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Abstract: The El Niño Southern Oscillation (ENSO) is an important mode of climatic variability
that exerts a discernible impact on ecosystems and society through alterations in climate patterns.
For this reason, ENSO has attracted much interest in the climate and health science community,
with many analysts investigating ENSO health links through considering the degree of dependency
of the incidence of a range of climate diseases on the occurrence of El Niño events. Because of the
mounting interest in the relationship between ENSO as a major mode of climatic variability and
health, this paper presents an overview of the basic characteristics of the ENSO phenomenon and its
climate impacts, discusses the use of ENSO indices in climate and health research, and outlines the
present understanding of ENSO health associations. Also touched upon are ENSO-based seasonal
health forecasting and the possible impacts of climate change on ENSO and the implications this
holds for future assessments of ENSO health associations. The review concludes that there is still
some way to go before a thorough understanding of the association between ENSO and health is
achieved, with a need to move beyond analyses undertaken through a purely statistical lens, with due
acknowledgement that ENSO is a complex non-canonical phenomenon, and that simple ENSO health
associations should not be expected.
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1. Introduction

Through a cascade of processes that link variability in the ocean-atmosphere system and the
surface environment, weather and climate can have a discernible impact on health. Such impacts may
be direct, indirect, or diffuse [1], and occur over a range of temporal and spatial scales [2]. There is a
burgeoning literature on the assessment of the impacts of climate on health, generally focusing on the
health risks of climate variability and climate change.

The climate variability and health literature is generally concerned with establishing the impact
on health of variations in weather conditions at intra-seasonal, inter-annual, and inter-decadal time
periods. In general, climatic variability is connected with variations in the state of the atmospheric and
ocean circulation and land surface properties (e.g., soil moisture) at the intra-seasonal to inter-decadal
timescales. Therefore, climate variability and health studies explore relationships between historical
climate and health data at a variety of temporal and spatial scales. Climate change-related health
studies generally focus on the risks of a systematic change in the statistical properties of climate
(e.g., mean and variance) over a prolonged period (e.g., several decades and beyond). Projections
of the health risks of climate change use established associations, often derived from quantifications
of associations between health outcomes and climate variability, and “force” these associations with
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projected changes in climate variables to make projections about the possible outcomes arising from
anthropogenic climate change.

Assessments of the health risks of climate change rely on both known associations between health
and climate variability, and on projections of how the magnitude and pattern of risks could change
with additional climate change. Therefore, it is important to understand the range of modes of climate
variability, generally defined as quasi-periodic variations in ocean and atmospheric circulation patterns
that possess an oscillatory behaviour, which might influence health. A large number of modes of
climate variability, not all independent of each other, have been identified [3–5], all of which could
be considered as potential moderators of intra-seasonal to inter-annual to inter-decadal variability in
health outcomes (Table 1).

Table 1. A selection of teleconnection patterns and indices (Source: McGregor [6]).

Arctic Oscillation (AO)/Northern Annual Mode (NAM) El Niño Southern Oscillation (ENSO)

North Atlantic Oscillation (NAO) East Atlantic Pattern (EA)
West Pacific Pattern (WP) East Pacific/North Pacific Pattern (EP/NP)

Pacific/North American Pattern (PNA) East Atlantic/West Russia Pattern (EA/WR)
Scandinavia Pattern (SCA) Northern Hemisphere Pattern (TNH)

Polar/Eurasia Pattern (POL) Pacific Transition Pattern (PT)
Pacific South American Pattern (PSA) Southern Annular Mode (SAM)/Antarctic Oscillation (AO)

Indian Ocean Dipole (IOD) South Pacific Wave Pattern (SPW)
Quasi Biennial Oscillation (QBO) Madden Julian Oscillation (MJO)
Pacific Decadal Oscillation (PDO) Atlantic Meridional Oscillation (AMO)

A major driver of inter-annual climate variability associated with adverse health outcomes is
the El Niño Southern Oscillation (ENSO) phenomenon [7]. ENSO can account for a considerable
proportion of climate variance across a range of geographical scales [8,9] and thus impact health
sensitive environmental conditions, including land- and ocean-based temperature and precipitation
extremes, ecosystem health, drought and riverine and coastal flooding. Because strong ENSO-related
climate anomalies have discernible impacts on health in some regions and because ENSO generally
accounts for the largest proportion of the inter-annual variation in climate [8], especially in regions
where health systems are less resilient to “climate shocks”, the purpose of this paper is to present an
overview of the basic characteristics of the ENSO phenomenon and its climate impacts, discuss the use
of ENSO indices in climate and health research and outline our present understanding of ENSO health
associations. ENSO-based seasonal health forecasting, and the possible impacts of climate change on
ENSO, and the implications this holds for future assessments of ENSO health associations, will also be
briefly discussed.

2. The ENSO Phenomenon

The ENSO phenomenon refers to the variations in atmospheric and ocean conditions, or in the
climate conditions, arising from variations in sea surface temperatures and atmospheric pressure
across the tropical Pacific Ocean. ENSO is comprised of two major components that reflect its complex
coupled nature, the El Niño or ocean, and the Southern Oscillation or atmospheric component.
Human society has chronicled the impacts of El Niño for far longer than its atmospheric counterpart.
Peruvian fishermen in the 1500s understood well the impact on fisheries of unusually warm waters
that occasionally occurred off the coast of Peru around Christmas time. Because El Niño events are
associated with anomalously high sea surface temperatures, they are also referred to as “warm events”.
The “cool event” counterpart carries the name of La Niña.

