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Abstract: Conventional landslide susceptibility analysis adopted rainfall depth or maximum rainfall
intensity as the hydrological factor. However, using these factors cannot delineate temporal variations
of landslide in a rainfall event. In the hydrological cycle, runoff quantity reflects rainfall characteristics
and surface feature variations. In this study, a rainfall–runoff model was adopted to simulate the
runoff produced by rainfall in various periods of a typhoon event. To simplify the number of
factors in landslide susceptibility analysis, the runoff depth was used to replace rainfall factors and
some topographical factors. The proposed model adopted the upstream area of the Alishan River
in southern Taiwan as the study area. The landslide susceptibility analysis of the study area was
conducted by using a logistic regression model. The results indicated that the overall accuracy of
predicted events exceeded 80%, and the area under the receiver operating characteristic curve (AUC)
closed to 0.8. The results revealed that the proposed landslide susceptibility simulation performed
favorably in the study area. The proposed model could predict the evolution of landslide susceptibility
in various periods of a typhoon and serve as a new reference for landslide hazard prevention.
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1. Introduction

Landslide susceptibility analysis can be divided into qualitative and quantitative analyses [1].
Qualitative analysis methods are subjective recognition methods whose analysis results vary
according to the practical experiences and comprehensive analysis capabilities of the judging person.
These methods are usually applied to analyze landslide susceptibility when comprehensive data
are lacking. However, because of the subjective nature of qualitative analysis, it is difficult to apply
conventional judgements of reliability and validity, and the qualitative analysis has been gradually
replaced by the quantified analysis. Qualitative analysis methods include statistical analyses, artificial
neural networks, and deterministic seismic hazard analysis. These methods involve collecting a
sufficient amount of data on historical landslide events, quantifying their variables, and establishing
a model to predict landslide occurrence. Recently, statistical methods have become the main form
of landslide susceptibility analysis [2]. In statistical analysis methods, logistic regression adopts
influencing factors of landslides as independent variables and landslide occurrence (or nonoccurrence)
as the dependent variable to obtain a logistic regression equation with which to predict the relationship
between the dependent and independent variables. Independent variables can include continuous and
categorical variables, and thus have relatively few application restrictions. Hence, numerous scholars
have adopted logistic regression in landslide susceptibility analysis [1,3–12].
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More than 60 factors have been discussed in relation to landslide susceptibility analysis [13].
These factors can be grouped into static environmental factors and dynamic external triggering factors.
Environmental factors indicate the natural environment of the slope and can be categorized into
topographical, geological, and location factors. Topographical factors are used to represent the surface
features of the research site, including elevation, aspect, and slope gradient. Slope is the most frequently
adopted factor in landslide studies. The slope gradient influences the landslide susceptibility of a
slope [5]; in particular, the correlation between the slope and the landslide occurrence is substantially
increased when the slope is a uniform homogenous isotropic one. The field investigations of shallow
landslides in mountainous areas of Taiwan indicated that slope gradient is a key factor influencing
landslides [14]. Shallow landslides in mountainous areas of Taiwan mostly occurred on slopes with
a gradient lower than 50◦, in particular those with a gradient of 30◦–40◦. Geological factors reflect
geological structure of a slope. The lithology in geological factors is a critical factor of landslide
occurrence [1]. The slopes with fragile lithological conditions are highly susceptible to landslides.
Location factors refer to factors that exist in the environment that can influence slope stability, such as
water systems, roads, and faults. Triggering factors play a critical role in introducing external forces
for landslides such as rainfall, snow melting, volcano eruptions, and earthquakes. Taiwan is located in
the northwestern Pacific Ocean, where approximately 25.2 typhoons occur every year, ranking first in
terms of typhoon formulation frequency in the world. In addition, Taiwan is located in a critical area
for typhoon turning resulting in approximately 3.6 typhoons hitting Taiwan each year [15]. Therefore,
heavy rainfall caused by typhoons is the main triggering factor of landslides in Taiwan.

