Table S1. The main content of Chinese references.

Chinese	Title	Distribution and Variation of China Agricultural Heat Resources in 1961-2010
reference 9	Author	Hu Q.; Pan X.B.; Shao C.X.; Zhang D.; Wang X.X.; Wei X.Y.
	Journal (Year)	Chinese agricultural meteorology (2014)
	Abstract	Based on observed meteorological data from 508 stations in China, the distribution characteristics of heat resources were analyzed by using climatic trend rate and GIS methods in national scale in recent 50 years (1961-2010), and the change
		characteristics of heat resources between two periods (period I 1961- 1980, period II 1981-2010) were compared. The
		results showed that the heat resources distributed unevenly, and more heat resources in southern China than that in
		northern China. The key influence factor in eastern China was latitude, while topography was key factor in western
		China. Counter lines of average daily temperature 0 °C, 10 °C and 15 °C in period II moved northward comparing with
		period I, days of average daily temperature ≥ 0 °C and ≥ 10 °C increased 5.5 d and 4.7 d on average, respectively. The
		distribution and change of average daily temperature ≥ 0 °C was similar to that of accumulated temperature ≥ 10 °C. The
		areas of the accumulated temperature zone of 5500- 6100 °C·d (≥ 0 °C accumulated temperature) and 5300- 6500 °C·d (≥
		10 °C accumulated temperature) increased by 5.32 × 104 km ² and 1.92 × 103 km ² , respectively. The climatic trend rate of
		average temperature was 0.27 °C/10a in 1961- 2010, and the climatic trend rate of maximum and minimum temperature
		was 0.37 °C/10a and 0. 21°C/10a in northern China. The accumulated temperature \geq 0 °C and \geq 10 °C increased 70 °C·d
		/10a. The heat resources(mean temperature, minimum and maximum temperature, accumulated temperature) in China
		showed an increasing tendency in recent 50 years, and minimum temperature played a major role on climate warming,
		whose variation degree was larger than that of maximum temperature. Climate warming might have some impacts on
Chinese	Title	Rice area change in Northeast China and its correlation with climate change
reference 10	Author	Chen H; Li Z.G. Tang P.Q; Hu Y.N; Tan J.Y, Liu Z.H.; You L.Z.; Yang P.
	Journal (Year)	Chinese Journal of Applied Ecology (2016)
	Content	The area of rice planting in Northeast China changed significantly during the period of 1980-2010, while the total

		planting area increased by nearly 80,000 hm ² per year. Then the area had reached 3.2 million hm ² by 2010, which was
		nearly 4 times higher than that in 1980. Rice planting area was mainly distributed in the southern part of the Liaohe
		Plain, and a small amount is distributed in the eastern part of the Songnen Plain in 1980. The distribution of the core
		latitude is 41 ° N.
Chinese reference 11	Title	Accumulated Temperature Variation and Accumulated Temperature Rezone in Heilongjiang Province
	Author	Cao M.M.; Li Q.; Zhang L.Y.; Gao J.; Li W.H.; Ding W.M.; Sun Y.K
	Journal (Year)	Chinese agricultural meteorology (2014)
	Abstract	Based on daily average temperature data from 78 meteorological stations in Heilongjiang province from 1981 to 2012, the
		temporal and spatial variation of accumulated temperature ≥ 10 °C was analyzed by using five-day running average and
		Kriging interpolation space method. The accumulated temperature zone in Heilongjiang province was rezoned by using
		of the 80% guaranteed rate of the accumulated temperature. The results showed that the annual average temperature
		increased obviously at the rate of 0.21 °C/10a, and the accumulated temperature \geq 10 °C increased at the rate of 83.
		95 °C·d per 10 years from 1980s. The average accumulated temperature was 2645.39 °C·d in 1981-2012. The accumulated
		temperature ≥ 10 °C increased significantly in decade, and the accumulated temperature ≥ 10 °C zone moved to north
		and east obviously. The accumulated temperature with 80% guaranteed rate was above 2300 °C·d in most regions, and all
		zones expanded to north and east. The results could provide references for planting division in Heilongjiang province.
Chinese	Title	Projection on Future Climate Change in China-Constructing High Resolution SRES Climate Scenarios Using PRECIS
reference 22	Author	Xu Y.L.; Pan J.; Feng Q.
	Journal (Year)	Science Press, Beijing, China (2016)
	Content	The author of this book transplanted PRECIS mode system to China in February 2003, and began to set up and run
		PRECIS mode system in China to generate high-resolution climate situation data. (page 18-19)
Chinese	Title	Characteristics of agricultural climate resources in the potential northward migration area of winter wheat under future
reference 29		climate scenarios
	Author	Zhang M.T.; Zhang Y.J.; Tong J.H.; Li K.; Pan J.; Xu Y.L.
	Journal (Year)	Climate Change Research (2017)
	Abstract	Analysis of RCP4.5 climate scenario data based on the regional climate model system PRECIS shows that the northern

