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Abstract: The special issue “Streambank Erosion: Monitoring, Modeling, and Management” presents
recent progress and outlines new research directions through the compilation of 14 research articles
that cover topics relevant to the monitoring, modeling, and management of this morphodynamic
process. It contributes to our advancement and understanding of how monitoring campaigns can
characterize the effect of external drivers, what the capabilities and limitations of numerical models
are when predicting the response of the system, and what the effectiveness of different management
practices is in order to prevent and mitigate streambank erosion and failure. The present editorial
paper summarizes the main outcomes of the special issue, and further expands on some of the
remaining challenges within the realm of monitoring, modeling, and managing streambank erosion
and failure. First, it highlights the need to better understand the non-linear behavior of erosion
rates with increasing applied boundary shear stress when predicting cohesive soil detachment,
and accordingly, to adjust the computational procedures that are currently used to obtain erodibility
parameters; and second, it emphasizes the need to incorporate process-based modeling of streambank
erosion and failure in the design and assessment of stream restoration projects.
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1. Introduction

Streambank erosion and failure is recognized as a significant source of sediment loading to
streams (Figure 1). In many Conservation Effects Assessment Project (CEAP) watersheds in the United
States, for example, sediment eroded from banks is one of the primary sources of bed material [1],
accounting in some cases for as much as 80% of the total load [2]. Likewise, degraded banks can be
a major contributor to nutrient loading in streams as reported by Laubel et al. [3] and Mittelstet et al. [4],
who estimated that eroded sediment can contribute up to 40% and 47% of the total phosphorus in
small rural and agricultural watersheds, respectively, and [5] that reviewed a wide range of studies and
noted that streambank phosphorus contributions can be significant. From a geomorphic perspective,
streambank erosion and failure modify the channel planform and cross-sectional geometry, ultimately
altering the flow and sediment transport dynamics of the reach. This leads to hydro-morphodynamic
adjustments, such as changes in flow depth, bed-material composition, and transport capacity, that take
place at various spatial and temporal scales [6]. Furthermore, the magnitude of such adjustments has
been enhanced over the last several decades by land-use dynamics within watersheds. For example,
Schottler et al. [7] reported that the use of artificial drainage has triggered an increase in annual flow
from agricultural basins, resulting in streams with a higher erosion capacity and therefore subject to
severe channel widening due to bank erosion and failure.
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Figure 1. Post-restoration streambank (a) erosion and (b) failure in Richland Creek, Wake County, NC,
USA. Pictures courtesy of the NCSU BAE-DMS stream restoration team.

The breadth of research being published on streambanks is rapidly expanding, especially since the
early 1990s as illustrated in Figure 2. The purpose of this special issue was to compile recent progress
and highlight new research directions relevant to streambank erosion and failure. The special issue
contains 14 research articles that: (i) span across the realm of monitoring, modeling, and management,
with the ultimate goal of advancing our understanding of the processes that govern these complex
and dynamic phenomena; and (ii) build upon the rapidly expanding research literature (Figure 2).
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Figure 2. Number of publications on the topic of “streambank”. Data are extracted from the Institute
for Scientific Information’s (ISI) Web of Science database. A total of 541 publications were identified
under the topic of “streambank” as of August 2018.

2. Main Outcomes of the Special Issue

The research articles included in this special issue specifically targeted three areas that are key to
better understanding streambank erosion and failure, namely, monitoring [8-11], modeling [12-17],
and management [18-21]. As an ensemble, the articles highlight the value of monitoring campaigns to
characterize the effect of external drivers (e.g., hydrologic events), the capabilities and limitations of
numerical models for predicting the response of the system (e.g., stream restoration design), and the
effectiveness of management practices to prevent and mitigate the impacts of streambank erosion
and failure.
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2.1. Monitoring

Arnold and Toran [8] monitored erosion rates and turbidity levels in an urban stream to examine
the effect of commonly found invasive species on bank retreat. Their results highlight the impact of
different types of bank vegetation on erosion rates and their implications for calculating sediment
supply. Dragicevic et al. [9] reconstructed the lateral migration of a 15-km reach of a meandering river
using 87 years of observations from cadastral maps and aerial photographs. This study is a relevant
example of the use of historical data to characterize long-term trends of bank erosion relative to the
hydrologic regimes that triggered them. Karimov and Sheshukov [10] monitored an ephemeral gully
over a period of two years to identify the main factors responsible for soil detachment. They developed
a critical shear stress function that accounts for changes in soil moisture content for achieving a more
accurate prediction of erosion zones within ephemeral gullies. Lastly, the study by Kociuba and
Janicki [11] showed how highly variable hydro-meteorological conditions influence the contribution
of bank erosion to total sediment load by measuring erosion rates at fixed locations using the Global
Navigation Satellite System (GNSS).