Rainfall exerts a negative influence on slope stability primarily through rain that permeates into
the ground. Permeated rain lowers the effective stress and shear mass of the soil, leading to slope
landslides [16]. However, the effect of permeated rain on slope stability is difficult to quantify. Only by
conducting mechanical analysis on permeating behaviors in relation to the slope safety coefficient can
the influences of rainfall on slope stability be revealed. Therefore, quantified analysis for the influence
of rainfall on landslide susceptibility has focused on specific rainfall factors. Factors frequently used to
indicate rainfall characteristics include rainfall intensity, rainfall duration, daily rainfall, single-event
rainfall depth, and rainfall kinetic energy. The rainfall factors used in landslide susceptibility analysis
were discussed in-depth in [17]. Efforts have also been made to improve the predictions using various
rainfall factors [18,19]. However, by using a single factor it is difficult to determine whether that factor
is qualified to represent the characteristics of the entire rainfall event. Rainfall characteristics vary
by weather conditions and topographical characteristics, and this causes considerable temporal and
spatial differences in a rainfall event.

The hydrological cycle indicates that after a rainfall event, surface runoff occurs, and its amount
is dependent on the water loss in the catchment area and the temporal and spatial variations in
rainfall distribution. Surface runoff is a key influencing factor of the actual infiltration of surface
runoff in the catchment area. Infiltration tends to saturate soil, thereby enhancing the probability of
slope landslide occurrence. In the present study, a rainfall-runoff model was adopted to simulate
the runoff produced by rainfall in various periods. Instead of rainfall depth or rainfall intensity, the
proposed model adopted runoff depth—because of its relevance in terms of physics—as the triggering
factor of landslide susceptibility. Runoff was also considered to serve as a replacement for some
topographical factors in landslide susceptibility analysis, thereby reducing the number of factors.
A flowchart of this study is shown in Figure 1. In addition, because of recent rapid developments
in computer technology, geographic information systems (GIS) are a powerful tool for landslide
susceptibility analysis. This study conducted rainfall runoff and landslide susceptibility analyses
using a GIS, which enabled effective data construction, analysis, and display. A GIS can integrate
substantial topographical and hydrological data to achieve fast recognition of the changes of landslide
situations during a rainfall event. This study proposed a methodological framework for predicting
the landslide susceptibility of various locations at various time. The resultant new information can
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serve as a reference for governance planning and disaster relief. In the future, this method could be
combined with rainfall prediction data to construct a landslide hazard early warning system.
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Figure 1. The flowchart of this study.

2. Materials and Methods

2.1. Study Area

The Alishan River is located in southern Taiwan. The elevation of the watershed ranges from 545 m
to 2660 m and the aspect in most areas is northwestern (19.1%) or northern (15.9%). The watershed
features steep terrains; approximately 55.9% of the area has a slope gradient greater than 55%.
Regarding geological distribution, more than 95% of the catchment area comprises late-Miocene
Sanhsia Group Kueichulin formation, whereas only a small part consists of Pleistocene terrace deposits.
The Alishan River is located in the subtropical climate zone. In summer, thunderstorms and typhoons
bring torrential rain to this area. The area is on the windward side of the torrential rain. Hence, this
area is cloudy and humid. Rainfall data from 2000–2017 collected at the nearby Fenqihu Rainfall
Station revealed that the average annual rainfall in this area is 4202 mm, which is substantially
higher than that in Taiwan (2500 mm). Rainfall in this area mostly occurs in summer, particularly
during the typhoon and torrential rain season of July to September, followed by the monsoon season
of May and June. Accumulated rainfall in the flood season, namely between May and November,
accounts for approximately 89.8% of the annual rainfall depth of this area. Because heavy rain often
leads to landslides in the area of the Alishan River, it severely threatens the life and property of
local residents. Therefore, the upstream area of the Alishan River was selected as the study area
(Figure 2). It covers an area of about 67 km2. Because landslide occurrence is highly correlated with
geological features, landslides primarily occur under specific geological conditions. The geological
distribution indicates that the spatial variation of the geological conditions within the study area is
negligible. Hence, conducting landslide susceptibility analysis in this area can prevent geological
factors from directly influencing the results. The proposed rainfall-runoff model was adopted to
predict landslides caused by typhoon events in the study area and evaluate the model performance in
landslide susceptibility analysis.
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2.2. Basic Data Collection

The cartographic resources used in this study were a geological map with a scale of 1:250,000,
a land use map, a 5 m × 5 m high-precision digital elevation model, a road map, and a drainage map.
The spatial distribution of the factors required for subsequent analysis was extracted using the GIS.
Regarding landslide recognition in the research site, satellite images before and after typhoon events
were compared. Then, the new and expanded landslides were mapped. The analysis showed that
Typhoon Talim in August 2005 and Typhoon Jangmi in October 2008 both caused substantial landslides
in the Alishan area. These two typhoons resulted in 139.65 and 92.23 hectares of landslide in the study
area, respectively, which corresponded to 2.98% and 1.38% of the total area. Thus, the rainfall-runoff
model was employed to analyze the variations of runoff distributions in the study area during these
two typhoons. Subsequently, landslide susceptibility analysis was performed and incorporated runoff
quantity and other factors.

