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Part A: The numerical procedures  

A.1 The fractional time step procedure 

The two numerical models applied in this paper are based on a time-splitting approach, where 
a prediction and a correction problem are sequentially solved. For both the numerical procedures, it 
has been shown that the prediction and the correction steps have the characteristics of a convective 
and a diffusive problem, respectively [2–5]. For these reasons, we call the prediction system 
"convective prediction" (CP) system and the correction system "diffusive correction" (DC) system.  

Let's assume a general system of balance laws, 

( ) ( )
t

∂ +∇⋅ =
∂
U F U B U  A.1 

where U,  F(U) and B(U) are the vector of the unknown variables, the flux vector and the source term 
respectively. Let Fp(U) and Bp(U) be a suitable numerical flux and source term respectively, further 
defined, applying a fractional time-step procedure, we set: 

( ) ( ) ( ) ( )( )p p= + −F U F U F U F U  A.2,a 

( ) ( ) ( ) ( )( )p p= + −B U B U B U B U  A.2,b 

Applying integration in time, we split system (A.1) in the two following ones:  

1 2

0 0

t t
k / k p pdt dt

Δ Δ
+ − + ∇ ⋅ = U U F B  A.3,a 

1 1/2

0 0

t t
k k p pdt t dt t

Δ Δ
+ +− +∇⋅ −∇⋅ Δ = − Δ U U F F B B  A.3,b 

and we call systems (A.3,a) and (A.3,b) prediction and correction systems respectively. In Eqs (A.3), 
the overbar symbol marks the mean in time values of the numerical flux and source terms computed 
during the prediction step and apices k, k+1/2 and k+1 mark the values of the unknown variables 
computed at the beginning of the time step, at the end of the prediction step and at the end of the 

correction step respectively. The integrals p tΔF  and p tΔB  in Eq. (A.3,b) are computed “a 
posteriori” after the solution of the prediction problem, as explained in [2,3,5] for the fully dynamic 
model and in [4] for the diffusive model, respectively. Observe that summing systems (A.3,a) and 
(A.3,b), the integral of the original system (A.1) is formally obtained. The difference (Uk+1–Uk+1/2) in Eq. 

(A.3,b) is close to zero as far as the differences of the flux terms integrals 
0

t
pdt t

Δ 
∇⋅ −∇⋅ Δ 
 
F F  and 
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of the source terms 
0

t
pdt t

Δ 
− Δ 

 
B B , respectively on the l.h.s. and r.h.s. in the same equation, are 

small.  
A suitable choice of terms Fp(U) and Bp(U) in the prediction step allows a much easier solution 

of the two steps in Eqs. (A.3) with respect to the original formulation in system (A.1).  
In the FDSWEsM, vectors U,  F(U) and B(U) have the following expressions: 
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A.4,b 

where (.)T is the transposed of vector (.).  
In the 0ISWEsM, the same vectors assume the following forms: 

5/3

              h
H H p

n H
= = − ∇ =

∇
U F B  A.5,a 

( )
5/3

kp

k

h
H

n H
= − ∇

∇
F , p =B B  A.5,b 

In both the FDSWEsM and 0ISWEsM, the gradients of the water level in the prediction step are 
computed at time level tk and are kept constant during the time step (in the source term vector Bp and 
in the flux term Fp, respectively for the FDSWEsM and 0ISWEsM. More details in [2-5]. 

A.2. Spatial integration of the governing equations 

In both the numerical solvers, the governing equations are integrated over unstructured 
triangular meshes satisfying the Generalized Delaunay (GD) property [4]. Let Th be an unstructured 
GD triangulation of the 2D bounded domain Ω. We call basic mesh the triangulation Th with NT 
triangles and N nodes and its generic triangle and node are denoted as kT and Pi (i = 1, ..., N), 
respectively. We construct a dual mesh Eh over the basic mesh and its dual element (or dual finite 
volume), associated with the node Pi, is denoted as ei (i = 1, .., N). This is the closed region obtained 
by merging the sub-triangles given by subdividing each triangle kT sharing node Pi, by means of its 
axes (see figure 1). ei is the Voronoi region (or Voronoi polygon) ([4] and cited references).   
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Figure S1. The basic and the dual mesh. 