2.2. Modeling

Enlow et al. [12] simulated bank retreat using the one-dimensional (1D) process-based model
CONCEPTS [22] to examine the impact of the variability associated with erodibility parameters on
the model’s predictions. Multiple Jet Erosion Tests (JETs) were performed along two streams located
in separate watersheds to estimate the latter parameters, which were found to vary significantly
in both cases. Nonetheless, their results indicate that the degree of variability associated with the
model’s predictions was not as high as that associated with the JET-derived erodibility parameters.
Huang et al. [13] developed and validated a two-dimensional (2D) analytical model to predict critical
hydraulic gradient for particle entrainment due to seepage flow. They examined the effect of various
parameters (e.g., soil internal instability) on the results and proposed a methodology to calculate the
initiation probability of particle movement. Lai [14] presents the development and application of
a coupled vertical and lateral bank erosion model that is based on the 2D depth-averaged hydraulic
and sediment transport model SHR-2D [23]. This study highlights the benefits of combining moving-
and fixed-mesh methods to enhance the robustness of the numerical model when predicting vertical
channel bed changes and lateral bank erosion for complex systems.

Mahalder et al. [15] investigated the effect of using single and multiple pressure settings
when performing JETs on the erodibility parameters computed from three different computational
methods. Their comparison highlights the high degree of variability associated with the applied
computational methods. Furthermore, they proposed a new technique for running JETs that consists
of applying incrementally increasing pressure heads to account for the variation of soil properties
during the test. Rousseau et al. [16] carried out numerical simulations to examine the sensitivity of
the model’s predictions to key biophysical conditions between two contrasting fluvial environments.
The simulations were performed using the hydrodynamic solver TELEMAC-2D [24] coupled to
a physics-based geotechnical module. Their results show that the model’s predictions are highly
dependent on the bank physical properties at the sub-reach scale, particularly for the case of soil
cohesion and friction angle. Finally, Vonwiller et al. [17] validated a 2D hydro-morphodynamic model
and performed sensitivity analyses to examine the suitability of various approaches (e.g., gravitational
bank collapse) to simulate non-cohesive bank erosion in straight channels and the erosion of artificial
gravel deposits.

2.3. Management

Addisie et al. [18] conducted a four-year study on 14 shallow gullies across the central Ethiopian
highlands to identify cost-effective shallow gully head stabilization practices. The evaluated practices
included re-grading slopes, and adding riprap, vegetation, or a combination of both. Results highlight
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the efficiency of various practices to prevent or control sediment erosion, ultimately contributing to
managing sediment supply to downstream water bodies. Beck et al. [19] quantified watershed-scale
sediment and total phosphorus loading from four types of bank material through the implementation
of bank-face surveys, erosion pins, and soil analyses. The study watershed was dominated by
weathered /colluvial bank material, which accounted for as much as 70% of the sediment and total
phosphorus mass loss. This type of study contributes towards improving regional efforts to reduce
and manage sediment and nutrient loading to streams.

Dave and Mittelstet [20] evaluated the effectiveness of six stabilization practices (e.g., jetties,
rock vanes) that were implemented across 18 different bank locations. They used aerial imagery to
quantify pre- and post-stabilization bank retreat and to assess the impact of a major storm event
that took place during the evaluation period. Their results emphasize the importance of selecting
an adequate stabilization technique to manage bank erosion, while considering the associated cost
and performance under extreme conditions. Hoomehr et al. [21] carried out flume experiments to
study the effect of water temperature, pH, and salinity on bank erosion rates. Their results indicate
that erosion rates are affected by water temperature, with higher rates as temperature rises. Likewise,
they showed that erosion rates decrease with increasing pH under freshwater conditions, with the
influence of pH becoming less pronounced as the level of salinity increases. These findings contribute
toward more efficient restoration and management efforts, particularly in the context of urban streams.

3. Remaining Challenges and Research Directions

Numerous challenges still exist within the realm of monitoring, modeling, and managing
streambank erosion and failure. The research articles included in this special issue addressed some
of these challenges, as well as shed light on some topics that deserve further exploration. The latter
topics include: (1) examining the effect of stratigraphic position on the quantification of sediment and
total phosphorus loading to streams [19]; (2) accounting for the effects of vegetation, meandering,
and weakening and weathering processes in the development, calibration, and application of numerical
models [12,14,17]; (3) developing a better understanding of the physical mechanisms that govern gully
progression and development, especially those in riparian areas [10]; (4) establishing a standardized
procedure for running and post-processing the results of erodibility tests [15]; and (5) developing
a better understanding of influential factors such as water chemistry on streambank erosion [21].