H. Hidebrandsson, working in the late 1890s, is often credited with unearthing the rudiments
of what we now know as the Southern Oscillation or the atmospheric pressure “seesaw” (barometric
seesaw) between the eastern and western Pacific [10]. Building on this work and that of Norman and
Lockyer in 1902, and extensive research of his own and that of his collaborator E W Bliss, Gilbert
Walker in 1928 named and presented the first coherent ideas about the Southern Oscillation (SO) and
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extensively described the implications of the SO for inter-annual climate variability across the tropics,
including how a Southern Oscillation Index (SOI) could be applied to climate forecasting a season
ahead [10]. While Troup [11] reconfirmed and refined many of the earlier long distance associations
(now referred to as teleconnections) discovered by Walker, Bjerknes [12] conceptualised the association
between El Niño and the Southern Oscillation as an outcome of air-sea or ocean-atmosphere interaction
that led to the coining of the term ENSO.

El Niño and La Niña are part of the ENSO cycle that lasts from 12–18 months, over periods
of 2–7 years, associated with alterations of the SO; although some El Niño and La Niña events can
last beyond 24 months. The ENSO cycle refers to the alteration of climate fields associated with the
development, peak, and decay of sea surface temperature anomalies in the eastern and central Pacific
along with alterations to the atmospheric circulation and weather patterns across vast areas. El Niño
(La Niña) or warm (cool) event conditions first begin to manifest as positive (negative) sea surface
temperature (SST) anomalies in the central and eastern Pacific around July. These continue to develop
as the ENSO cycle progresses, reaching a peak in the Northern Hemisphere around January to February
of the following year, trailed by a decay or lessening of SST anomalies in the subsequent months of
March to July/August, and cessation of the El Niño (La Niña) event by the end of summer. The swing
between El Niño and La Niña phases is not immediate and successive. Rather, El Niño and La Niña
events can be punctuated by “neutral” conditions when SST conditions in the eastern and central
Pacific are in and around “normal”.

ENSO events can be viewed as a self-sustained and naturally oscillatory mode of the coupled
ocean-atmosphere system, or a stable mode triggered by stochastic forcing [13], and positive
ocean-atmosphere feedback processes, with negative feedbacks required to terminate events [12].
No two ENSO events are alike. From exhaustive analyses of ocean and atmosphere climate fields,
two broad types of ENSO have emerged: Eastern Pacific (EP) and Central Pacific (CP). The two
types were identified in relation to where maximum SST anomalies tend to occur, with the CP type
also referred to by a variety of other names particularly the widely used “El Niño Modoki” [13].
While in the context of ENSO and health the different types or flavours of ENSO events might appear
inconsequential, the nuanced differences in their climate impacts may hold implications for the
temporal and spatial dynamics of ENSO-related health responses.

A further characteristic of ENSO that holds possible implications for climate and health
associations is the multi-decadal changes observed for ENSO’s amplitude, period, propagation
characteristics, asymmetry, onset, and predictability [13,14]. For example, the variance of the 2–7 year
periodicity of ENSO was relatively high during the periods 1875–1920 and 1960–1990, but relatively
low from 1920 to 1960 [14]. A clear shift in the amplitude of SST anomalies in the EP occurred in
and around the mid-1970s. Such a shift and the variation in the variance of the 2–7 year periodicity
appears to be related to the background climate state of the Pacific Ocean, or the phase of the Pacific
Decadal Oscillation (PDO). As the Pacific Ocean transitions from a cool (warm) phase with lower
(higher) than normal SSTs to a warm (cool) phase with positive (negative) SST anomalies over a
period of 3–4 decades, ENSO characteristics and their link to climate impacts are affected [9,15–19].
The implication is that ENSO-related health impacts may be non-stationary at the multi-decadal
scale. That there are non-symmetric relationships between ENSO and the Indian Ocean Dipole (IOD),
another form of ocean climate variability [20], also raises the question as to whether the strength and
direction of ENSO health links in the broad region of IOD influence might be IOD phase dependent.

3. ENSO (Teleconnection) Indices

A teleconnection index is used to describe the temporal behavior of a particular mode of climate
variability such as ENSO. Essentially statistical constructs, teleconnection indices are presented in the
form of a single number for the temporal scale of interest (e.g., monthly, annual) with the assumption
that a specific index captures the range of often complex, ocean and/or atmospheric process interactions
that give rise to what is a multifaceted mode of climatic variability. While each teleconnection index
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has a commonly accepted acronym (Table 1), there may be various versions of a particular index
because different methods, data sets, atmosphere and ocean variables, criteria, and sampling periods
might have been used in their derivation [6].

A plethora of ENSO indices have been developed to measure, monitor, and summarise ENSO
status. These can be broadly divided into atmospheric, oceanic and blended indices. Some of the
more common ENSO atmospheric and oceanic indices, reported monthly by NOAA in its Climate
Diagnostics Bulletin, are presented in Table 2.

