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Abstract: During periods of significant water shortage or when drought is impending, it is customary
to implement some kind of water supply reduction measures with a view to prevent the occurrence
of severe shortages (vulnerability) in the near future. In the case of operation of a water supply
reservoir, this reduction of water supply is affected by hedging schemes or hedging policies.
This research work aims to compare the popular hedging policies: (i) linear two-point hedging;
(ii) modified two-point hedging; and, (iii) discrete hedging based on time-varying and constant
hedging parameters. A parameterization-simulation-optimization (PSO) framework is employed
for the selection of the parameters of the compromising hedging policies. The multi-objective
evolutionary search-based technique (Non-dominated Sorting based Genetic Algorithm-II) was used
to identify the Pareto-optimal front of hedging policies that seek to obtain the trade-off between
shortage ratio and vulnerability. The case example used for illustration is the Hemavathy reservoir in
Karnataka, India. It is observed that the Pareto-optimal front that was obtained from time-varying
hedging policies show significant improvement in reservoir performance when compared to constant
hedging policies. The variation in the monthly parameters of the time-variant hedging policies shows
a strong correlation with monthly inflows and available water.

Keywords: parameterization; simulation; optimization; direct policy search; hedging policy; shortage
ratio: Vulnerability; NSGA-II

1. Introduction

The rule or policy of any reservoir operation involves deciding the amount of releases to be made
from the reservoir to meet the specified demands for different purposes based on the “current storage
in the reservoir and the expected (likely) inflows to the reservoir” (available water). The standard
operation policy is a simple operating rule for a reservoir, which aims to meet the demand in each
period based on the available water in the current period. If the available water is higher than the
demand, then the demand is completely satisfied. If the available water is less than the demand,
then the available water is released towards meeting the demand. This policy is likely to result in
high volumes of deficits in the future periods of operation. In order to avoid severe water deficits
during drought periods or when drought is impending, hedging is done, which reduces water supplies
proactively and conserves more water for future use [1].

The trigger for the initiation and the termination of hedging, along with the amount of rationing to
be done in each time step, typically characterize a hedging rule. The parameters of a hedging rule can
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be expressed as a function of water available in the reservoir, which is the sum of the current storage
and the expected inflows into the reservoir. Bayazit and Unal [2] defined the two-point hedging rule
in terms of starting water availability (SWA), i.e., the volume of water availability above which the
reservoir release is hedged and ending water availability (EWA), i.e., the hedging is stopped and the
normal situation is restored. The effectiveness of hedging rules can be enhanced by having control
over the amount of water to be released during hedging. Srinivasan and Philipose [3,4] included the
hedging factor as a third parameter in addition to SWA and EWA to define the modified two-point
hedging rule. The hedging factor specifies the amount of hedging that is to be done in each time step.
They evaluate the trade-off among the reservoir performance indicators based on a large number of
pre-defined hedging policies, using Monte-Carlo simulation technique. In addition, these simulation
models do not yield optimal hedging rules.

Optimization models that make use of systems techniques have been employed in a number of
research works to identify the hedging rules either with regard to the economic outcomes, such
as benefit/loss functions [1,5,6] or performance outcomes, such as water supply reliability and
vulnerability [7–12]. The optimal appropriation of water can be done by analyzing the benefits
of current release against the benefits of storing water for future use as carryover storage [1]. Draper
and Lund [1] provided an analytical view of hedging rules and operations by deriving optimal hedging
policies, given a pair of benefit functions for current delivery and carry-over storage. You and Cai [5]
expanded the theoretical analysis of Draper and Lund [1] to develop a conceptual two-period model
for reservoir operation. Since it is difficult to derive the actual benefit/utility functions for current
delivery as well as carry-over storage, the water supply characteristics of the reservoirs are used as
surrogates to evaluate their performance.