A.3. The numerical solution of the 0ISWEsM 

In the 0ISWEsM [4], the computational cell is the Voronoi polygon ei and the storage capacity is 
concentrated in the node Pi in the measure of 1/3 of the area of all the triangles sharing Pi. The authors 
in [4] assume a linear variation of the water level H inside each triangle, according to the three nodal 
values.  

In the 0ISWEs physical problem, the flow field has an exact scalar potential, that is the water 
level. For the application of the MAST procedure, at the beginning of each time step, the cells are 
ordered on the base of their potential values, computed at the end of the previous time step or, for 
the first time iteration, given by the initial condition.  

According to Eqs. (4), (A.2)-(A.3) and (A.5), after integration in space and application of the 
Green theorem, the integral form of the CP system for the generic computational cell i is [4] 
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out ini

i i j i m i ij m
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A Fl Fl A p
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+ = +  , with, 5/3
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out k
i j i j iFl K h= , ,
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=
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A.6 

where Ai is the area of cell i, 
nTk  is the area of triangle n, i,n is equal to 1 if triangle n shares node i, 

0 otherwise, ,
out
i jFl  is the flux leaving cell i to the any neighbouring downstream (in the potential 

scale) cell j (with k k
j iH H≤ ), ,

k
i jK  is the flux coefficient, further defined, ,

in
i mFl  is the flux entering 

cell i from any neighbouring upstream (in the potential scale) cell m with k k
i mH H≤  and pi is source 

term in node i. The flux coefficient is defined as (see Eqs.(19)-(22) in [4]) 

( ) ( )1 2
, , 1 , 2

k k
i jk k k

i j i j i j
ij

H H
K c E c E

d

−
= +  A.7 

where dij is the distance between nodes i and j, indices 1 and 2 mark the two triangles sharing side ij, 

the coefficient ( )1 2
kE  is 

1k
m

k
m m

E
n H

=
∇

, m = 1, 2 A.8 

where the sub-index m marks all the parameters of the triangle m sharing the same side and ( )1 2
,i jc  is 

the distance between the midpoint of side ij and the circumcentre of triangle m. If side ij shares only 

one triangle, 2
,i jc  and 2

kE  are zero. The distance ( )1 2
,i jc  is computed as in Eqs. (19) in [4], where the 

 

secondary element
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authors prove that the proposed formulation guarantees the consistency of the flux between cells i 
and j and the difference of the corresponding potentials ( )k k

i jH H−  for an unstructured GD mesh.  

If the r.h.s. of system (A.6) is approximated with its mean value in the time step, the solution of 
the same system is disentangled in the sequential solution of N Ordinary Differential Equations 
(ODEs) [4], 

,,

inouti
i mi i j i ij m

dH
A Fl Fl A p

dt
+ = +   A.9 

one for each cell, going from the cell with highest to the cell with the lowest potential value. In Eq. 

(A.9), ,
in
i mFl  is the mean in time value of the flux entering from the upstream (in the potential scale) 

cell m, previously solved, and ip  is the mean (in time) value of pi. A very fast semi-analytical 
solution of the ODEs (A.9) is proposed in [4], which allows to save a lot of computational time. 

Call k
ih  the water depth at the beginning of the time step and kf

ih  its asymptotic steady-state 

value (i. e. when idH dt =0), computed according to Eqs. (A.9), 

3/5

,

' in
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Fl
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K

 
 =
 
 

, with '
inin

ii i iFl Fl A p= +  A.10 

Eq. (A.9) can be written in dimensionless form as: 

5/31d

d
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, i
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i

h

h
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i i

dt Fl

A h
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 
, if     kf k
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The proposed semi-analytical solution proposed in [4] is  

1 2

1 3

exp( )
exp( )

c c

c c

τ +ξ =
τ +

      if  kf k
i ih h>  A.12,a 

( ) 1 2

1 3

exp( )1 1
exp( )f

c c

c c

τ +ξ = + ξ −
τ +

   if    kf k
i ih h<  A.12,b 

with a proper choice of the c1, c2 and c3 coefficients. Using any c3  value it is possible to match the initial 
value ξ0 and its first derivative '