2.3. Rainfall Distribution Estimation

For effective analysis of runoff variation in the study area during the typhoon rainfall periods,
temporal and spatial variations in rainfall characteristics were considered when conducting the
rainfall-runoff analysis. Hourly rainfall data from six nearby rainfall stations, namely Shenmu Village,
Fenqihu, Ruili, Fengshan, Shuishan, and Leye Rainfall Stations, were adopted in this study. Spatial
distributions of rainfall data were estimated based on these data through the Thiessen polygon
method [20]. Figure 3 displays the rainfall station distribution and control area of each rainfall station
in the study area. Each control area contains a rainfall station. Rainfall within a control area was
assumed to be represented by the rainfall data of the rainfall station. Table 1 lists the statistics for
rainfall data recorded at six rainfall stations during Typhoon Talim and Typhoon Jangmi. The rainfall
durations of these two typhoons were 30 and 42 h, respectively. Rainfall due to both typhoons was
concentrated around Fenqihu Rainfall Station. Typhoon Jangmi exhibited a greater rainfall depth
and higher maximum rainfall. During Typhoon Talim, the rainfall depth and maximum rainfall at
Fenqihu Rainfall Station were 730.0 and 71.5 mm, respectively. The corresponding characteristics
during Typhoon Jangmi were 919.5 and 75.0 mm, respectively.
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Table 1. Rainfall Characteristics of six rainfall stations during Typhoon Talim and Typhoon Jangmi.

Rainfall Station

Typhoon Talim Typhoon Jangmi

Rainfall Duration: 30 h Rainfall Duration: 42 h

Rainfall
Depth (mm)

Maximum
Rainfall
Intensity
(mm/h)

Averaged
Rainfall
Intensity
(mm/h)

Rainfall
Depth (mm)

Maximum
Rainfall
Intensity
(mm/h)

Averaged
Rainfall
Intensity
(mm/h)

Shenmu Village 444.5 43.5 14.8 584.0 46.5 13.9
Fenqihu 730.0 71.5 24.3 919.5 75.0 21.9

Rueili 500.0 48.0 16.7 591.0 38.0 14.1
Fengshan 491.0 68.0 16.4 733.5 66.0 17.5
Shuishan 285.0 33.0 9.5 605.0 47.0 14.4

Leye 588.0 80.0 19.6 636.0 56.0 15.1

2.4. Rainfall-Runoff Model

The rainfall-runoff model adopted in this study was the physiographic drainage-inundation
(PHD) model, which has been successfully applied to estimate rainfall runoff of various areas in
Taiwan [21–26]. Conducting analysis with this model first involved categorizing the analysis areas
by topography and water system. The present study used the GIS to divide the grids into slope
grids and river grids and extracted the hydrological and physiographic data of the individual grids
for rainfall-runoff analysis. Calculation of the PHD model was performed based on the continuity
equation of flow and the flow law in each grid section. The model simulated the runoff flow across grid
sections to identify runoff directions based on grid topography. The water level variations calculated
through the water flow across the grids should satisfy the continuity equation of flow. Because the
PHD model uses only a continuity equation to express variation in runoff flow, its estimation can
be completed in a very short period. Hence, this model supports real-time prediction of the runoff
amount generated in a rainfall event. The continuity equation of grid section i in the PHD model is
expressed as follows [27]:

Ai
∂hi
∂t

= Pei(t) + ∑
k

Qi,k(hi, hk) (1)

where t is time; Ai is the area of gird section i; hi and hk are the water level of grid sections i and k,
respectively; Qi,k is the amount of water flowing from section k to an adjacent section i; and Pei is the
effective rainfall volume in section i, which equals the product of the effective rainfall amount and
the area of section i. Water flow across grid sections can be classified into river type and weir type.
The calculation methods of various water flow types are illustrated as follows.