Shih and ReVelle [8] used mixed-integer non-linear programming technique and polytope
search procedure to find the optimal linear hedging rule with starting water availability as the
only decision vector that is based on minimizing the maximum shortfall (vulnerability). Following
this, they also proposed an explicit two-phase discrete hedging rule and implemented the same
while using mixed-integer programming model [9]. This formulation was solved for a single critical
drought. Oliveira and Loucks [13] proposed a piecewise linear hedging rule to derive the optimal
hedging based operating policy for multi-reservoir systems using a genetic algorithm (GA). However,
the performance of the hedging rule was evaluated based only on the single objective of minimizing
the total deficit. Srinivasan and Kranthi [14] adopted a multi-objective simulation-optimization (S-O)
framework for piecewise linear hedging. The pareto-optimal solutions and the computational efficiency
of the multi-objective stochastic search-based optimization algorithm were improved by obtaining
initial feasible solution from a constant hedging parameter based S-O framework. Liu et al. [15]
derived the optimal reservoir operation rules using piecewise linear hedging based environmental
flows and economic objectives. Neelakantan and Pundarikanthan [16] developed an ANN-based
parameterization-simulation-optimization (PSO) framework while using discrete hedging policies to
obtain releases for multi-reservoir system. Sangiorgio and Guariso [17], developed a neural network
based implicit stochastic optimization (ISO) framework for multi-reservoir system. They have shown
that using ISO, a closed-loop control policy, is possible for multi-reservoir system. Ji et al. [18], proposed
a hedging polices for optimal reservoir operation based on a two-period reservoir simulation model
under simulation-optimization framework. It is observed that the two-period optimal hedging model
is able to improve the overall efficacy of the reservoir operation.

Tu et al. [19] developed a multi-objective mixed-integer quadratic programming model that can
simultaneously obtain the water allocation and new hedging rules. They have shown that new hedging
rules obtained while using the above method improve the performance of the reservoir. Celeste and
Billib [12] compared seven stochastic models to obtain optimal reservoir polices. Further, they have
discussed the benefits of parameterization-simulation-optimization (PSO) framework over implicit
stochastic optimization (ISO) and explicit stochastic optimization (ESO). Shiau [20], shown the merits
of the multi-period ahead hedging method when used in combination with the two-point hedging
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rule of Srinivasan and Philipose [3,4] associating time-varying hedging parameters into the rule. It is
shown that the multi-period ahead hedging improves the results over single period hedging rule. Later,
Shiau [21] derived analytical solutions for optimal hedging policies for a water supply reservoir by
explicitly incorporating the reservoir release and carryover storage targets. The optimal hedging policy
that was obtained from the analytical procedure was carried out for two-point hedging and one-point
hedging. Wang and Liu [22] developed a framework to include both the inflow forecast and naïve
hedging strategy to evaluate the performance of a water supply reservoir. They have used gridded
precipitation forecast from a climate model to obtain reservoir inflow forecasting. Spiliotis et al. [23]
adopted particle-swarm-optimization algorithm to derived optimal drought hedging rules that are
based on appropriate identification of activation thresholds and rationing factors. The use of predefined
activation functions reduces the number of parameters to be adopted in the optimization. Recently,
Xu et al. [24] used two criterion namely conditional value-at-risk (CVaR) and forecast uncertainty to
improve the efficacy of the reservoir operation under dry and extremely dry hydrological conditions.
They found that CVaR based hedging performs better in comparison to the expected value-based
hedging policy.

The main objective of this paper is to investigate the improvement in the performance of the
reservoir operation when subjected to time-varying hedging parameters in comparison to constant
hedging parameters. Most of the studies in the literature have adopted constant hedging parameters
to evaluate the performance of the reservoir operation. In this study, we compare three popular
hedging rules that are based on time-varying and constant hedging parameters. To the best of our
knowledge, a detailed comparison of time-varying (TV) and constant hedging policies have not been
reported. A parameterization-simulation-optimization (PSO) [25] or Direct Search Policy (DPS) [26]
framework was adopted for obtaining the Pareto-optimal hedging policies for the operation of a
single-purpose water supply reservoir. The optimal hedging policies are derived based on the reservoir
performance indices proposed by Hashimoto et al. [7]. In this study, two performance indices, namely
the shortage ratio and the period vulnerability (or maximum water shortage), are used for the two
objective functions. The vulnerability index defines the severity of the system when the system is in a
failure state (release is less than demand) [7]. On the other hand, the shortage ratio defines the expected
water shortage over the total operation period. These indices are conflicting with another i.e., when the
shortage ratio decreases, the maximum water shortage increases and vice-a-versa. The three hedging
rules used for reservoir operation form the core of the model (simulation part) and a multi-objective
reservoir performance optimization model is the driver of the framework. The decision variables
of the optimization model are the time-varying (monthly) parameters of the three hedging rules.
Similarly, the parameters of the constant hedging policies are used as the decision variable in the
optimization model.