0ξ  by setting: 

( )2 0 31 1c c= + −ξ ,      ( )
( )

2
3'

1 0
3 2

1 c
c

c c

+
= ξ

−
        if kf k

i ih h>  A.13,a 

2 1c = − ,        ( )
( )

3'
1 0

1
1f

c
c

+
= ξ

ξ −
       if kf k

i ih h<  A.13,b 

The c3 coefficient affects the maximum error that is obtained according to functions (A.12) using 
different time step sizes. This optimum depends on ξ0, if kf k

i ih h>  and on ξf, if kf k
i ih h< . The 

optimum coefficients have been computed numerically for different possible ξ0
 
and ξf

 

values by 
comparing functions (A.12) with a numerical solution computed using a very small time step. See in 
table 1 and in figure 7 in [4] the computed optimum c3 values. See in figures 8,a and 8,b in [4] the 
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numerical solution of Eqs. (A.11) in the case of respectively ξ0 = 0
 
and ξf

 

= 0, compared with the semi-
analytical solutions (A.12) corresponding to the optimal c3 values (respectively 0.7469 and -0.8171 ). 
The maximum error computed with the initial conditions ξ0 = 0, for kf k

i ih h> , or ξf

 

= 0, for kf k
i ih h<

, is the worse one and it is smaller than 10-3. More details can be found in [4] 
After the solution of each ODEs (A.9), the mean in time total flux going from cell i to the 

neighbouring downstream (in the potential scale) cells is computed applying the local mass balance 
for cell i [4]. In the framework of the MAST procedure, due to the sequential solution of the cells and 
their ordering at the beginning of the time iteration, the mean (in time) entering flux is always known 
before each solution of the ODEs (A.9) [4].  

The same spatial discretization adopted for the CP problem is used in the DC problem and the 
initial condition of the DC problem is the final state obtained after the solution of the CP step, marked 
with the index k+1/2. Starting from Eqs. (4), (A.2)-(A.3) and (A.5), after spatial integration of the 
correction problem inside each Voronoi cell, the following DC system is obtained [4] 

( ) ( ), , , ,
1, 1,T T

k ki
i i j i j i n i j j i i n

n N n N

A
D D

t = =

η + η − η δ = ϑ − ϑ δ
Δ           i = 1, …, N A.14,a 

where    

1/2kH H +η = − ,   1/2k kH H +ϑ = − ,  ( )5/3,
,

1,2

m k
i j mk km

i j l
m ij

c E
D h

d=

=  ,    

1/2

2

k k
km h h

h
++=  

A.14,b 

with initial condition  = 0. In Eq. (A.14,a),  i,n has been previously specified and the sum in Eq. 
(A.14,b) is extended to the two triangles m sharing side ij.  l = i  if k k

i jH H≥ ,  l = j  if  k k
i jH H< . 

The proposed formulation of the coefficients ,
k
i jD  provides the same flux estimation of the CP step 

[4] and it is similar to the one of a standard linear (P1) Finite Element Galerkin scheme. Analogies 
and differences between the flux formulation adopted in the present DSWEs model and the one of a 
P1 Galerkin scheme are presented and discussed for a GD triangulation in [4].  

The matrix of the linear system resulting from Eqs. (A.14) has order N (the number of the nodes) 
and, in the case of a GD triangulation, it is symmetric, positive-definite, strictly diagonally dominant, 
with M-property and system (A.14) is well-conditioned [4]. After the  unknowns are computed by 

solving the system (A.14), the final values of the water levels are updated as  

1 1 2k k /H H ?+ += +η  A.15 

The splitting of the original governing equations in the CP and DC steps, allows this 0ISWEsM 
solver to easily deal with waves/flooding propagation problems over dry domains, as well as a robust 
solution of wetting/drying problems [4].  

A.3.1. Investigation of the behaviour of the proposed 0ISWEsM over refined meshes and smooth 

surfaces  
If the area Ai of the ith Voronoi cell goes approaches zero, the dimensionless variable  in Eqs. 