Table 2. El Niño Southern Oscillation (ENSO) indices commonly reported by NOAA on a monthly
basis. Modified from the Climate Diagnostics Bulletin http://www.cpc.ncep.noaa.gov/products/CDB.

Index Index Name Variable Form of Index Value Region (in
Degrees)

Type

Atmospheric

Southern Oscillation
Index (SOI) Pressure

Standardised pressure
difference between Tahiti

and Darwin

Uses the single
location of Darwin

and Tahiti

850-hPa Trade Wind
Index 1

Wind direction and speed,
Southwest Pacific

Standardised by mean
annual standard deviation

for reference period 2

5 N–5 S
135 E–180

850-hPa Trade Wind
Index 1

Wind direction and speed,
South Central Pacific

Standardised by mean
annual standard deviation

for reference period

5 N–5 S
175 W–140 W

850-hPa Trade Wind
Index 1

Wind direction and speed,
Southeast Pacific

Standardised by mean
annual standard deviation

for reference period

5 N–5 S
135 W–120 W

200-hPa Zonal Wind
Index 3

Wind direction and speed,
Central to Eastern
Equatorial Pacific

Standardised by mean
annual standard deviation

for reference period

5 N–5 S
165 W–110 W

Outgoing Longwave
Radiation Index

(OLR) 4

Longwave radiation
in W/m 2

Standardised by mean
annual standard deviation

for reference period

5 N–5 S
160 E–160 W

Oceanic

NIÑO 1 + 2
Pacific sea surface

temperature (SST) in ◦C
Departures from
1981–2010 mean

0–10 S
90 W–80 W

NIÑO 3 Pacific SST in ◦C Departures from
1981–2010 mean

5 N–5 S
150 W–90 W

NIÑO 3.4 Pacific SST in ◦C Departures from
1981–2010 mean

5 N–5 S
170 W–120 W

NIÑO 4 Pacific SST in ◦C Departures from
1981–2010 mean

5 N–5 S
160 E–150 W

North Atlantic Atlantic SST in ◦C Departures from
1981–2010 mean

5 N–20 N
60 W–30 W

South Atlantic Atlantic SST in ◦C Departures from
1981–2010 mean

0–20 S
30 W–10 E

Global tropics Global Tropics SST in ◦C Departures from
1981–2010 mean

10 N–10 S
0 W–360 W

1 Positive (negative) values of 850-hPa zonal wind indices imply easterly (westerly) anomalies. 2 Currently NOAA
uses 1981–2010 as the base period. 3 Positive (negative) values of 200-hPa zonal wind index imply westerly (easterly)
anomalies. 4 Positive (negative) values indicate large amounts of outgoing longwave radiation.

3.1. Atmospheric Indices

Of the indices presented in Table 2, the SOI has the longest history [21,22]. It is composed of the
standardised pressure difference between Tahiti and Darwin. These locations are sometimes referred
as “centres of action” because they are in the general region at either end of the barometric seesaw

http://www.cpc.ncep.noaa.gov/products/CDB
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that straddles the Pacific and so demonstrate the maximum climate station-based variance in pressure
during an ENSO event. The SOI swings between positive and negative values with a phase shift from
La Niña to El Niño such that when the pressure is above (below) average in Darwin and below (above)
average in Tahiti, as found during an El Niño (La Niña) event, the SOI is negative (positive) (Figure 1).
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Figure 1. Time series of Southern Oscillation Index (SOI) and Tahiti and Darwin pressure, 1997–2016.
Sourced and redrawn from the Climate Diagnostics Bulletin (http://www.cpc.ncep.noaa.gov/
products/CDB).

The SOI is calculated in two stages. First, sea level pressure is standardised in relation to a
set reference period, separately for Darwin and Tahiti. The differences in the standardised values
between the two locations are then standardised. The resulting SOI values vary between −2.5 and
2.5, with roughly 66 percent of the values occurring between −1.0 and 1.0 [21]. Although this range
of values implies symmetry around a mean of zero, there is a slight asymmetric distribution of SOI
values because the strongest El Niño events tend to produce greater negative departures from zero
compared to the positive departures for strong La Niña events. The strongest El Niño events are more
intense than the strongest La Niña events. Although SOI values can be calculated for daily and weekly
timescales, it is best if monthly to seasonal values are used in health impact analyses. This is because
short term fluctuations in pressure at the two reference stations can occur due to weather and climate
phenomena other than ENSO. The method of averaging over longer time scales therefore facilitates
identification of continued periods of positive or negative departure of the SOI that is most likely due
to ENSO.

