANN without imposing high
computational cost, we implemented a novel sampling strategy in which those regions of search space
that require further training were identified for each iteration and ANN was re-trained adaptively
(hereafter ANN-HMS-PSO). The iterative process is also called active learning. In the light of this
novel method, the performance of ‘Gbest’ particle at each iteration was compared with that of the
original HMS. If ‘Gbest’ was falsely identified, it was considered as a gap point in the sample sets and
added to the sample repository. ANN was then re-trained using updated samples. By profiting from
this technique, more detailed information near optimal solution was provided for ANN.
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Figure 4. Observed and simulated discharge hydrographs for four events, occurred on (a) 19 September
2004; (b) 6 May 2005; (c) 9 August 2005; and (d) 8 October 2005 respectively, using HMS-PSO
and ANN-PSO approaches. ANN500 and ANN1000 indicate a meta-model trained with 500 and
1000 samples.

Interestingly, we also found that since the performance of ANN is adaptively enhanced for
each iteration, the first ANN training can start with fewer sample size. For instance, in this study,
we could decrease the initial training samples from 500 to 150, nevertheless the results still remained
satisfactory. In summary, after applying adaptive sampling/active learning, the discrepancy between
the simulated and observed hydrographs was mimicked (Figure 5). The results, obtained from single
event calibrations, showed that the hydrographs simulated by HMS-PSO could successfully resemble
those modeled by ANN-HMS-PSO for all four events. In other words, both approaches, i.e., HMS PSO
and ANN-HMS-PSO approximately turned out to have the same performance.

The decreasing trend in MSE over increasing the iteration, computed for both HMS-PSO and
ANN-HMS-PSO models, (Figure 6) explains that in the initial iterations (e.g., 1 to 5), HMS-PSO
outperformed ANN-HMS-PSO; however, after some iterations (e.g., from iteration 40 onwards for
Event 1), both models have converged into nearly equal MSE values. It is important to note that in
both cases the initial particles were the same.

Similarly, the surrogate model, advocated by the active learning technique, promoted the
hydrograph simulation for jointly event scenarios. The results, gained for JEvents 1,2, approved
that despite the nearly similar MSE values (2929 for HMS-PSO versus 3062 for ANN-HMS-PSO), Event
2 was better reproduced using ANN-HMS-PSO, while HMS-PSO outperformed ANN-HMS-PSO in
simulating the hydrograph of Event 1 (Figure 7 and Table 4). The same holds for JEvent 3,4 where
Event 3 was better simulated by HMS-PSO, however Event 4 was more appropriately modeled by
ANN-HMS-PSO, despite the fact that the same MSE was achieved (Figure 8 and Table 4).
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Figure 5. Observed and simulated discharge hydrographs for four events scenarios occurred on
(a) 19 September 2004; (b) 6 May 2005; (c) 9 August 2005; and (d) 8 October 2005 respectively.

Figure 6. Convergence curve of objective function (MSE) for Event 1.

Calibration process for triple events scenario (JEvent 1–3) was also sufficiently good and the
obtained results were found to be broadly similar for both HMS-PSO and ANN-HMS-PSO models
(Figure 9). They yielded nearly alike MSE values (17,749 for HMS-PSO and 17,800 for ANN-HMS-PSO).
The calibration of four jointly events (JEvent 1–4) presented dramatic differences between HMS-PSO
and ANN-HMS-PSO (Figure 10). Interestingly, we noticed that a smaller MSE, representing a better
simulation, was achieved when the ANN-HMS-PSO model was used. This revealed that the active
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learning technique, integrated in ANN, was beneficial to PSO in locating the search space and
accordingly finding optimal solutions. This leads to avoiding PSO to be trapped in local optimal of the
search space as the recurrent problem expected to occur when using optimization algorithms.

Figure 7. Observed and simulated discharge hydrographs for jointly JEvent 1,2 occurred on
(a) 19 September 2004; and (b) 6 May 2005 respectively.

Figure 8. Observed and simulated discharge hydrographs for jointly JEvent 3,4 occurred on (a) 9 August
2005; and (b) 8 October 2005 respectively.

Figure 9. Observed and simulated discharge hydrographs for jointly event scenario (JEvent 1–3)
occurred on (a) 19 September 2004; (b) 6 May 2005; and (c) 9 August 2005 respectively.
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Table 4. The MSE values for jointly event scenarios using HMS-PSO and ANN-HMS-PSO models.

Scenario Event 1 Event 2 Event 3 Event 4 Sum

HMS-PSO

JEvents 1,2 269 2651 - - 2920
JEvent 3,4 - - 9075 2914 11,989
JEvent 1–3 1665 4939 11,114 - 17,749
JEvent 1–4 360 2522 48,572 2341 53,797

ANN-HMS-PSO

JEvents 1,2 585 2478 - - 3062
JEvent 3,4 - - 10,641 1863 12,504
JEvent 1–3 1573 5307 11,571 - 17,800
JEvent 1–4 1423 4236 12,288 2840 21,189

Figure 10. Observed and simulated discharge hydrographs for jointly event scenario (JEvent 1–4) occurred
on (a) 19 September 2004; (b) 6 May 2005; (c) 9 August 2005; and (d) 8 October 2005 respectively.

4.2. Reducing Computational Costs by Parallel Processing

The computational cost of HMS calibration was palliated by deploying a range of parallel process
computing (three, six, and nine PCs). The outcomes for single event calibration determined that the
required time was brought down from 4000 s to thereabouts 1500, 1000, and 750 s, when three PCs
(3 PCs), six PCs (6 PCs), and nine PCs (9 PCs) were parallelized, respectively (Table 3). Under four
jointly event scenarios (JEvent 1–4), this was reduced from 18,697 to about 3041 s when 6 PCs were
parallelized (Table 3).