(1) River type

If no structure exists to obstruct water flow between two grids, the flow can be regarded as
overland flow or as exhibiting a river-type link. Water flow at the boundary of two grids is calculated
using the Manning formula, which estimates average resistance. Taking grid section i as an example,
the water flow from grid section k to grid section i is:

Qi,k =
hk − hi
|hk − hi|

· φ(hi,k) ·
√
|hk − hi| for

∂Qi,k

∂hi
≤ 0 (2)

Qi,k = φ(hi,k) ·
√
|hk − hi| for

∂Qi,k

∂hi
> 0 (3)
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where hi,k is the water level at the boundary between grid sections i and k. In addition,
hi,k = αhk + (1− α)hi, where α is the weighting factor between the two grids; hi,k is obtained by
performing linear interpolation between hi and hk, and φ(h) is:

φ(h) =
1
n A(h)R2/3(h)
√

∆x
(4)

where ∆x is the center distance between grids i and k, n is the Manning’s roughness coefficient between
the two grids, A is the flow area at the boundary, and R is the hydraulic radius.

(2) Weir type

If flow exchange between two grids is hindered by obstacles such as roads, embankment, or ridge
footpaths, the boundaries are regarded as broad-crested weirs and the linking is referred to as a
weir-type link. The flow at the boundary between two grids is calculated using a weir equation.
Weir flows can be divided into free and submerged weir flows based on the water level upstream and
downstream as well as the difference in weir crest height. The flow quantities of the weir type are
calculated as follows:

Free weir flow
(hi − Zw) <

2
3
(hk − Zw) (5)

Qi,k = µ f b
√

2g(hk − Zw)
3/2 (6)

Submerged weir flow

(hi − Zw) ≥
2
3
(hk − Zw) (7)

Qi,k = µsb
√

2g(hi − Zw)(hk − hi)
1/2 (8)

In Equations (5) and (6), Zw is the weir crest elevation; b is the effective width of the weir crest,
namely the boundary length of two adjacent grid sections; g is the gravitational acceleration; and µ f
and µs are the weir flow coefficients of free weir flow and submerged weir flow, respectively. Typically,
µ f ranges between 0.36 and 0.57, and µs is 2.6 times that of µ f [28].

The flow quantities Qi,k of adjacent grids and the corresponding water levels of these grid sections
(hi and hk) are expressed in Equations (2), (3), and (5)–(8). Equation (1) can be expressed as follows by
using the explicit difference method:

hm+1
i = hm

i +
(∑k Qm

i,k + Pm
ei )

Ai
· ∆t (9)

where m is the known physical quantity at time point tm, the superscript m + 1 is the water level of a
specific grid at time point tm+1, and ∆t is the time difference involved in the calculation. By means of
the rainfall, hydrological, and physiographic data of the grids, the runoff in various grids at various
time points can be obtained from Equation (9). The depth of runoff flow of a grid is defined as:

Di = hi − zi (10)

where Di is the water depth of grid i, and zi is the bed elevation of grid i.
Because the PHD model simulates runoff flow primarily through flow exchange at grid

boundaries, the boundaries should be simple straight lines to enhance the accuracy of flow quantity
estimation on the boundary. However, analysis units typically adopted in landslide susceptibility
models, such as slope units and grid units, tend to have complicated and curved boundaries to ensure
that their boundaries are consistent with the physical boundaries of the area under analysis [18].
Applying such grids for the PHD model analysis affects the stability of model calculation. In this
study, the complexity of the topography in the study area entailed that the amount of hydrological and
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physiographic data to be processed in the model calculation was considerable. The study area was
divided into several zones. Zoning of these areas was performed using a digital elevation model with
a spatial resolution of 5 m × 5 m. River channels were then marked according to the river channel
width identified using satellite images. Subsequently, zoning of slope areas was preformed using soil
maps, land use maps, and road system areas of the study area. When zoning was complete, the sizes
of the analysis grids in different zones were checked and adjusted. If the grids were excessively large,
they would encompass a wide range of elevation and exhibit relatively great difference in topography,
and thus further division would be required to render the grids representative in terms of elevation.
By contrast, if the grid sections were excessively small or elongated, map layer data could not be
extracted, or the simulation of water body exchange would become unstable in the model; this would
warrant further consolidation of these grids. Figure 3 presents the calculation grids for the PHD model,
which were divided by the topographical features of the study area. A total of 3211 grids were used
(Figure 4), of which 189 and 3022 belonged to river grids and slope grids, respectively.
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2.5. Logistic Regression Analysis

Logistic regression has been widely introduced to landslide studies in the last three decades.
It can be employed to perform simple but accurate fitting of independent and dependent variables.
In this study, logistic regression analysis was adopted to assess the relationship between the dependent
variable (i.e., landslide occurrence or nonoccurrence) and independent variables (relevant factors of
landslides). The logistic regression equations of landslide susceptibility analysis can be expressed as
follows [11]:

P =
1

(1 + e−λ)
(11)

λ = α +
k

∑
i=1

βkxki (12)

where λ represents the logit function values of specific slope units, α is the intercept of the
model, xki represents the values of specific landslide susceptibility factors, and βk represents the
corresponding regression coefficient. Substituting the logit function values of specific analysis grids
into Equation (11) obtained the landslide probability P of various analysis grids, namely the landslide
susceptibility values.