While there are good historic reasons as to why Darwin and Tahiti were selected as the reference
locations for the development of the SOI, their location is slightly south of the main equatorial region
where ENSO manifests itself. Accordingly, an alternative form of the SOI was developed: the Equatorial
SOI (EQ SOI) [21]. This is calculated using re-analysis as opposed to observed atmospheric pressure
data, as the standardised anomaly of the difference between the area-average monthly sea level
pressure between largely oceanic equatorial regions in the eastern Pacific (80◦ W–130◦ W, 5◦ N–5◦ S)
and Indonesia (90◦ E–140◦ E, 5◦ N–5◦ S) (Figure 2). Although the EQ SOI may have advantages over
the SOI in that it is derived for equatorial slices that more closely map onto ENSO centres of action,
the record only extends back to 1949 (historical extent of the re-analysis data); the SOI is available from
the late 19th century. Further in relation to the EQ SOI, it is worth mentioning that prior to the satellite
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era (pre-1979), the re-analyses on which the EQ SOI is based, possess some uncertainties, as in situ
observations were sparse, thus compromising the quality of the re-analysis data.
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Figure 2. Locations for calculation of SOI and Equatorial SOI. EQ is equator, DAR is Darwin,
TAH is Tahiti, EPAC is eastern Pacific and INDO is Indonesia. Sourced and redrawn from
Barnston [21] https://www.climate.gov/news-features/blogs/enso/why-are-there-so-many-enso-
indexes-instead-just-one.

During ENSO events, the major zones of deep convection that produce thunderstorm-related
rainfall move eastward away from their “normal” regions of predominance in the western Pacific.
This shift is evident from rainfall observations and from space as changes in cloud patterns captured
by satellite images of the global tropics. Because clouds, like all other objects, emit longwave radiation,
satellite-based measurements since the late 1970s have been used to construct an Outgoing Longwave
Radiation (OLR) index that has proven to be a good indicator of ENSO events (Figure 3). As described
by the Stefan-Boltzman Law, the cooler an object, the lower the amount of longwave radiation emitted.
Therefore, deep convective storms that reach high into the troposphere and produce substantial rainfall
will have very low cloud top temperatures. Accordingly, such clouds will emit less OLR than their
warmer and shallower counterparts, such that low (high) values of outgoing longwave are taken to
mean enhanced (suppressed) thunderstorm activity and anomalously high (low) rainfall. Although the
OLR index has yet to be used to explore ENSO health links, it may offer some potential for exploring
rainfall-sensitive health outcomes, especially for the geographic region for which the index is derived
(Table 2), because it is a proxy of thunderstorm/rainfall activity.

Outgoing Longwave Radiation (OLR)
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Figure 3. Time series of outgoing longwave radiation (see Table 2), 1997–2016, showing clearly the
below average OLR for the 1997–1998 and 2015–2016 El Niño events. Sourced and redrawn from the
Climate Diagnostics Bulletin http://www.cpc.ncep.noaa.gov/products/CDB.

Multiple lower and upper atmosphere wind indices have been developed for monitoring the flow
of air in the lower and upper branches of the Pacific Walker Circulation [21]. The three 850 hPa indices
(Table 2) represent the strength of the easterly trade winds in ENSO critical regions along the equator
(Figure 4). The trade winds form the lower east to west branch of the Walker Circulation. The 200 hPa
zonal wind index (Table 2) provides a measure of wind strength in the upper west to east branch of
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the Walker Circulation (Figure 4). At the western and eastern extremities of the Walker Circulation,
air ascends and descends, respectively, thus forming the ascending and descending branches of the
along the equator circulation. Positive (negative) values of the 850 hPa wind indices indicate strong
(weak) trade winds. The weakened trade winds of the 1997–1998 and 2015–2016 ENSO events are
clearly visible in time series of this index for the three reference regions, especially for the 1997–1998
event (Figure 4). How inter-annual variations in the trade wind strength might play out in terms of
health impacts, especially in countries directly affected by these anomalies across the wider Pacific
Basin, remains to be explored.
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Figure 4. Time series of ENSO wind indices for various regions (see Table 2) 1997–2016. The weakening
of the zonal winds is especially apparent for the 1997–1998 El Niño event. Sourced and redrawn from
the Climate Diagnostics Bulletin http://www.cpc.ncep.noaa.gov/products/CDB.
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3.2. Oceanic Indices

Because ENSO is very much a phenomenon associated with ocean-atmosphere interaction,
a logical parameter for monitoring its behaviour is sea surface temperature (SST) as initially recognised
by Bjerknes [12] and later fully explored by Rasmussen and Carpenter [23]. The three main oceanic
indices used are based on SST anomalies for a number of ocean regions distributed along the equator.
These are named after numbered shipping routes as Niño 1, 2, 3, and 4, because a vast array of ships
crossing the Pacific for operational reasons recorded SST over a number of decades (Figure 5). Based on
studies of SST variability in relation to ENSO events, Niño 1 and 2 were combined into region Niño
1 + 2; a new region, Niño 3.4 that straddles Niño 3 and 4, is now used (Figure 5).
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Figure 5. Niño sea surface temperature regions (see Table 2). Sourced and redrawn from
Barnston [21] https://www.climate.gov/news-features/blogs/enso/why-are-there-so-many-enso-
indexes-instead-just-one.