Results exhibited that the simulation time was not linearly decreased by increasing the number of
PCs. In this respect, there is a noticeable difference between the simulation time of 1 PC and 3 PCs,
while the same does not hold for parallel processing using 6 and 9 PCs (Figure 11). Significant attention
given to reason out this non-linearity demonstrated that the resolutions of conflicting demands between
the shared resources and the communication time between processors can influence the process of
parallelization. As the numbers of PCs increases, the server should manage more sharing and collecting
tasks. In our set-up, the server was also involved in undertaking some of the simulations, thus the
time required to send and receive data from the server to clients for each iteration hampered the
ideal efficiency.
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Figure 11. The percent of time reduction for (a) single event and (b) jointly events of parallelized HMS-PSO.

4.3. Comparing the Performance of Surrogate Models and Parallel Processing

The meta-model and parallelization schemes were compared and contrasted in terms of how
they can speed up the simulation time, while reducing MSE (compared with the original HMS-PSO)
(Tables 5). Findings explained that both approaches were successful in reducing the calibrations time.
According to the performance of the meta-models, the percentage of net simulation time (simulation
time for each event) was decreased as the numbers of joint events were increased. For example,
compared to the original HMS-PSO, the simulation run was speeded up by 86% for a single event
calibration, but by 60% for the JEvent 1–4 scenario. Such a discrepancy (86% and 60%) can be associated
with a necessity to re-training ANN for many iterations which it can be done at the cost of a higher
computation cost. By employing parallelization, the speed-up rate was nearly similar for single and
jointly event scenarios (e.g., between 60% and 70% when 3 PCs were parallelized) and it boosted up
non-linearly when PCs were increased.

Regarding the reduction in MSE, the parallelization yielded the same results as the original
HMS-PSO (as expected), whereas the meta-models simulations represented some errors (Table 5).
Moreover, results indicated that an inverse relationship was found between the error in meta-models
and the numbers of joint events—more events led to bigger discrepancy/error. In the other words,
as the model complexity increased, owing to involving more events, the meta-model, equipped with
active learning technique, helped PSO to locate particles in regions with optimal solutions.

Table 5. Comparison of parallelization and surrogate models performance (negative MSE means
percent of error compared to original HMS-PSO and positive one means a better estimation of MSE).

Number of PCs Speed-Up (%) Improvement in MSE Error (%)

Pa
ra

lle
lp

ro
ce

ss
in

g

Single event 3PCs 60

The same in parallelized and
unparalleled runs

6PCs 76

JEvent 1,2
3PCs 70
6PCs 73

JEvent 3,4
3PCs 67
6PCs 74

JEvent 1–3
3PCs 67
6PCs 78

JEvent 1–4
3PCs 70
6PCs 80
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Table 5. Cont.

Number of PCs Speed-Up (%) Improvement in MSE Error (%)
Su

rr
og

at
e

M
od

el
s

Single event 86.6 −9.5
JEvent 1,2 70–75 −4.8
JEvent 3,4 70–75 −4.3
JEveny 1–3 60–70% −3.9
JEvent 1–4 60–65% +42

5. Conclusions

The current study aimed to reduce the computational cost of storm-event-based rainfall-runoff
simulation using parallelization and surrogate model approaches. The two approaches were taken into
consideration to speed up the automatic calibration of well-known HEC-HMS hydrologic model using
the PSO algorithm. Parallel processing was performed through taking advantage of simultaneous
usage of PCs. The process of replacing HMS with ANN, as a surrogate model, was facilitated by virtue
of active learning technique. The performance of ANN-HMS-PSO was compared with HMS-PSO in
terms of the required time for simulation and the ability of the models in appropriately estimation of
the hydrographs which were assessed using MSE metric.

Our Findings revealed that the hydrograph simulation, depending upon the number of the events,
can last between 4000 (e.g., for Event 1) to 18,698 (e.g., for JEvents 1–4) seconds when one PC is in
operation. Although the run simulation for one single event is not noticeable, by including more events
to be simulated not only did the run time increase, but also the model complexity grew remarkably.
Hence, reducing the computational costs, particularly for a wide range of storm events and/or time
series, is inevitable and must be taken into account via some techniques.

The comparison drawn between the parallel processing scheme and the ANN meta-model
explained that while both approaches could notably bring down the running time, the meta-model
was found to be more efficient in complex scenarios counting more storm events (e.g., JEvents 1–4).
Training ANN using an active learning technique could strongly support PSO in locating particles
near optimal at a higher speed which consequently, the meta-model yielded smaller MSE. This is
promising, because the sampling-based search strategies of the meta-model algorithms might require
considerable time to locate optima, specifically when targeting typical hyper-dimensional parameter
space of rainfall-runoff models.

Our present study compared the skill of two methods to estimate hydrographs from one to
four storm events. Nevertheless, the simulation of discharge hydrographs and/or streamflow time
series incorporating a large number of continuous storm events can be a research lacuna to even
further assess the methods proposed in this study. Moreover, the propounded meta-model, as a
surrogate for HMS, can be substituted for recently developed data-driven/machine learning techniques
such as Discrete Wavelet Transform and Support Vector Machine. From the parallelization point of
view, one can draw a conclusion that benefiting from a noticeable number of PCs will be offset on
account of a great time allocated to send and receive data amongst the PCs. Ergo, for future studies,
integration of parallelization scheme to meta-models might be a versatile tool to not only decrease a
considerable fraction of the running time, but also to capture complexities expected particularly in
multi-event simulations.
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