Performance evaluation of the selected hedging policies from the pareto-optimal front is carried
out by reservoir simulation while using reservoir performance indicators, such as occurrence reliability,
volume reliability, resilience, mean period deficit, and mean event deficit. The case example used for
illustration is the Hemavathy reservoir in Karnataka, Southern India. Derivation of the pareto-optimal
hedging policies and the detailed evaluation of the same have been done using the observed
monthly stream flows into the Hemavathy reservoir for various percentages of demand levels.
The multi-objective evolutionary search-based technique (Non-dominated Sorting based Genetic
Algorithm (NSGA)-II) was employed to obtain the trade-off solutions. A performance comparison
between the three hedging rules is presented for the selected operating policies from the respective
Pareto-optimal fronts.

The remainder of the paper is organized as follows. Section 2 describes the case study and
the parameterization-simulation-optimization (PSO) framework, including the model formulation,
a detailed description of three popular hedging policies adopted in this study, and the basic steps that
are involved in multi-objective NSGA-II. Following this, the results and discussion are presented in
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Section 3 aiming to bring out the efficacy of the time-varying hedging parameters. Section 4, outlines
the summary and conclusions of the present study.

2. Methodology and Case Study

2.1. Parametrization-Simulation-Optimization (PSO) Framework

The parameterization-simulation-optimization (PSO) framework is developed in this study to
obtain the optimal trade-off between the two surrogate objective functions that are mentioned below,
for three of the common hedging rules, namely, (i) Two-point linear hedging; (ii) Modified Two-point
hedging; and, (iii) Discrete hedging. In all cases, the PSO framework is performed for three different
demand levels (namely 75%, 80%, and 85% mean annual flow). The model formulation corresponding
to the PSO framework is described in the following paragraphs.

2.1.1. Objective Functions

The choice of objective functions plays a significant role in improving the efficacy of the reservoir
management. The performance measures adopted in reservoir operation are based on [7]: (i) reliability:
reducing the number of failure periods and total deficit; (ii) resilience: time to recover the system from
a failure state; and, (iii) vulnerability: minimize the large magnitude of deficit either for a period or
event. It is to be noted that the maximizing the reliability or minimizing the shortages of the system
may lead to a larger magnitude of failure event [7], i.e., these performance measures are found to be
conflicting objectives for reservoir operation. In this study, the following conflicting objective functions
are adopted to derive optimal hedging parameters.

(i) Minimize the Period Vulnerability

Z1 = Minimize {VP} (1)

(ii) Minimize Shortage Ratio
Z2 = Minimize {SR} (2)

In Equation (1) Period Vulnerability (Vp) refers to the maximum single period deficit encountered
over the operation horizon, i.e.,

VP = max[Dt − Rt] (3)

where Dt denotes the demand during period ‘t’, Rt denotes the release made during period ‘t’.
In Equation (2), the Shortage ratio is computed as the ratio of the sum of total deficits to the sum of
total demands.

SR =

T
∑

t=1
[Dt − Rt]

Dt
(4)

where T = total number of periods of operation in the horizon considered.

2.1.2. Two-Point Linear Hedging Rule

Bayzit and Unal [2] developed two-point linear hedging rule (Figure 1), in which, when the water
availability falls below the starting water availability (SWA), the available water is released to satisfy
the demand, which leads the reservoir storage to zero. If the water availability is greater than the
ending water availability (EWA), hedging is stopped and normal operation is resumed. In case of
water availability is between SWA and EWA, the hedging is applied and partial demand is satisfied in
order to increase the storage (anticipating low flows in the future). Once the available water is more
than ending water availability, hedging is stopped and normal operation is resumed.

AWt = St + It (5)
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Rt = AWt if AWt ≤ SWAt (6)

Rt = WAt + (AWt − SWAt)×
(

Dt − SWAt

EWAt − SWAt

)
if SWAt ≤ AWt ≤ EWAt (7)

Rt = Dt if EWAt ≤ AWt ≤ K + Dt (8)

Rt = Dt if K + Dt ≤ AWt (9)

Spillt =

{
AWt − K − Dt if K + Dt ≤ AWt

0 else
(10)

St+1 = St + It − Rt − Spillt (11)

SWAt = α × Dt (12)

EWAt = Dt + (K × β) (13)

In Equations (5)–(13), K is the reservoir capacity, AWt denotes the available water during time
period ‘t’, St denotes the initial storage, St+1 the final storage, Rt the release, and Qt the inflows during
time period ’t’. In the optimization formulation of the two-point hedging rule has two parameters
α and β, which represents the starting water availability (SWAt) and ending water availability
(EWAt), respectively.