Before estimating landslide susceptibility, the grids of the analysis areas must be divided by
terrain mapping units (TMUs), in which natural boundaries formed by various surface features
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are adopted as grid boundaries. Common TMU subdivisions include topographic units, terrain
units, slope units, administrative units, grid cells, and unique-condition units [1]. Regardless of
TMU subdivisions, the objective is to attain the highest possible level of homogeneity within a
subdivision and notable heterogeneity among all subdivisions [29]. The most frequently adopted
TMU subdivisions are slope units and grid cells [1]. Previous landslide hazard research indicated that
because slope units have complete terrain-based boundaries, the results of landslide susceptibility
analysis can serve as a reference for slope hazard management for competent authorities [30].
The landslide susceptibility analysis performance of various TMUs found that slope units attained the
most satisfactory outcomes [1]. Because previous studies have obtained favorable landslide hazard
analysis results by using slope units, the present study adopted slope units as the analysis grids of
landslide susceptibility.

2.6. Landslide Inventories

The landslide inventories were prepared through the following steps. The satellite images of
various landslide sites were compared before and after typhoon events. This enabled mapping newly
created landslides sites as well as existing landslide sites that had expanded after typhoon events, and
stacking landslide areas with slope units to sort these units into those with and without landslides (i.e.,
a landslide group and nonlandslide group). However, larger landslide sites may span multiple slope
units, and some sites may be located only on the margin of the slope units. To prevent insufficiently
large landslide areas from causing categorization errors, a threshold value must be determined. In other
words, we determined whether individual slope units belonged to the landslide group based on their
landslide ratios (the proportion of the landslide area to the overall slope unit area). However, previous
studies have not reached a consensus on the optimal landslide ratio threshold [30–33]. Therefore, in the
present study, tests were conducted with landslide ratios of 1%, 5%, 10%, 20%, 30%, 40%, and 50%.
The optimal threshold was determined by comparing the results and was adopted for subsequent
landslide susceptibility analysis.

When conducting the analysis for threshold selection, areas with slope gradients of <10% were
considered as stable areas, whereas those with slope gradients of ≥50% were considered as hazardous
areas for rockfalls [14]. Accordingly, areas with slope gradients of <10% and >50% were excluded
from the nonlandslide group. The grouping results of both typhoon events revealed that regardless
of the thresholds selected, the nonlandslide group contained far more slope units than did the
landslide group. Therefore, if all slope units in the nonlandslide group were included in the landslide
susceptibility analysis, the accuracy of this group would be exceptionally high, whereas that in
the landslide group would be notably low, resulting in biases in the analysis results. Hence, the
landslide susceptibility analysis included all slope units in the landslide group and an equal amount
of slope units in the nonlandslide group. The selection process of the nonlandslide group consisted of
50 random samplings. Table 2 presents the grouping results of various thresholds and the statistics for
corresponding estimation accuracy.

The results of two typhoon events indicated that higher landslide ratios correspond to higher
levels of model estimation accuracy. However, the available amounts of landslide group slope units
were limited. The data of landslide ratio, mean accuracy, and landslide group slope units in Figure 5
show that for both Typhoon Talim and Typhoon Jangmi, the estimation accuracy and number of
landslide group slope units intersected at a landslide ratio of 10–20% (inclining toward 20%). Thus,
the landslide ratio of 20% was selected as the threshold to distinguish the landslide group in the study.
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Table 2. List of the thresholds and the statistics of corresponding estimation accuracy.