Niño 1 + 2 is the smallest Niño region. It sits directly off the coast of South America and tends
to have the largest variation in SST when compared with the other Niño SST regions (Figure 6).
Initially, Niño 3 was favoured as the key region for observing and forecasting El Niño; however, it was
realised that in terms of critical ENSO related ocean-atmosphere interactions, an area further to the
west, Niño 3.4, had greater diagnostic power [24]. Niño 3.4 anomalies capture the average equatorial
SSTs across the Pacific from around the dateline to the South American coast (Figure 6). It is one
of two official NOAA ENSO indices used for classifying ENSO events: when the 5-month running
mean of Niño 3.4 SST anomalies exceeds +0.4 ◦C (−0.4 ◦C) for six months or more, an El Niño (La
Niña) is defined to have occurred. Complementing the Niño 3.4 index is the Oceanic Niño Index
(ONI), the other official index, and the one used for operational definitions of ENSO events by NOAA.
While the ONI uses the same SST region as the Niño 3.4 index, it classifies ENSO events differently.
A 3-month running mean is used, with “fully-fledged” El Niño (La Niña) events defined when SST
anomalies exceed +0.5 ◦C (−0.5 ◦C) for at least five consecutive months. The ONI is also used for
defining El Niño (La Niña) onset. When the Niño 3.4 anomaly exceeds +0.5 ◦C (−0.5 ◦C) for a 3-month
period El Niño (La Niña) onset is declared. Niño 4 covers the central equatorial Pacific. It displays the
least SST variance of all the Niño regions (Figure 6) and is infrequently used in ENSO analyses.

In addition to the Niño regionally-based oceanic indices, the Trans-Niño Index (TNI) was
developed by Trenberth and Stepaniak [24], who suggest that the TNI be used in tandem with the

https://www.climate.gov/news-features/blogs/enso/why-are-there-so-many-enso-indexes-instead-just-one
https://www.climate.gov/news-features/blogs/enso/why-are-there-so-many-enso-indexes-instead-just-one
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Niño 3.4 index. The TNI is defined as the difference in the standardised SST anomalies between Niño
1 + 2 and Niño 4 regions. The physical justification is that it captures the SST gradient between the
central and eastern Pacific, and thus may be useful for identifying El Niño Modoki events, as they arise
when the central to eastern Pacific SST gradient is steep, for example with sizeable positive (negative)
SST anomalies in Niño 4 (Niño 1 + 2) regions. However, as noted by Hanley et al. [25], the TNI has
non-consistent lag correlations with the Niño 3.4 index related to the transition of the Pacific Ocean
from a cool to warm PDO phases in the mid-1970s. Accordingly, Hanley et al. [25] do not include the
TNI as an index for identifying individual events and comparison of ENSO years.
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Figure 6. Time series of SST anomalies (◦C) for NIÑO regions (see Table 2 and Figure 5) 1997–2016.
The strong positive SST anomalies are especially apparent for the 1997–1998 and 2015–2016 El Niño
events. Notice also how the SST anomalies generally decrease in magnitude to the west. Sourced and
redrawn from the Climate Diagnostics Bulletin http://www.cpc.ncep.noaa.gov/products/CDB.

3.3. Blended Indices

Blended indices are a combination of a number of single variables with the blending technique
achieved through a variety of methods. The justification for blended indices is that ENSO is a
multivariate phenomenon [26], thus any index should be comprised of more than one variable.

http://www.cpc.ncep.noaa.gov/products/CDB
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Most commonly, blended indices are used to diagnose ENSO events. While researchers recognised
the physical complexity of ENSO events and the challenges associated with diagnosing them [26,
27] it wasn’t until the early 21st century that attempts to produce blended indices first appeared
in the literature. For example, a Bivariate ENSO Timeseries (BEST) was produced by Smith and
Sardeshmukh [28] by combining the SOI and Niño 3.4 SST, while Allan [29] blended SST and SLP fields
using empirical orthogonal function (EOF) analysis. More recent attempts to produce new blended
indices are largely based on different SST variables and apply various forms of EOF analysis [30–37].
While such new indices proved useful for diagnosing various aspects of ENSO, they have not gained
particularly strong traction for ENSO monitoring.

Perhaps the most widely used blended index for ENSO monitoring and impact studies is the
Multivariate ENSO Index (MEI) of Wolter and Timlin [38]. Unlike other blended indices, the MEI
amalgamates more than one ocean and atmospheric variable, being based on six observed variables
recorded over the tropical Pacific: sea level pressure, zonal and meridional surface wind components,
SST, surface air temperature and total cloudiness fraction of the sky. The MEI is actually the first
unrotated Principal Component (PC) of the aforementioned variables. It is calculated separately for
12 sliding bi-monthly seasons (December/January, January/February, . . . , November/December)
with all bi-monthly values standardised for each season based on a 1950–1993 reference period.
More recently Wolter and Timlin [39] extended the MEI back to 1871 (MEI.etx) using a reduced set of
variables because of possible errors associated with wind variables prior to 1950.

The extended Multivariate ENSO Index (MEI.ext) is based on reconstructed values of SST and
SLP, and is calculated as the first principal component of SST and SLP fields (similar to the MEI).
As noted by Wolter and Timlin [39], the MEI.ext confirms many of the postulated ENSO characteristics
evident from analyses of the original but shorter MEI time series, including ENSO activity subsided in
the early to mid-20th century, and ENSO was about as predominant a century ago as it is currently.
Further, Wolter and Timlin [39] were able to detect strong associations between ENSO amplitude and
duration plus amplitude and periodicity using the MEI.ext.