(A.11) approaches infinity, and the solution of the prediction step is given to the asymptotic values 
in Eqs. (A.12,a) or (A.12,b), respectively if kf k

i ih h>  or kf k
i ih h< , shown in figures 8 in [4]. 

In the correction step, the value of the capacity term Aii/t  in system (A.14) becomes 

negligible compared with the flux terms ( ), ,
1, T

k
i j i j i n

n N

D
=

η − η δ and ( ), ,
1, T

k
i j j i i n

n N

D
=

ϑ − ϑ δ  

If the Manning coefficient n approaches zero, coefficient k
mE  in Eq. (A.8) approaches infinity, 

as well as the flux coefficient in the prediction step ,
k
i jK  in Eq. (A.7) and ,

k
i jj

K   in Eq. (A.10). 
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This implies that the asymptotic steady-state value kf
ih  in Eq. (A.10) approaches zero and the 

dimensionless variable  in Eqs. (A.11) approaches infinity. In this case, the dimensionless solution 

ξ of the semi-analytical procedure of the prediction step is given by the asymptotic value of Eq. 
(A.12,b). 

Coefficient ,
k
i jD  in the correction system in Eq. (A.14,a) approaches infinity (see the third of  

Eq. (A.14,b)). By dividing the terms in Eq. (A.14,a) by coefficient ,
k
i jD , the capacity term becomes 

negligible with respect to the other terms in the same equation. 

A.3.2. Preservation of the water at rest condition (C-property) 
The proposed 0ISWEsM preserves the C-property (e.g., [7]). For quiescent water, we have, in the 

prediction step, zero flux entering in each cell and zero gradient of the water level H. This implies 
that in Eq. (A.6) we have ,

in
i mm

Fl  = 0 and, from Eqs. (A.7)-(A.8) ,
out
i jj

Fl = 0. The solution of the 

prediction step gives Hk+1/2 = Hk. System (A.14) in the correction step becomes   
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1,

0
T
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i i j i j i n

n N

A
D

t =

η + η − η δ =
Δ   A.16 

since 1/2 0k kH H +ϑ = − = , and this implies that the correction of the water level  is zero. 

A.4. The numerical solution of the FDSWEsM 

In the FDSWEsM, the computational cell is the triangle kT, with the storage capacity  
concentrated in the circumcentre of kT in the measure of the area of kT and a piecewise constant value 
of the unknown variables h (as well as H), uh ad vh is assumed inside each triangle [3, 5]. 

According to Eqs. (1)-(2), (A.2)-(A.4), by integrating in space the prediction problem and 
applying the Green's theorem, the integral form of the CP system is [3, 5] 

( )1 3 1 3
1out in
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h
k F F k p
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∂ + δ = − δ +
∂  
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T j ,e j ,e e j ,e j ,ee j , j ,

q
k M R M
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∂
+ δ + = − δ
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  if  
  if  s

uh s x
q

vh s y

== =
 

A.18 

where index e marks the values of the variables in triangle kT,e, ( )out in
j ,eF  and ( ) ( )x y ,out in

j ,eM are the flux 

and the x(y) component of the momentum flux, leaving (entering) cell kT,e across side j (j = 1, 2, 3) of 
kT,e, respectively, j,e = 1 (0) if the flux across side j of kT,e is oriented outward (inward) kT,e, pe is the 

source term in cell kT,e and ( )x y
eR  is the source term defined as [3],   

s s s
e e eR bfr gr= +       with 

( ) ( )2 22

7 3
s ,es e e

e T /e
e

n q uh vh
bfr k g

h

+
=    and    

k
s e

e T ee

H
gr k gh

s

∂=
∂

 

A.19 

The first term on the l.h.s. of Eq. (A.18) is the integral form of the local inertia (or local 
acceleration), the two summations of the same equation, on the l.h.s. and r.h.s., respectively, represent 
the integral form of the convective inertia (or convective acceleration), computed as the line integral 
of the momentum fluxes across the sides of the computational cell, the third term on the l.h.s of Eq. 
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(A.18), is the sum of the integral form of the bottom friction s
ebfr  and water level gradient s

egr  
terms.     