Figure 1. Two-point hedging policy (SWAt—Starting Water availability; EWAt—Ending Water
availability; Dt—Demand; and, t denotes the time period).

Srinivasan and Philipose [3,4], proposed a modified two-point hedging rule (Figure 2), in which
the hedging factor (HF) specifies the amount of rationing to be done in addition to SWA and EWA.
This answer the question “how much to hedge?” in addition to the starting and the ending periods
of hedging.

AWt = St + It (14)

Rt = AWt if AWt ≤ SWAt (15)

Rt = AWt (1 − HF) if SWAt ≤ AWt ≤ Dt (16)

Rt = Dt (1 − HF) if Dt ≤ AWt ≤ EWAt (17)

Rt = Dt if K + Dt ≤ AWt (18)
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Spillt =

{
AWt − K − Dt if K + Dt ≤ AWt

0 else
(19)

St+1 = St + It − Rt − Spillt (20)

SWAt = α × Dt (21)

EWAt = Dt + (K × β) (22)

0 ≤ HF ≤ 1 (23)

In Equations (14)–(23), K is the reservoir capacity, AWt denotes the available water during time
period ‘t’, St denotes the initial storage, St+1 the final storage, Rt the release, and Qt the inflows during
time period ‘t’. In the optimization formulation of the modified two-point hedging rule, has three
decision variables namely α, β, and HF.

Figure 2. Modified two-point hedging policy (SWAt—Starting Water availability, EWAt—Ending Water
availability, Dt—Demand, HF–Hedging Factor; and, t denotes the time period). Modified two-point
hedging rule.

2.1.3. Discrete Hedging Rule

Shih and Revelle [9] proposed the discrete hedging scheme in which rationing is done on demand
two phases based on the available water, as presented in Figure 3. In this rule, the trigger volumes
of available water are introduced, where k1, k2, k3 are the coefficients used to calculate V1p, V2p,
V3p, respectively.

AWt = St + It (24)

Rt = 0 if AWt ≤ V1p (25)

Rt = α1 × Dt if V1p ≤ AWt ≤ V2p (26)

Rt = α2 × Dt if V2p ≤ AWt ≤ V3p (27)

Rt = Dt if V3p ≤ AWt ≤ K (28)

Rt = Dt if AWt ≥ K (29)

Spillt =

{
AWt − K − Dt if K + Dt ≤ AWt

0 else
(30)



Water 2018, 10, 1311 7 of 17

St+1 = St + It − Rt − Spillt (31)

V1p = k1 × Dt (32)

V2p = k2 × Dt (33)

V3p = Dt + (k3 × (K − Dt)) (34)

0 ≤ α1 ≤ 1 (35)

0 ≤ α2 ≤ 1 (36)

k1 ≥ α1 (37)

k2 ≥ α2 (38)

α2 ≥ α1 (39)

0 ≤ k1, k2, k3 ≤ 1 (40)

k2 ≥ k1 (41)

Figure 3. Discrete hedging policy (Dt—demand, α1, α2-rationing factor; and, t denotes time period).

2.2. Performance Evaluation

The PSO framework will provide a number of pareto-optimal solutions corresponding to each
of the three hedging rules that are invoked. These pareto-optimal solutions that were obtained from
the framework need to be evaluated in detail for their operational performance over the time horizon
considered while using the reservoir simulation module. For the reservoir performance evaluation
over the operation horizon, the following performance indicators are computed.

(i) Occurrence-based reliability, the ratio of the number of times the demand is satisfied to the
number of times the reservoir is operated [7].

(ii) Resilience, the ratio of the number of times the system moved from failure to success to the total
number of periods the system was in a failure state [7].

(iii) Mean event deficit, the ratio of the total deficit volume encountered during the operation horizon
to the total number of failure events. Herein, ‘event’ denotes a sequence of failure periods.
The high magnitude of event deficit encountered during an irrigation season is detrimental to
crop yield.