Although not strictly blended in nature, a number of alternative ENSO indices based on variables
other than the more traditional ones (e.g., SLP, SST, wind, and OLR) have emerged recently, including
an ozone-based ENSO index [40], an atmospheric electrical index [41], and an ENSO salinity index [42].

4. ENSO Indices for Climate and Health Analyses

Faced with a range of ENSO indices, questions that are likely to arise when planning analyses
of ENSO health associations are “which index will be optimal for exploring ENSO-related health
impacts?” and “are there different ways of defining ENSO events?”

Currently there is no common consensus in the climate science community as to which ENSO
index best describes ENSO phases. This appears to contrast with the climate and health science
community in which there appears to be a substantial amount of blind faith applied to the use of ENSO
indices for exploring possible ENSO driven health variations at a range of temporal and spatial scales.
In many ways, the choice of an ENSO index for health analyses may depend on geographical location,
its relation to a health-sensitive climate variable or even disease outcome. For example, for regions
in close proximity to the Niño oceanic regions, the SST-based indices may be appropriate, especially
for exploring rainfall, air and sea temperature-related health outcomes. Similarly, the OLR index
may be useful for exploring rainfall-related health issues in the central Pacific. ENSO-related wind
indices, because they represent the surface trade wind strength, are more than likely to be only useful
in the trade wind regions of the Pacific Basin. For locations distant from the Pacific Basin, such as
southern and eastern Asia, one of the pressure-based indices might be more suitable, as these represent
variations in atmospheric circulation conditions over a larger geographical range.

While some researchers might be tempted to use one of the more recently developed blended
or multivariate ENSO indices, it is worth bearing in mind that these are complex indices made up of
multiple interacting variables. Accordingly, they may not be appropriate if the purpose of an analysis
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was to uncover a direct link between a specific climate attribute such as temperature and a disease
outcome. Further, blended indices have not yet been widely adopted by ENSO forecasting centres.
This is most likely because of the prediction error associated with the individual input variables such
that the cumulative error for a predicted value of a blended index could be large when compared
to a single variable based index. Notwithstanding this, blended indices such as that of Wolter and
Timlin [38] have been applied on a number of occasions in ENSO-health studies (see Section 6).

In selecting ENSO indices, researchers also need to be aware of the producing agency because
of the way ENSO phases and events are identified can vary between agencies. As noted above,
NOAA uses the Niño 3.4 region (5◦ N–5◦ S, 170◦ W–120◦ W) based on ONI and the persistence of SST
anomalies in excess of +/−0.5 ◦C for five months for identifying ENSO phases. In contrast, the Japan
Meteorological Agency (JMA) uses a slightly different formulation for the calculation of their ENSO
index, which is a 5-month running mean of spatially averaged SST anomalies over the geographical
range of 4◦ S–4◦ N, 150◦ W–90◦ W; this is essentially a latitude-restricted Niño 3 region. Further,
the JMA define an ENSO year as October through to the following September. If the JMA index
values exceed +0.5 ◦C or −0.5 ◦C for six consecutive 5-month periods, including October to December,
the ENSO year is declared as either El Niño or La Niña. The Australian Bureau of Meteorology (BoM),
like NOAA and the JMA, uses SST anomalies as a basis for the ENSO phase definition but sets a higher
threshold. For an El Niño (La Niña) event to be called, SST anomalies in the Niño 3 and Niño 3.4 regions
must exceed +0.8 ◦C (−0.8 ◦C). Further to the SST criteria, BoM specifies much weaker (stronger) trade
winds over the western or central equatorial Pacific for the previous 3–4 months, as well as a SOI value
of −7 (+7) to be necessary for an El Niño (La Niña) event to be specified. Note that in the case of BoM,
the SOI values are quite different from those associated with the NOAA SOI index because the BoM
uses the Troup SOI, the standardised anomaly of the mean sea level pressure difference between Tahiti
and Darwin. The BoM calculation uses the period 1933 to 1992 as the climatology; this contrasts with
the NOAA and JMA. Once the Tromp SOI is calculated, it is multiplied by 10. Using this convention,
the BoM SOI takes on values in the range of −35 (strong El Niño) to about +35 (strong La Niña).

NOAA, JMA, and BoM use SST anomalies in their definitions of the El Niño and La Niña
phases of ENSO. In addition to the slight differences in the criteria used for defining events (e.g., SST
anomaly, anomaly period, and region), a further source of difference between the oceanic indices
are the SST data sets employed for constructing the SST anomalies. For example, the JMA uses the
Centennial In Situ Observation-Based Estimates (COBE)-SST data set for ENSO monitoring with
sliding climatological values based on the most recent 30-year period as described by Ishii et al. [43]
and JMA [44]. In contrast, NOAA and BoM use the Extended Reconstructed Sea Surface Temperature,
Version 5 (ERSSTv5) data set with anomalies based on centred 30-year periods updated every five years
as described by Huang et al. [45]. Although not described here, the United Kingdom’s Met Office’s
Hadley Centre applies yet another SST data set for deriving historical SST-based ENSO measures,
the HadISST data set [46]. Important to note in the consideration of possible pre-1950 ENSO health
associations is that for this period, because of observational uncertainties, the ERSSTv5 and HadISST,
from which ENSO indices are derived, demonstrate significant differences [47]. Given this, researchers
need to be aware of the differences in SST data sets for deriving ENSO indices in terms of the SST
observations drawn upon, statistical and data assimilation methods applied, and spatial resolution of
the final SST products [48] because these data set properties may affect the degree to which meaningful
associations between ENSO and health outcomes can be quantified.