As for the 0ISWEs problem, the authors in [3,5] disentangle the solution of the prediction system 
in Eqs. (A.17)–(A.18) in the sequential solution of NT ODEs, by approximating the r.h.s. of the same 
equations with their mean values in time computed during the time step. 

To apply the sequential solution of the computational cells, it is necessary to order them [3,5], 
but, unlike the previous DSWEs problem, an exact scalar potential of the flow field does not exist in 
the FDSWEs physical problem. For this reason, the authors in [2,3,6] add a convective corrective (CC) 
step, splitting the original prediction step in a "convective prediction" (CP) system and in a 
"convective correction" (CC) system [3,6].  

The computational cells are ordered by applying an iterative procedure based on the inter-cell 
flux direction between adjacent cells, proposed in [5] and further modified in [6]. In the following, 
we call k

en o  the order number of cell kT,e at the beginning of the generic time step (time level tk). 
After the ordering of the computational cells, the CP step is solved as a sequence of small systems 

of ODEs, from time level tk to time level tk + Δt [5], proceeding from the cell(s) with the lowest k
en o

value to the cell(s) with the highest k
en o  value. The same procedure is repeated in the CC step, 

proceeding in the opposite direction, from the cell(s) with the highest to the cell(s) with the lowest 
k
en o  value [6]. Cell kT,e with order k

en o  is solved only after the solution of the neighbouring kT,ep 

cells with k k
ep eno no<  ( k k

ep eno no> ), in the CP (CC) step [5]. The ODEs system of the CP problem is 

[3, 5] 
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A.21 

with the symbols specified as above and the leaving flux and momentum flux ,
,
p out

j eF  and 
( ), ,

,
p x y out
j eM  defined as follows. If the two neighbouring triangles kT,e and kT,ep share side ri,ip between 

nodes i and ip, where ri,ip is the jth side of kT,e and the mth side of kT,ep  (j, m = 1, 2, 3), we define the flux 
across side j of kT,e as [3] 

( ) ( ) ( ) ( )j ,e ip i ip ie e
FL uh y y vh x x= − − −  A.22 

and the flux and the momentum fluxes between kT,e and kT,ep as [3] 
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Flux/momentum flux continuity is guaranteed at each triangle side by Equations (A.23)–(A.24) 
and , ,j e m epF F= −  and ( ) ( )
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x y x y
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The leaving flux/momentum flux ,
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j eM  on the r.h.s. of Eqs. (A.20)-(A.21) are the mean in time values of the incoming 

fluxes and momentum fluxes, respectively (know from the solution of the previously solved 
neighbouring kT,ep cells with k k

e epno no>  [2, 3, 5, 6]) and ep  is the mean in time value of the source 

term in kT,e.  
Once the ODEs system (A.20)-(A.21) is solved for kT,e, the mean in time value of the total flux 

out
eF  leaving from kT,e, from tk to tk + Δt, is computed according to the local mass balance for cell kT,e 

[3]. The mean in time flux ,
out
j eF  and momentum fluxes ( ),x y out
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the mth side of the neighbouring cell kT,ep  (with k k
e epno no< ) are estimated as in [2, 3, 5]. After that, the 

same ODEs system (A.20)-(A.21) is solved for cell kT,ep, selected among the unsolved ones according 
to  

( ) ,  and   min ,  et of unsolved cellsk k k k
ep e ep el T elno no no no k s> = ⊂  A.26 

The same procedure is applied for the solution of the CC step, whose ODEs system is 

( ) ( ), ,
, , , ,1,3 1,3

1 1c out c ine
e j i j e j e j ej j

t

dh
T F t dt F

dt t = =
Δ

+ δ = − δ
Δ    A.27 

( ) ( ), , , , ,
, , , ,1,3 1,3

1 1s e c s out c s in
i j e j e j e j ej j

t

dq
T M t dt M

dt t = =
Δ

+ δ = − δ
Δ   , s = x, y A.28 

with δj,e defined as above and the leaving flux/momentum flux ,
,
c out
j eF  and ( ), ,

,
c x y out
j eM  in Eq. (A.27)-

(A.28) of the CC step, going from cell kT,e to the neighbouring cell kT,ep  (with k k
e epno no> ), are defined 

as [3] 