Landslide
Ratio (%)

Typhoon Talim Typhoon Jangmi

Overall
Accuracy

(%)
Mean Standard

Deviation

Slope Units
for Landslide

Group

Estimation
Accuracy

(%)
Mean Standard

Deviation

Slope Units
for Landslide

Group

1 69.5~75.1 71.5 1.6 211 74.4~82.5 78.4 1.8 160
5 70.1~79.3 74.1 2.0 167 77.6~85.8 81.7 1.6 123

10 69.8~79.4 74.7 2.1 131 73.8~87.6 81.5 2.4 101
20 68.9~81.1 73.8 2.7 106 79.7~88.5 83.8 2.1 74
30 68.1~81.9 75.3 2.7 80 78.4~90.2 85.6 2.6 51
40 67.2~82.1 74.0 4.0 67 76.3~91.3 84.6 3.4 40
50 69.4~88.9 78.5 4.1 54 75.0~96.2 86.1 5.0 26
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2.7. Factors of Landslide Susceptibility Model

A previous study indicated that numerous factors may influence landslides in the Alishan area,
including elevation, slope gradient, terrain roughness, slope roughness, profile curvature, lithology,
aspect, rainfall intensity, and slope height [25]. Because predicted runoff entailed the characteristics
of rainfall and some topographical factors, this study simplified factors in subsequent landslide
susceptibility analysis. Specifically, only aspect and slope gradient were retained and adopted
alongside the estimated depth of runoff flow to perform the landslide susceptibility analysis. To prevent
a single factor from affecting the simulation results with a distinctly different value range, the factors
were normalized prior to landslide susceptibility analysis. The preparations of the adopted factors are
as follows:

(1) Aspect

Aspect refers to a slope’s inclination direction. A correlation was found between landslide
distribution area and aspect [34]. Aspect reflects the extent to which the slope is windward or leeward
in a catchment area. Slopes with a windward aspect are more susceptible to erosion caused by torrential
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rain, which damages the soil structure and increases the probability of landslides. Therefore, aspect is
considered a possible factor of landslides. In this study, aspect was calculated as a function of gradients
at a given point on a surface [35]. The azimuth values of the slope units were calculated automatically
using the spatial analysis module of the GIS. Aspect was then divided into nine types by using the
obtained azimuth values.

(2) Slope gradient

Slopes with steeper gradients are subject to greater effects of gravitational force; these effects
become the kinetic energy of the soil and rock in terms of slipping downward. Hence, slope gradient
is often considered the most direct influencing factor of slope mechanics [1,5,11]. The present study
adopted a spatial analysis module in the GIS to perform calculations on the topographical data in the
5 m × 5 m high-resolution digital elevation model (DEM). Zonal statistics were then used to extract
the mean slope gradient of all slope units. The resulting slope gradient ranged from 1◦ to 66◦ in the
study area.

(3) Depth of runoff flow

The temporal variations of runoff flow depth in the study area during rainfall were estimated
by the PHD model. Because each slope unit contained multiple calculation grids in the PHD model,
the mean water depth in an individual slope unit was adopted as the representative depth of runoff
flow. Because the flow depth varies during rainfall with respect to rainfall amount and physiographic
factors, analyzing this variable enables temporal variations in landslide susceptibility in the study area
to be obtained at various time points during rainfall.

3. Results

3.1. Rainfall-Runoff Analysis

Figure 6a,b present the simulated runoff flow depth and rainfall data during Typhoon Talim
and Typhoon Jangmi, respectively. The runoff flow depth in the figure is represented by that of the
slope unit at the outlet of the study area. Simulated values of runoff flow depth were plotted as line
charts and the mean rainfall of the six rainfall stations during the typhoon periods were plotted as
hydrographs. Figure 6a,b show that the variation trends of runoff flow depth and hourly rainfall
were similar during the two typhoons. In the early stages of rainfall, because the runoff had not
reached the outlet, the runoff flow depth maintained at a low value. When the rainfall duration
and amount increased, the runoff flow depth increased significantly; when the rainfall duration and
amount decreased, the runoff flow depth also decreased. The peak of overland flow depth occurred
close to the peak of rainfall. The hydrograph of runoff flow faithfully reflects water level increases and
decreases caused by rainfall variation. A comparison of the DEM and land use map of the study area
showed that the runoff flows mostly occurred in low-lying areas of the slopes and areas with relatively
low slope gradients near river channels. This indicated that the adopted PHD model can properly
simulate changes in runoff flow due to terrain and land use in the study area. Therefore, substituting
the factor of rainfall amount with runoff flow depth can more faithfully reflect the situations of water
distribution. The PHD model simulation results were further assessed by comparing the results with
the total rainfall volumes, which were obtained by adding the products of the rainfall amount at
all rainfall stations and their control area. Table 3 summarizes the total rainfall volume, total outlet
discharge, and total depression storage. The simulation performance of the PHD model can be assessed
in relation to runoff error (Er), which is calculated as follows:

Er =
Vrainfall − (Vdischarge + Vdepression)

Vrainfall
(13)
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where Vrainfall represents the total rainfall volume, Vdischarge represents the simulated discharge at the
outlet, and Vdepression represents the simulated depression storage. The runoff error of Typhoon Talim
was 1.16%, whereas that of Typhoon Jangmi was 0.99%. The runoff errors of both typhoons predicted
by the PHD model were lower than 2.0%. These results indicated satisfactory conservation in the
model calculation process. The PHD model was verified as reasonable and adequate for simulating
rainfall runoff that occurred in areas of the Alishan River.
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Table 3. The comparison of the runoff volumes for different typhoon events.