Hanley et al. [25] provided a useful comparison of ENSO indices in terms of their ability to
describe ENSO events. They found that El Niño only engenders a weak SST response in the Niño
4 region, whereas La Niña produces quite a strong SST signal in the Niño 1 + 2 region (see Figure 6).
They also concluded, based on an analysis of the sensitivity of a range of ENSO indices relative to
each other, that the choice of an index for analysing ENSO related risks is somewhat dependent on the
ENSO phase. For example, in the case of La Niña events, the JMA ENSO Index was more sensitive
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than other atmospheric and oceanic indices. In contrast for El Niño events, the SOI, Niño 3.4, and Niño
4 indices are almost equally sensitive but more sensitive than the JMA, Niño 1 + 2, and Niño 3 indices.

ENSO indices have also been used to classify the strength of ENSO phases. Such classifications
may be of interest to climate and health researchers because El Niño or La Niña strength may
be an indicator of the potential scale of climate-related health risks, all other variables, such as
socio-economic conditions or vulnerability, being equal. A recent classification of ENSO phase strength
for the period 1950–2016 was produced by Santoso et al. [47] using Niño 3.4 SST anomalies averaged
across four SST reanalysis products (ERSSTv4, ERSSTv5, HadISST, and COBE) over the months of
November-December-January (NDJ) and December–January–February (DJF). Because the classification
is based on SST anomalies for NDJ and DJF, it identifies the year of the development phase of an
ENSO event. For strong (weak) events, the averaged Niño 3.4 anomaly must exceed 1 (be between
0.5 and 1) standard deviation. A neutral phase is deemed to be associated with a standard deviation
of less than 0.5. Strong and weak El Niño and La Niña years are listed in Table 3. The classification,
while identifying the often cited extreme 1972/1973, 1982/1983, 1997/1998, and 2015/2016 El Niño
events as extremes, also highlights other strong El Niño events that have received little attention in the
literature. Recalling that two broad types of El Niño events occur, Santoso et al. [47] used the Niño4
index DJF average to identify Central Pacific El Niño events; the Niño 4 average must be greater than
0.5 ◦C and greater than Niño3 to be classified as a CP event (Table 3). Usefully, Santoso et al. [47]
also analyse the sensitivity of El Niño and La Niña strength classification to varying criteria; this has
implications for general qualitative statements about ENSO strength and health associations.

Table 3. Years in which strong and weak ENSO phases developed (Source: Santoso et al. [48]).

Strong El Niño 1957, 1965, 1972, 1982, 1991, 1997, 2009, 2015
Weak El Niño 1963, 1968, 1976, 1977, 1987, 1994, 2002, 2006

Strong La Niña 1973, 1975, 1988, 1998, 1999, 2007, 2010
Weak La Niña 1950, 1954, 1955, 1964, 1970, 1971, 1984, 1995, 2000, 2005, 2008, 2011

Central Pacific (CP) El Niño 1958, 1968, 1977, 1979, 1987, 1990, 1994, 2002, 2004, 2006, 2009, 2014

Perhaps even more apposite when considering the application of ENSO indices to the analysis
of ENSO-health associations would be the reflection on the conceptual links between ENSO and
health-sensitive climate fields given that the ENSO signature may vary considerably with season
and location.

5. ENSO and Health-Sensitive Climate Impacts

In most conceptualisations of climate and health links, the variables of rainfall and temperature
dominate as climate drivers of hypothesised and actual health outcomes. Further, an often unstated
assumption in many analyses of the relationship between ENSO and disease is that ENSO “signals”
will be found in disease incidence time series. While this might be self-evident, the way in which this
axiom is applied is often naïve. This is because ENSO forcing of adverse health outcomes is usually
explored without prior investigation of the extent to which a disease-relevant climate variable, such as
rainfall or temperature, is ENSO sensitive for a specific location, region, or time period.