( ) ( ) ( ), , , , , , ,
, , , , , ,max 0, ,    ,       c out c x out c out c y out c oute e

j e j e j e j e j e j e
e e

uh vh
F F M F M F

h h
= = =      if   

k k
e epno no>      (A.29,a),                   ( ), ,,

, , 0c x y outc out
j e j eF M= =       if     

k k
e epno no<  

A.29,b 

As motivated in [2, 3], the source terms are allocated in the CP step. 
After the solution of the ODEs system (A.27)–(A.28) for cell kT,e, the total leaving 

fluxes/momentum fluxes from side j of kT,e to the neighbouring cell kT,ep with k k
e epno no>  are 

computed as for the previous CP step. More details in [2,3,6].  
According to Equations (1)–(2), (A.2)–(A.4), after integration in space, neglecting the inertial 

terms in the momentum equations (as motivated in [2,3]), substituting the momentum equations in 
the continuity equation and applying the Green's theorem, we obtain a linearized system in the 
unknown water level [2,3,5],   
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1
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1,3 1,3 1,3, ,
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H H H
dk elem dl elem dl dl

t n n

+
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where Lj,e is the length of side j of triangle kT,e, ,ˆ j en  is  its unit orthogonal vector, q  and qcc are the 

mean in time value of the flow rate vector computed during the (CP + CC) steps and its final value, 

respectively [Error! Reference source not found.] and symbols ( )∗  in Eq. (A.30) is the mean in time 

value of (*) computed during the (CP + CC) steps. The initial state for the DC step is the solution 
computed at the end of the CC step. The matrix of the linear system resulting from Eqs. (A.30) has 
order NT (the number of the triangles) and, in the case of a GD triangulation, is well conditioned, 
symmetric, positive-definite, strictly diagonally dominant, with M-property and system (A.30) is 
well-conditioned [5]. After solving the DC step, uh and vh are updated, as well as the spatial gradients 
of the water levels, as explained in [5].  

Part B. Supplementary material for the presented tests 

In this Appendix we plot the figures and tables recalled in the text of the main paper.  

Test 1. Steady flow in a 1D channel with undulating bottom profile 

 
Figure S1. Test 1. L1 and L2 norms of the relative errors for h and uh. Unstructured meshes. 

0ISWEsM 
rc L1,h rc L1,uh rc L2,h rc L2,uh 

case 1 
0.323 0.0311 0.350 0.0031 0.384 0.0526 0.348 0.0053
0.520 0.0248 0.464 0.0024 0.481 0.0403 0.496 0.0042
0.615 0.0173 0.660 0.0017 0.597 0.0289 0.577 0.0030

0.0113 0.0011 0.019 0.0020
case 2 

0.712 0.0070 0.502 0.0028 0.799 0.0126 0.476 0.0041
0.817 0.0043 0.634 0.0020 0.844 0.0073 0.694 0.0029
0.991 0.0024 0.876 0.0013 1.083 0.0040 0.807 0.0018

0.0012 0.0007 0.0019 0.0010
case 3 

0.967 0.0039 0.520 0.0028 0.890 0.0065 0.554 0.0039
1.012 0.0020 0.657 0.0019 0.959 0.0035 0.777 0.0026
1.032 0.0010 0.836 0.0012 1.016 0.0018 0.895 0.0015

0.0005 0.0007 0.0009 0.0008
case 4 

0.951 0.0039 0.582 0.0026 0.905 0.0065 0.584 0.0037
0.998 0.0020 0.772 0.0017 0.956 0.0035 0.823 0.0025
1.005 0.0010 1.008 0.0010 0.983 0.0018 0.926 0.0014

0.0005 0.0005 0.0009 0.0007

FDSWEsM 
rc L1,h rc L1,uh rc L2,h rc L2,uh 

case 1 
0.949 0.0036 0.987 0.0023 0.996 0.0059 0.907 0.0049
1.055 0.0019 1.059 0.0011 1.030 0.0030 0.927 0.0026
1.065 0.0009 1.026 0.0006 1.012 0.0015 1.077 0.0014