Event
Simulations Total Rainfall

Volume (m3)
Runoff
ErrorTotal Outlet Discharge (m3) Depression Storage (m3)

Typhoon Talim 34,944,289.2 1,011,033.8 36,376,655.0 1.16%
Typhoon Jangmi 48,230,661.6 556,015.3 49,276,512.2 0.99%

3.2. Landslide Susceptibility Analysis

Factors such as aspect, slope gradient, and runoff flow depth in various periods were input into
the logistic regression model to obtain the regression coefficients. The results of logistic regression
analysis are expressed as follows:

λ = W1 × L1 + W2 × L2 + W3 × L3 + W4 × L4 + W5 × L5 + W6 × L6 + W7 × L7 + W8 × L8

+W9 × L9 + W10 × L10 + C
(14)

where W1 ∼ W10 are the regression coefficients of various factors, C is the constant, L1 ∼ L8 are
aspect values, L9 is the slope value, and L10 is the runoff flow depth, which changes throughout the
rainfall process. In a logistic regression model, categorical variables must include indicator variables.
The plane was adopted as the indicator aspect in this study. Each factor was standardized to the
same scale before it was applied to the logistic regression analysis. Table 4 summarizes the regression



Water 2018, 10, 1354 13 of 18

coefficients of various factors throughout the rainfall periods of Typhoon Talim and Typhoon Jangmi.
The regression coefficients revealed that aspect, slope gradient, and overland flow depth all positively
correlated with landslide occurrence. The regression coefficient of aspect remained higher than those
of the other two factors and the weight difference among various aspect values was minor. In Typhoon
Talim, the regression coefficient of slopes with a southern aspect was slightly higher, whereas in
Typhoon Jangmi, that of southern and eastern slopes were relatively high. This difference was a result
of the two typhoon events having different visiting paths. Typhoon Talim moved from east to west,
directly cutting through Taiwan; hence, it brought a southwestern monsoon that directly influenced
southwestern Taiwan. Typhoon Jangmi made landfall in northeastern Taiwan and turned northward
because of Taiwan’s terrain, and thus exerted less influence on central and southern Taiwan with a
southwestern monsoon. Assessment of the landslide susceptibility prediction results was conducted
using the classification error matrix (CEM) [36] and the area under a receiver operating characteristic
curve (AUC) [37]. Table 5 shows that the AUC of all variables was higher than 0.7 and the CEM
accuracy of most variables was higher than 80%, indicating that runoff flow depth, aspect, and slope
gradient all achieved satisfactory results in landslide susceptibility analysis [38].

Table 4. Regression coefficients estimated for the logistic regression model.

Factor Coefficient
Event

Typhoon
Talim

Typhoon
Jangmi

Aspect

North L1 W1 16.89~17.21 14.53~19.88
Northeast L2 W2 17.75~18.15 14.62~19.47

East L3 W3 18.19~18.46 16.09~20.51
Southeast L4 W4 18.44~19.00 15.85~19.93

South L5 W5 19.03~19.17 16.21~20.04
Southwest L6 W6 17.85~18.19 14.83~18.47

West L7 W7 18.34~18.57 15.09~18.62
Northwest L8 W8 17.98~18.31 13.95~16.18

Slope L9 W9 1.71~1.83 2.54~3.16
Runoff depth L10 W10 0.80~1.47 1.77~2.70

Constant C – −18.82~−18.67 −20.39~−16.71

Table 5. The performance of the landslide susceptibility model. CEM = classification error matrix;
AUC = area under a receiver operating characteristic curve.