(iv) Event vulnerability is the maximum event deficit that is encountered during the operation horizon
of the reservoir.
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2.3. Solution Technique

The technique adopted in this research work to solve the multi-objective optimization problem
is the Non-dominated Sorting Genetic Algorithm-II (NSGA-II), as proposed by Deb et al. [27].
This technique is known to be better than the traditional multi-objective optimization methods such
as ε -constraint method, weighted sum method in generating near-global pareto-optimal fronts.
This technique is suited for handling complex objective functions involving discontinuities, disjoint
feasible spaces, and noisy function evaluations [28]. The multi-objective optimization model is the
driver and the simulation model that is based on the hedging rules forms the engine of the framework.
The decision variables of the optimization model are the hedging rule parameters. The strings that are
generated from NSGA-II are evaluated for the two fitness functions while using the simulation model.
The near-(global) optimal search is based on the “survival of the fittest” principle of the evolution theory.
The improvements in the quality of the solutions are achieved through the genetic operators, selection,
crossover, and mutation. Elitist-based Non-dominated sorting, tournament selection, and crowded
comparison operator are a few of the special features that were implemented into NSGA-II to enhance
its speed, quality and diversity of the non-dominated solutions. The Multi-Objective Genetic Algorithm
(MOGA) input requirements are population size, number of generations, crossover probability,
mutation probability, and random seed. The other inputs that are required for running the simulation
module are inflows into the reservoir irrigation demands and the physical characteristics of the
reservoir and the choice of the hedging rule for the operation of the reservoir. The illustration of the
framework, including the steps involved in NSGA-II, is presented in Appendix A.

2.4. Case Study—Hemavathy Reservoir

The reservoir performance for the three selected hedging policies based on the PSO framework is
evaluated using Hemavathy Reservoir, located in the Upper Cauvery River Basin, in Southern India
(Figure 4). The salient features of the reservoir are: (i) total catchment area of 5910 km2; (ii) gross storage
capacity is 1048 Mm3; and, (iii) live storage capacity of 962.77 Mm3. In this study, we used monthly
inflows and irrigation demands for the reservoir operation model (Table 1). It can be observed from
Table 1 that most of the inflows are received between the months of June and November (~93%). While
the remaining months receives less than 10% of the total annual flow. Further, it is to be noted that
the reservoir storage exhibits a with-in year behavior, i.e., both filling and emptying occurs within the
operating year. A data set for a period of 58 years is used for the present study. For more details about
the reservoir salient features and inflow and demand characteristics, the readers are referred to [3].

Figure 4. Location of Hemavathi Reservoir – Upper Cauvery Basin. Blue line indicates the river network.



Water 2018, 10, 1311 9 of 17

Table 1. Mean monthly inflows and monthly target yields of River Hemavathy.

Month June July August September October November December January February March April May

Mean Monthly
Inflow (Mm3) 150 856 665 296 285 127 55 30 18 14 14 36

Target Yield (Mm3) 165 260 275 75 50 120 280 350 225 80 20 10

3. Results and Discussion

In this study, the efficacy of the time-varying (TV) hedging (TVH) is compared with that of the
constant hedging (CH) for three selected hedging policies, namely, two-point hedging (TPH), modified
two-point hedging (MTPH), and discrete hedging (DH). This results in a total of six cases are used for
the comparison studies (Table 2). The performance of each of the hedging policies has been evaluated
using various indices, such as period vulnerability, shortage ratio, occurrence reliability, volume
reliability, and resilience. In addition, the results are presented for three critical demand levels, namely
75%, 80%, and 85% of the mean annual flow.

Table 2. The list of hedging models (with acronyms) used for comparison.

Two-Point Hedging (TPH) Modified Two-Point Hedging (MTPH) Discrete Hedging (DH)

Time-Varying TV-TPH TV-MTPH TV-DH
Constant C-TPH C-MTPH C-DH

3.1. Selection of GA Parameters

For the three hedging policies that are considered in this study, sensitivity analysis is carried out on
NSGA-II parameters, namely, number of generations, population size, mutation probability, cross-over
probability, and random seed. Table 2 provides the details of the range of parameters considered
and the selected parameters that are based on the inter-comparison of the Pareto-optimal fronts. It
is observed from Table 2 that the population size (100), number of generations (300), and mutation
probability (0.01) remained constant for all of the hedging policies and across all the demand levels.
However, the cross-over probability and random seed are found to be sensitive in obtaining the near
optimal pareto-fronts and vary with hedging policies (Table 3).

Table 3. Selected genetic algorithm (GA) parameters based on the sensitivity analysis for time-varying hedging
policies (two-point hedging (TPH), modified two-point hedging (MTPH), and discrete hedging (DH)).