0.0004 0.0003 0.0007 0.0006
case 2 

0.971 0.0036 0.994 0.0023 0.948 0.0060 0.963 0.0049
1.047 0.0019 1.089 0.0011 1.050 0.0031 1.048 0.0025
1.103 0.0009 1.030 0.0005 1.001 0.0015 1.007 0.0012

0.0004 0.0003 0.0007 0.0006
case 3 

0.940 0.0043 0.940 0.0009 0.932 0.0076 0.893 0.0016
1.059 0.0022 1.056 0.0005 1.000 0.0040 0.981 0.0008
1.051 0.0011 1.070 0.0002 1.029 0.0020 1.104 0.0004

0.0005 0.0001 0.0010 0.0002
case 4 

0.913 0.0043 1.000 0.0009 0.858 0.0076 0.976 0.0016
0.987 0.0023 1.106 0.0005 1.066 0.0042 1.074 0.0008
1.082 0.0011 1.064 0.0002 1.004 0.0020 1.078 0.0004

0.0005 0.0001 0.0010 0.0002
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Figure S2. Test 1. L1 and L2 norms of the relative errors for h and uh. Structured meshes. 

Test 2. Rain in a 1D channel 

 
Figure S3. Test 2. L1 and L2 norms of qout. 

Test 3. Rainfall in a 2D catchment 

 

0ISWEsM 
rc L1,h rc L1,uh rc L2,h rc L2,uh 

case 1 
0.324 0.0311 0.355 0.0031 0.291 0.0526 0.308 0.0052
0.523 0.0248 0.493 0.0024 0.575 0.0430 0.485 0.0042
0.586 0.0173 0.601 0.0017 0.613 0.0289 0.659 0.0030

 0.0115  0.0011  0.0189 0.0019
case 2 

0.726 0.0070 0.493 0.00273 0.795 0.0126 0.463 0.0040
0.790 0.0042 0.657 0.00194 0.846 0.0073 0.693 0.0029
1.012 0.0024 0.855 0.00123 1.625 0.0040 0.845 0.0018

 0.0012  0.00068  0.0013 0.0010
case 3 

0.951 0.0039 0.506 0.0027 0.899 0.0065 0.531 0.0038
1.015 0.0020 0.799 0.0019 0.967 0.0035 0.776 0.0026
1.038 0.0010 0.752 0.0011 1.033 0.0018 0.941 0.0015

 0.0005  0.0006  0.0009 0.0008
case 4 

0.930 0.0038 0.548 0.0025 0.902 0.0064 0.582 0.0037
1.000 0.0020 0.768 0.0017 0.950 0.0034 0.835 0.0025
1.000 0.0010 0.977 0.0010 0.986 0.0018 0.929 0.0014

 0.0005  0.0005  0.0009 0.0007

FDSWEsM 
rc L1,h rc L1,uh rc L2,h rc L2,uh

case 1 
0.961 0.0036 1.019 0.0023 1.016 0.0059 0.924 0.0049
1.063 0.0019 1.079 0.0011 1.040 0.0029 0.929 0.0026
1.066 0.0009 1.084 0.0005 0.974 0.0014 1.170 0.0014

0.0004 0.0003 0.0007 0.0006
case 2 

1.078 0.0038 1.006 0.0023 0.971 0.0060 0.911 0.0047
1.016 0.0018 1.107 0.0011 1.033 0.0031 1.059 0.0025
1.101 0.0009 1.115 0.0005 1.010 0.0015 1.005 0.0012

0.0004 0.0002 0.0007 0.0006
case 3 

0.957 0.0043 0.971 0.0009 0.928 0.0076 0.978 0.0016
1.144 0.0022 1.031 0.0005 1.000 0.0040 0.930 0.0008
1.000 0.0010 1.118 0.0002 1.029 0.0020 1.066 0.0004

0.0005 0.0001 0.0010 0.0002
case 4 

0.900 0.0042 1.064 0.0009 0.866 0.0076 0.943 0.0015
1.003 0.0023 1.070 0.0004 1.057 0.0042 1.007 0.0008
1.111 0.0011 1.014 0.0002 1.003 0.0020 1.061 0.0004

0.0005 0.0001 0.0010 0.0002
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Figure S4. Test 3. L1 and L2 norms of qout. 
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Figure S5. Test 3. Computed water depth and vectors of unitary flow rate at different durations. 22 s 
(top), 30 s (middle), 52 s (bottom). 