Assessments
Event

Typhoon Talim Typhoon Jangmi

CEM (%)
For nonlandslide group 79.2~81.1 83.8~90.5

For landslide group 80.2~83.0 85.1~87.8
Overall accuracy 79.7~82.1 85.1~89.2

AUCs 0.771~0.795 0.838~0.876

4. Discussion

The landslide susceptibility values in the study area were divided into four levels, including stable
(0~0.25), low landslide susceptibility (0.25~0.5), moderate landslide susceptibility (0.5~0.75), and high
landslide susceptibility (0.75~1). Figure 7a,b, respectively, illustrate the landslide susceptibility levels
in various periods during the two typhoons. For Typhoon Talim, the stable area ranged between 35.10%
and 37.82%, the low landslide susceptibility area ranged between 27.92% and 29.38%, the moderate
landslide susceptibility area ranged between 17.28% and 18.85%, and the high landslide susceptibility
area ranged between 15.53% and 17.11%. The prediction results revealed that the stable area and low
landslide susceptibility area comprised most of the study area. Regarding the prediction results of



Water 2018, 10, 1354 14 of 18

Typhoon Jangmi, the stable area ranged between 51.82% and 61.12%, accounting for approximately half
of the total area; the low landslide susceptibility area ranged between 13.89% and 16.73%; the moderate
landslide susceptibility area ranged between 8.37% and 11.88%; and the high landslide susceptibility
area ranged between 15.43% and 19.58%. The rainfall amount and duration of Typhoon Talim were
smaller than those of Typhoon Jangmi; however, the mean rainfall intensity of Typhoon Talim was
higher than that of Typhoon Jangmi. Because Typhoon Talim brought substantial rainfall within a
short period, the landslide probability in the research site increased, expanding the moderate and high
landslide susceptibility areas. Thus, for Typhoon Talim, the stable area accounted for a far smaller
area than that for Typhoon Jangmi. In addition, the landslide susceptibility analysis adopted runoff
flow depth as the influencing factor; this factor changes dynamically during the rainfall process. Thus,
the proposed analysis method can be applied to predict the time point of landslide occurrence when
similar rainfall events occur.
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Using the time points at which Typhoon Talim and Typhoon Jangmi exhibited the most favorable
overall accuracy as an example, the comparisons of real landslide and predicted landslide areas were
shown in Figure 8a,b, considering a cut-off value of 0.5 to distinguish the susceptibilities into landslide
and nonlandslide areas. The predicted results were approximately consistent with the actual landslide
areas. The results indicated that the landslides in the study area were concentrated in the northeast,
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whereas a small proportion of them were scattered around the remainder of the study area. The reason
for such a distribution pattern was that the southern slopes were located on the windward side during
both typhoons, and most northeastern slopes in the study area have a southern or southwestern aspect,
which renders them particularly susceptible to torrential rain and strong wind. The prediction results
reflect the influence of aspect on the stability of slopes in the study area. However, the model did not
accurately predict landslides with a western or northwestern aspect and those with a slope gradient of
lower than 30◦ (marked by circles). The logistic regression model adopted the southern aspect as the
main area of landslide occurrence and the slope gradient positively correlated with the probability
of landslide occurrence. Therefore, the model was unable to predict landslide areas with a western
aspect and a relatively low slope gradient. To improve the model accuracy, the study area could be
further divided into a smaller scale for simulations, or alternatively, detailed landslide susceptibility
and variation analysis could be performed on specific local areas of slopes in hazardous areas.
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5. Conclusions

This study adopted the upstream area of the Alishan River in southern Taiwan as the study area
to analyze the temporal variations of landslide susceptibility. A new landslide analysis procedure was
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established by combining the rainfall–runoff model and landslide susceptibility model. The results
indicated that based on the runoff flow depth, aspect and slope gradient can serve as the factors
of landslide susceptibility analysis. The landslide susceptibility model established using logistic
regression can be used to analyze temporal variations among landslides caused by rainfall. Using
runoff flow depth as an analysis factor can reduce the number of factors and enhance the data
processing efficiency of the landslide susceptibility model. The model prediction results revealed
that the substantial rainfall in a short period increased the landslide occurrence of the study area,
thereby decreasing the proportion of stable areas. A comparison of landslide susceptibility variation
during the typhoons revealed that the proposed analysis model can predict variations in landslide
susceptibility caused by typhoon rainfall. The prediction results indicated that the landslide analysis
process demonstrated accurate predictions. If rainfall prediction data are integrated in the future,
the proposed rainfall–runoff model used alongside a landslide susceptibility analysis process can
predict the time points of landslide occurrence, thereby providing new types of landslide data that the
government can use to implement resident evacuation and road closure procedures. This study used
event-type landslide data (landslides after a rainfall event) as a basis for landslide analysis. Temporal
variations of landslide during a rainfall event can help to further verify the proposed model.
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