GA Parameter Range
Selected Parameter

Two-Point Hedging
(TV-TPH)

Modified Two-Point
Hedging (TV-MTPH)

Discrete Hedging
(TV-DH)

Demand % 75 80 85 75 80 85 75 80 85

Population 50,100,200 100 100 100 100 100 100 100 100 100
Generation 100,300,500 300 300 300 300 300 300 300 300 300
Cross Over 0.6,0.7,0.8,0.9 0.7 0.8 0.9 0.8 0.7 0.7 0.6 0.7 0.7
Mutation 0.001,0.005,0.01 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Random Seed 0.25,0.35,0.45
0.55,0.65,0.75 0.65 0.45 0.45 0.75 0.25 0.25 0.65 0.25 0.45

3.2. Comparison of Time-Varying and Constant Hedging Policies

The pareto-optimal fronts comparing the variation of selected best hedging policies for both the
constant and time-varying hedging parameters are presented in Figure 5. It is evident from the Figure 5
that the time-varying hedging policies are found to perform better in comparison to the constant
hedging policies at all demand levels that are considered in this study. However, the constant hedging
policies produce a wider range of pareto-optimal solutions when compared to the time-varying hedging
policies. In the case of time-varying hedging policies, TV-TPH has more range of pareto-optimal
solutions when compared to TV-MTPH and TV-DH. Further, the relative performance of the TV-DH
decreases as the demand level increases.
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The detailed comparison of the performance indicators that were adopted in this study for each of the
hedging policies is presented in Tables 4–6. For brevity, the results for the 75% demand level is presented
here, as the similar performance was observed for the other demand levels. The results for the 80% and
85% demand levels are provided for the readers as supplementary material (Figure S1–S6 and Table S1–S6).
The pareto-front for each of the hedging models contains 100 possible trade-off solutions. For brevity few
solutions from the pareto-front are selected for comparison of the hedging policies. The selection includes:
(i) two extreme solutions related to the maximum shortage ratio and maximum vulnerability and (ii) three
intermediate solutions which includes the solution closest to the origin (i.e., the best trade-off solution).
It is to be noted that, in few cases, the number of feasible solutions show limited range due to restricted
parameter search space. In such instances, the number of intermediate solutions is restricted to one or two
intermediate solutions depending on the available range of pareto-front. In this study, for comparison,
three intermediate solutions (TV-A75, TV-B75, TV-C75) and two extreme solutions that include minimum
vulnerability (or maximum shortage ratio) (TV-Max S/R) and minimum shortage ratio (or maximum
vulnerability) (TV-Max Vul) for the 75% demand level are selected from the pareto-optimal fronts. Further,
these results are compared with the performance of the standard operating policy (SOP).

Table 4. Reservoir performance indices at 75% demand level for two point linear—a comparison of
time-varying and constant hedging policies for selected compromising solutions (see figure 5).

Period
Vulnerability

Shortage
Ratio

Volume
Reliability

Occurrence
Reliability Resilience Mean Event

Deficit
Number of

Period Deficits

SOP 216.58 0.031 0.969 0.93 0.51 135.2 49

Time-Varying Hedging
TV-Max

S/R 64.44 0.084 0.916 0.461 0.275 89.89 376

TV-Max
Vul 136.97 0.031 0.969 0.841 0.387 79.2 111

TV-A75 80.01 0.048 0.952 0.595 0.355 53.24 282
TV-B75 102.08 0.036 0.964 0.728 0.344 61.12 189
TV-C75 119.23 0.032 0.968 0.829 0.479 62.47 119

Constant Hedging
C-Max

S/R 82.81 0.111 0.889 0.389 0.134 215.61 426

C-Max Vul 216.58 0.031 0.969 0.917 0.431 135.23 58
C-A75 82.81 0.111 0.889 0.389 0.134 215.61 426
C-B75 98.78 0.103 0.897 0.428 0.143 200.48 399
C-C75 120.56 0.084 0.916 0.501 0.164 163.29 347

Table 5. Reservoir performance indices at 75% demand level for modified two point linear—a
comparison of time-varying and constant hedging policies for selected compromising solutions (see
figure 5).