For example, let us elaborate on two relevant issues to streambank erosion and failure that require
further attention. First is the prediction of cohesive bank erosion using derived erodibility parameters.
While the JET remains the most suitable tool for measuring erodibility parameters in situ after its
original development almost 30 years ago [25], updates to the device and a better understanding of the
influence of various design aspects are needed. The device struggles from the inability to automatically
collect scour measurements over time without periodically stopping the water jet from impinging on
the soil. High resolution measurements of both the depth and shape of the scour hole could also better
inform users of the soil’s erodibility. Furthermore, Wardinski et al. [26] examined the suitability of the
linear excess shear stress equation for predicting cohesive soil erosion from JET-derived erodibility
parameters. Their results show that the linear assumption is suitable over a limited range of applied
boundary shear stresses, which typically correlates to the values tested in-situ via the JET. However,
they show that for larger values of applied boundary shear stress, the relationship between the
latter variable and the erosion rate is not linear. The implication is that when JET-derived erodibility
parameters are used in conjunction with the linear shear stress equation, erosion rates will likely be
over-predicted for relatively large applied boundary shear stresses (e.g., during flood conditions).
Therefore, there is a need to better understand the aforementioned non-linear behavior and potential
changes in the detachment mechanisms in various shear stress ranges, and accordingly, to adjust the
computational procedures that are currently used to post-process JET results for obtaining erodibility
parameters (e.g., [27]). This research direction will contribute not only toward reducing the uncertainty
associated with the application of the JET, but also toward enhancing the accuracy of numerical models
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intended to predict bank erosion and failure under a framework of enhanced magnitude and frequency
of hydrologic events.

Second is the application of process-based models in stream restoration. Nowadays,
methodologies for stream restoration projects are largely based on an assessment of channel form [28].
The widely applied Rosgen classification system [29,30], for example, attempts to evaluate and predict
the behavior of these morphodynamic processes by focusing on the characterization of cross-sectional
and planform geometry, an empirical bank erodibility hazard index (BEHI), a single channel-forming
discharge, and a steady sediment transport capacity. Likewise, another commonly applied approach
BANCS (Bank Assessment of Nonpoint source of Sediment) [31] is used to predict annual erosion rates
and sediment loading from banks according to a statistical model based on BEHI and approximations
of boundary shear stress obtained from field data [32]. Due to its practicality, form-based restoration
as exemplified by these approaches has been extensively adopted by state and federal agencies,
practitioners, and decision makers (e.g., [33,34]) as a tool for estimating rates of bank erosion when
planning and designing restoration projects. However, several studies have shown the limitations of
form-based restoration when accounting for the behavior of this morphodynamic process (e.g., [35-38]).

There is a need, therefore, to incorporate a formal analysis of the dynamic, physical processes
that govern stream channel dynamics and streambank erosion and failure in order to focus on stream
function (i.e., process-based restoration) rather than only on stream form (i.e., form-based restoration),
as originally presented by Shields et al. [39]. Such an approach will contribute toward enhancing our
understanding of existing conditions in degraded streams and improving the design of new restoration
projects. For applying process-based models to simulate bank erosion and failure in the context of
stream restoration, it is important to better understand: (i) the range of hydro-morphodynamic
processes that indeed requires the use of this approach; (ii) under which conditions local-scale
models (e.g., BSTEM [40]) are adequate and under which conditions reach-scale models (e.g.,
HEC-RAS coupled with BSTEM [41]) should be used; and (iii) how process-based models can be
applied in restoration sites with limited input information. Nonetheless, the successful application
of process-based models is restrained by broader challenges such as reliable estimates of sediment
discharge, suitable measurements of bed load and suspended load transport rates, and accurate
estimates of watershed sediment supply [28,42]. Furthermore, detailed monitoring campaigns to
characterize pre- and post-restoration conditions will increase not only data availability on the
effectiveness of the implemented practices, but also contribute toward improving the development
and application of process-based models.

Recent advances in process-based modeling and improvements in data collection of influential
erodibility and geotechnical parameters have created an opportunity where process-based approaches
should be required as part of the design or at least as an evaluation of designs to ensure project
success [43]. This research direction is timely not only because of the rapid increase of stream restoration
projects, but also because it is directly aligned with the effort undertaken by part of the restoration
community to move towards a process-based approach (e.g., [28,44—46]).
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