		boundary of winter wheat planting will move an average of 147.8 km northward with area about 1.86 × 105 km ² in
		2071-2097 compared to 1981-2010. To explore the characteristics of agricultural climate resources in the potential
		northward area of winter wheat from 2021 to 2097 under the future scenario, 9 agricultural climate resources indices are
		selected including light, temperature and water resources. The results show that: (1) compared with the baseline period
		(1961–1990), the change of light resources in the potential northward area showed a decreasing trend in the future; the
		thermal resources showed a significant increase trend in the last 30 years in the end of the 21st century, while volatility
		increased; the overall increase trend of water resources was not obvious, but the volatility also showed an increasing
		trend. (2) In the future potential northward zone, the light resources decreased greatly in the northeastern part of the
		study area, but it were smaller in the southwest in 2030T (2021-2050), 2050T (2041-2070) and 2070T (2061-2090); the
		increase of thermal resources in the northern part of the study area is more obvious than in the south; the precipitation is
		mainly increased in the northeastern part of the study area.
Chinese	Title	Variation of Temperature and Frost-free Period in Different Time Scales in Northeast China
reference 31	Author	Hu Q.; Pan X.B.; Zhang.D.; Yang N.; Li Q.Y.; Shao C.X.
	Journal (Year)	Chinese Journal of Agro-meteorology (2015)
	Content	The frost-free period is closely related to the crop growth period and is an important thermal indicator in agriculture.
		The frost-free period is calculated according to the following definitions: the daily minimum temperature ≤ 2 °C as the
		meteorological indicator of the frost day, while the last occurrence day in spring and the first occurrence day in autumn
		were defined as the last or first frost day. The number of days between the last frost day and the first frost day is
		frost-free.
Chinese	Title	Analysis of Changes in the Maximum and Minimum Temperature and Diurnal Temperature Range from PRECIS Model
reference 33		under the SRES A1B Scenario for China
	Author	Liu C.B.; Ji X.X.; Xu Y.L.; Wang M.X.; Zhang L.; Pan J.; Hu Y.N.; Tong J.H.
	Journal (Year)	Climatic and Environmental Research (2015)
	Abstract	The outputs of PRECIS (Providing Regional Climates for Impacts Studies) were used to analyze the changes in the
		maximum (Tmax) and minimum temperature (Tmin) and diurnal temperature range (DTR) during 2011–2040,
		2041–2070, and 2071–2100 relative to the baseline period (1961–1990) under the SRES A1B scenario for China. The results

		show a consistent increase in the Tmax and Tmin, annually and for the four seasons, during 2011–2040, 2041–2070, and
		2071–2100; however, the DTR shows a consistent decrease. The annual warming amplitude (WA) of the Tmax and Tmin
		are 1.7, 3.2, 3.9 and 1.9, 3.6, 4.7 °C, during 2011–2040, 2041–2070, and 2071–2100, respectively, and the increase in the
		amplitude of the Tmin is more than 1.1 times that of the Tmax. The WA of the Tmax and Tmin are projected to be largest
		in winter and smallest in spring, and the decreasing amplitude of the DTR is projected to be largest in winter and
		smallest in summer. The spatial distribution of the change of the Tmax, Tmin, and DTR over China shows that the Tmax
		will have its largest WA in Northeast China, a large WA in Northwest China, the Loess Plateau, and the Sichuan Basin,
		but a small WA in the northern Qinghai–Tibet Plateau and South China. On the contrary, the Tmin will have its largest
		WA in Northwest China, a large WA in Northeast China and the Northern Qinghai-Tibet Plateau, and a small WA in the
		Sichuan Basin and the eastern Yunnan-Guizhou Plateau. The DTR shows a decreased trend for northern China,
		especially in the northern Qinghai-Tibet Plateau, but an increase in the Sichuan Basin and the eastern Yunnan-Guizhou
		Plateau.
Chinese	Title	Impacts of Climate Change on Agro-Climatic Resources in China
reference 39	Author	Tang X.; Yang X.C.; Tian Z.; Günter F.; Sun L.X.; Pan J.
	Journal (Year)	Resources Science (2011)
	Content	The length of growing season is defined as the number of days during the period of mean temperature stably via 5°C in
		this study. As the Fig.6 a and b shown, the crop potential growing season for a mean temperature above 5 °C would
		increase by about 20 d under the SRES A2 scenario.
Chinese	Title	Spatio-temporal distribution of maize chilling damage intensity in the Three Provinces of Northeast China During 1961
reference 40		to 2013
	Author	Yang R.Z.; Zhou G.S.
	Journal (Year)	Acta Ecologica Sinica (2016)
	Abstract	The classification and spatio-temporal distribution of maize chilling damage intensity in the three provinces of Northeast
		China were studied using the daily meteorological data from 1961 to 2013, the chilling damage data presented in the
		Industry Standard: Technical Specification of Northern Spring Maize Chilling Damage Assessment (QX/T167-2012) as
		well as by empirical orthogonal function (EOF) and rotated EOF method. The results showed that the maize chilling

	damage intensity in the three provinces of Northeast China showed significant spatial difference, which could be divided
	in three categories: the regional consistency type, the anti-phase distribution type between northern and southern parts,
	and the anti-phase distribution type between eastern and western parts. The maize chilling damage intensity in the three
	provinces of Northeast China showed a consistent fluctuating pattern and a decreasing trend from 1961 to 2013. The
	maize chilling damage intensity displayed a significant regional difference, separating three sub-regions based on maize
	chilling damage intensity, i.e., the sub-region with the strongest chilling damage intensity including Heilongjiang
	Province and the northern part of Jilin Province(I sub-region), the sub-region with the intermediate chilling damage
	intensity including the southern part of Jilin Province and the northern part of Liaoning Province(III sub-region), and the
	sub-region with the lowest chilling damage intensity in the southern part of Liaoning Province(II sub-region). The
	results presented herein will provide the scientific reference for maize chilling damage division and help establish
	countermeasures for coping with the negative effects of the maize chilling damage.
Title	A Numerical Simulation of the Impacts of Climate Change on Water and Thermal Resourced in Northeast China
Author	Wu J.D.; Wang S.L.; Zhang J.M.
Journal (Year)	Resources Science (2000)
Content	Northeast China is affected by future warming, and the thermal conditions would be sufficient compare to present. The
	growing season would prolong and the accumulated temperature would increase. As one of the main limiting factors of
	current high yield and stable yield of crops, the cold damage would be alleviated with the increase of the minimum
	temperature.
	Author Journal (Year)