Period
Vulnerability

Shortage
Ratio

Volume
Reliability

Occurrence
Reliability Resilience Mean Event

Deficit
Number of

Period Deficits

SOP 216.58 0.031 0.969 0.93 0.51 135.2 49

Time-Varying Hedging
TV-Max

S/R 84.45 0.041 0.959 0.865 0.606 79.75 94

TV-Max
Vul 126.95 0.033 0.967 0.911 0.709 81.96 62

TV-A75 84.45 0.041 0.958 0.865 0.606 79.75 94
TV-B75 100.34 0.039 0.961 0.904 0.716 89.08 67
TV-C75 119.99 0.033 0.967 0.899 0.714 73.36 70

Constant Hedging
C-Max

S/R 67.41 0.115 0.885 0.395 0.133 227.33 422

C-Max Vul 214.72 0.031 0.969 0.917 0.431 135.75 58
C-A75 82.14 0.113 0.887 0.402 0.135 223.16 417
C-B75 100.21 0.108 0.892 0.391 0.13 217.32 425
C-C75 119.05 0.095 0.905 0.579 0.198 180.76 293
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Table 6. Reservoir performance indices at 75% demand level for discrete hedging—a comparison of
time-varying and constant hedging policies for selected compromising solutions (see figure 5).

Period
Vulnerability

Shortage
Ratio

Volume
Reliability

Occurrence
Reliability Resilience Mean Event

Deficit
Number of

Period Deficits

SOP 216.58 0.031 0.969 0.93 0.51 135.2 49

Time-Varying Hedging
TV-Max

S/R 69.57 0.05 0.95 0.79 0.74 51.52 146

TV-Max
Vul 123.61 0.033 0.967 0.856 0.43 84.19 100

TV-A75 78.53 0.044 0.956 0.866 0.7 74.2 93
TV-B75 98.35 0.037 0.963 0.888 0.628 83.76 78
TV-C75 123.61 0.033 0.967 0.856 0.43 84.19 100

Constant Hedging
C-Max

S/R 65.59 0.112 0.888 0.394 0.133 221.6 423

C-Max Vul 216.58 0.03 0.969 0.922 0.5 125.28 54
C-A75 79.18 0.097 0.903 0.395 0.128 198.02 422
C-B75 106.22 0.096 0.904 0.402 0.132 193.44 417
C-C75 123.5 0.084 0.916 0.46 0.152 162.81 377

Figure 5. Pareto fronts for two point linear hedging, modified two point hedging and discrete hedging
at 75%, 80% and 85% demand levels—Comparison of time-varying and constant hedging.

It is observed from Tables 4–6, that the hedging policies perform better when compared to SOP in
terms of reducing the period vulnerability of reservoir operation. It is to be noted that the SOP does
not account for the low reservoir inflows, and hence resulting in larger vulnerabilities. In addition,
the hedging policies reduce the overall shortages by increasing the number of deficit periods when
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compared to SOP (which has higher shortages and lower number of deficits). From the Tables 4–6,
it is evident that the time-varying hedging policies show considerable improvement in reservoir
performance indicators when compared to the constant hedging policies. Further, the time-varying
hedging rules produces relatively lower vulnerability, shortage ratio, and mean event deficit when
compared to constant hedging rules. For the selected solutions (A, B, C), the time-varying hedging
(TVH) policies show (relatively) decrease in shortage ratio by 60% and mean event deficit by 68%. In
addition, the TVH policies show an average increase in volume reliability and occurrence reliability by
6% and 65% respectively. However, the resilience of the TVH is more than the CH, which indicates
that the length of the events is longer when compared to the CH. It is to be noted that TVH is able to
improve the performance of the long-term reservoir operation by having longer low volume (event)
deficits when compared to shorter high volume (event) deficits by CH or SOP. The better performance
of the TVH polices is due to the significant decrease in number of deficit periods occurred and mean
event deficit during the entire reservoir simulation period when compared to CH. It is to be noted that
the significant decrease in deficit periods could be explained by the time-varying hedging/rationing
parameters of the policies. The variation of hedging parameters for the selected cases is presented in
the following paragraphs.

The variation of the three hedging parameters for 75% demand levels are presented in Figures 6–8.
The following points are observed

(i) The CH parameters are higher in many months when compared to TVH parameters, i.e., the hedging
factors (rationing as well as storage levels-based factors) are higher. For example, in the case of
two-point hedging policy (Figure 6): higher vulnerability solution (C-A75) the rationing is carried
out even though the reservoir storage levels are high.