Test 4. The Toce river case 

Table S1. Test 4. Values of the L1, L2 Linf norms of the relative errors at the gauges [-] 
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 FDSWEsM   n0 0ISWEsM   n0 0ISWEsM   nopt 

gauge L1 L2 Linf L1 L2 Linf L1 L2 Linf 

P1 6.65E-04 8.04E-04 3.65E-02 9.07E-04 1.10E-03 5.96E-02 9.07E-04 1.09E-03 5.83E-02 

P2 6.83E-04 9.29E-04 3.97E-02 2.69E-03 2.56E-03 7.34E-02 1.64E-03 1.44E-03 5.25E-02 

P3 9.53E-04 8.73E-04 2.09E-02 1.33E-03 1.39E-03 6.25E-02 1.27E-03 1.39E-03 5.95E-02 

S4 1.29E-03 1.69E-03 5.59E-02 1.40E-03 1.90E-03 5.08E-02 1.23E-03 1.74E-03 4.60E-02 

P4 5.51E-04 1.04E-03 7.59E-02 9.74E-04 1.32E-03 6.64E-02 9.74E-04 1.32E-03 6.64E-02 

S6S 4.29E-04 5.66E-04 1.44E-02 3.45E-03 3.95E-03 5.46E-02 2.31E-03 2.99E-03 4.29E-02 

S6D 1.12E-03 9.76E-04 2.15E-02 1.49E-03 2.43E-03 3.46E-02 8.78E-04 1.32E-03 3.16E-02 

P5 1.23E-03 1.43E-03 4.07E-02 2.71E-03 3.28E-03 6.39E-02 1.64E-03 1.80E-03 5.29E-02 

P8 1.53E-03 2.87E-03 4.32E-02 2.46E-03 3.84E-03 7.06E-02 1.54E-03 2.09E-03 6.30E-02 

S8D 6.33E-04 8.87E-04 2.30E-02 2.96E-03 4.95E-03 5.42E-02 7.10E-04 9.80E-04 2.70E-02 

P9 8.31E-04 1.07E-03 3.96E-02 4.68E-03 7.33E-03 7.90E-02 2.46E-03 3.89E-03 7.63E-02 

P10 8.06E-04 1.08E-03 2.69E-02 3.18E-03 6.54E-03 7.89E-02 1.15E-03 1.55E-03 4.45E-02 

P12 5.94E-04 8.53E-04 1.70E-02 1.00E-03 1.60E-03 3.91E-02 8.86E-04 1.33E-03 3.91E-02 

P13 1.42E-03 2.32E-03 6.75E-02 2.97E-03 5.61E-03 6.92E-02 2.18E-03 3.22E-03 6.75E-02 

P18 2.05E-03 3.63E-03 5.80E-02 2.24E-03 3.61E-03 7.97E-02 1.16E-03 1.87E-03 4.87E-02 

P19 3.78E-04 7.50E-04 3.00E-02 1.90E-03 2.40E-03 5.57E-02 1.45E-03 1.45E-03 3.88E-02 

P21 1.19E-03 1.37E-03 4.17E-02 3.63E-03 7.23E-03 8.14E-02 1.57E-03 2.28E-03 5.39E-02 

P23 2.59E-03 2.37E-03 4.95E-02 5.52E-03 8.32E-03 1.35E-01 4.38E-03 5.76E-03 8.41E-02 

P24 2.67E-03 2.22E-03 3.53E-02 7.69E-03 1.63E-02 1.80E-01 5.53E-03 9.97E-03 1.38E-01 

P25 2.76E-03 2.44E-03 3.62E-02 5.86E-03 1.65E-02 1.86E-01 3.83E-03 8.07E-03 1.07E-01 

P26 1.80E-03 2.50E-03 4.53E-02 7.31E-03 8.32E-03 1.69E-01 6.12E-03 6.26E-03 8.35E-02 

 

 
Figure S6. Test 4. Measured and computed water levels at gauges S6S, P4 and S6D. 
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