(ii) For TV-TPH (Figure 6) it is observed that for the months April to August, the release is marginally
different from SOP, i.e., the deficits are minimized by utilizing the maximum available water
from the reservoir. It is evident from Figure 6 that the TVH parameters are adaptable to hedge the
available water from high inflow months and carry-over the same during the low-flow months
when compared to CH. In CH, although the hedging is carried out during the high-flow months,
due to constant parameters, it is forced to continue hedging in low-flow periods, resulting in
higher volume of deficits.

(iii) Similarly it is observed from Figure 7, that for MTPH most of the dry months TVH parameters
have low hedging factors, indicating that those months are simulated as a SOP. The rationing
is carried out during high inflow months and low storage levels as contradictory to constant
hedging policies.

(iv) In case of MTPH, the additional rationing factor HF plays a significant role in the variation of
parameters alpha and beta. It is observed from Figure 7 that the rationing factor is higher in case
of CH when compared to TVH, except for few months. In case of TVH, during October-January
and April-May is simulated as two-point hedging rule. It is noted that, due to time-varying
parameters in MTPH, it is able to efficiently hedge in demand (HF) and/or storage (alpha and
beta), unlike the CH. This could be one of the plausible reasons for MTPH to perform better when
compared to TPH. Further it is the variation of beta in both TPH and MTPH are similar, however
MTPH alpha is significantly different from TPH. This shows that starting water availability is
significantly affected by the rationing factor.

(v) It is observed from Figure 8, that, for discrete hedging policy, the time-varying parameters are
significantly different for all of the months in comparison to constant hedging. The K3 parameter
is has similar trend to beta parameter of TVH and MTPH.

(vi) It is evident that, most of the rationing for CH is carried out in zones 1, 2, and 3. However,
the TVH the rationing factors are dominant in high flow months when compared to low flow
months. Therefore, the TVH is able reduce the number of failure events when compared to CH.
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Figure 6. Time-varying hedging (TVH) and constant hedging (CH) parameters (alpha and beta) for
two-point hedging policy—A comparison between the selected pareto-optimal solutions for 75%
demand level.

Figure 7. Time-varying hedging (TVH) and constant hedging (CH) parameters (alpha, beta and hedging
factor) for modified two-point hedging policy—A comparison between the selected pareto-optimal
solutions for 75% demand level.



Water 2018, 10, 1311 14 of 17

Figure 8. Time-varying hedging (TVH) and constant hedging (CH) parameters (K1, K2, K3, α1, α2)
for discrete hedging policy—A comparison between the selected pareto-optimal solutions for 75%
demand level.

In addition, it is observed that the variation of the parameters for the selected pareto solutions for
TVH in most of the dry months is insignificant. However, in high flow months, there is considerable
variation in the parameters. Further, the parameters that are related to storage levels have more impact
on the performance of the reservoir in comparison to the rationing parameters.

4. Summary and Conclusions

The study examined the performance of the reservoir simulation model while using
time-varying hedging (TVH) policies and compared with the constant hedging (CH) policies.
A parameterization-simulation-optimization (PSO) framework is used for obtaining compromising
hedging policies for the operation of a reservoir. These hedging policies seek to obtain the trade-off
between minimizing shortage ratio and minimizing vulnerability, which are the two primary objectives
of a water manager for the operation of a reservoir during droughts. The NSGA-II algorithm is adopted
as an optimization tool. The performance comparison is carried out for three commonly used hedging
rules for reservoir operation. The case example that is used for illustration is the operation of the
Hemavathy reservoir, Southern India. The following conclusions are drawn from this research:

(i) The sensitivity analysis on NSGA-II parameters indicated that the cross-over probability and
random seed are found to be sensitive when compared to population size, number of generations,
and mutation probability.

(ii) Both the TVH and CH yield better alternative solutions in comparison to SOP, in terms of lower
period vulnerabilities and shortage ratios.

(iii) The reservoir performance has significantly increased with TVH when compared to CH.
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(iv) The decrease in number of deficits and mean period vulnerability are the key factors for better
performance of the TVH

(v) The hedging parameters for TVH indicate less rationing in low reservoir inflows and lower
storage levels when compared to CH rationing, which is constant irrespective of inflows and
storage levels.
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Appendix

The following Figure A1 presents the steps involved in parametrization-simulation-optimization
framework. The framework consists of two major components, namely, the optimization algorithm
(NSGA-II) and reservoir simulation model.
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Figure A1. Block diagram of PSO frame work for single purpose reservoir operation.
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