There is no doubt that ENSO has a marked impact on climate fields, with this impact
being geographically and seasonally dependent. Given this, graphics of ENSO climate-related
impacts (Figures 7 and 8) should be useful indicators of where direct ENSO/climate-driven
(rainfall/temperature) variations in disease might occur. In effect, such canonical patterns, as appear
in El Niño and La Niña composites (Figures 7 and 8), should assist with identifying potential ENSO
-health “hotspots”. However, having said that, an essential in the approach to any ENSO-health
study informed by canonical patterns of health-sensitive climate impacts is the recognition that ENSO
composites of rainfall and temperature patterns are only averages (the climatology) and as such mask
much El Niño/La Niña inter-event variability in climate impacts. For example, and beyond the broad
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central Pacific (CP–“Modoki”) and eastern Pacific (EP) ENSO types, Johnson [48] identified nine
different “flavours” of ENSO; a distinct climate outcome is associated with each one. Paek et al. [49]
also highlight that no two ENSO events are the same, and provide a useful analysis of the differences of
the strong 1997–1998 and 2015–2016 El Niño events. It is perhaps no surprise that some ENSO-health
studies do not find consistent temporal or spatial ENSO-health associations, as the “strength” of
climate forcing may vary from ENSO event to event, both temporally and geographically. Although
there have been no systematic studies of the way in which different flavours of ENSO might manifest
in variable regional or local ENSO-health associations, the contrasting rainfall fields for El Niño
and El Niño-Modoki events hint at potential temporal and spatial inconsistencies of ENSO-health
associations (Figure 9). For example, in El Niño-Modoki events not only is the degree of departure of
rainfall from the long-term mean weak, but the spatial pattern of both positive and negative rainfall
anomalies is fragmented and somewhat different, and for some regions opposite (e.g., equatorial South
America, equatorial eastern Pacific) when compared to El Niño events (Figure 9). The implications for
ENSO-health studies of such contrasting climate responses for different ENSO types is clear, especially
if an ENSO index that does not discriminate between ENSO types is applied bluntly to the analysis of
disease incidence time series.

EL NIÑO CLIMATE IMPACTS
a) December – February

b) June – August
Warm

Cool

Dry

Wet

Warm and dry

Cool and dry

Warm and wet

Cool and wet

Figure 7. Canonical climate impact patterns of El Niño for (a) December–February and (b) June–August.
Sourced and redrawn from the Climate Predicition Centre http://www.cpc.ncep.noaa.gov/products/
analysis_monitoring/ensostuff/ensofaq.shtml#GLOBALimpacts.

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensofaq.shtml#GLOBALimpacts
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensofaq.shtml#GLOBALimpacts
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LA NIÑA CLIMATE IMPACTS
a) December – February
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Figure 8. Canonical climate impact patterns of La Niña for (a) December–February and (b) June–August.
Sourced and redrawn from the Climate Predicition Centre http://www.cpc.ncep.noaa.gov/products/
analysis_monitoring/ensostuff/ensofaq.shtml#GLOBALimpacts.
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d1/iod/enmodoki_home_s.html.en.

6. ENSO and Health Impacts

The World Health Organisation posited a number of potential ENSO, or more specifically,
El Niño-related health impacts (Figure 10), based either on known health outcomes arising from past
ENSO events or conceptual relationships of climate and health, given that ENSO produces discernible
variations in health sensitive climate variables. Kovats et al. [7] provided a useful overview of the
impact of El Niño on infectious diseases and recommendations related to the assessment and reporting
of interactions between ENSO and health. Amongst the potentially ENSO-sensitive infectious diseases
reviewed were malaria, dengue, and diarrhoea. These make significant contributions to the burden of
climate-sensitive disease. For example in the case of malaria and dengue, the per capita mortality rate
is almost 300 times greater in developing nations than in developed regions [50], with many of the
affected nations lying in regions impacted by ENSO events. Accordingly, there is a growing interest
in establishing the veracity of ENSO-malaria and -dengue associations based on well-known climate
vector relationships such as the broad dependence of the distribution of insect vectors on temperature,
humidity and rainfall patterns, and at the insect scale, the modulating effect that climate variables
have on metabolic activity, egg production, and feeding behaviour [51].

Diarrhoea is also an important climate-sensitive disease, because many cases can be attributed to
the lack of access to clean drinking water as a result of either drought, flooding, or temperature related
bacterial infections in food and water. Diarrhoea is the second leading cause of death in children under
five years old; globally, there are in excess of one billion cases of childhood diarrhoeal disease every
year resulting in a high death total amongst children under five years old [52].

Because of the gravity of these diseases, and the potential changes in their incidence during ENSO
events, we update Kovats et al. [7] with studies published since 2003. In conducting the review of the
ENSO malaria/dengue/diarrhoea literature, terms such as ENSO, El Niño, La Niña, and Southern
Oscillation Index (SOI), linked with the three diseases, were used to search the Web of Science for the
period 2003–2018. Note the search terms were limited to the title. Further, the search term “climate”
was not used because this generated a large number of climate change-related studies with little or no
reference to ENSO-driven variations in the three diseases. Further, the literature reported on here was

http://www.jamstec.go.jp/frcgc/research/d1/iod/enmodoki_home_s.html.en
http://www.jamstec.go.jp/frcgc/research/d1/iod/enmodoki_home_s.html.en
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restricted, where possible, to that which considered ENSO health links beyond a single El Niño or La
Niña event.

Direct injuries and fatalities Malnutrition

Food insecurity

Decreased water
quality

Lack of water supply
and sanitation

Air pollution

Increased vectors

Increased rodent and
animal hosts

Contaminated water

Damaged
infrastructure

Population displacement

INCREASED
RAINS

INCREASED
DRY CONDITIONS

Floods Drought

Storms,
Cyclones

Wildfires

Vector-borne diseases Communicable diseases

Water-borne diseases Water-borne diseases

Disruption of health services Reduced acces to health care

Respiratory diseases
Heat Stress

Mental health and psychological effects

Figure 10. Range of El Niño related health impacts. Sourced and redrawn from the World Health
Organisation. http://www.who.int/hac/crises/elnino/who_el_nino_and_health_global_report_
21jan2016.pdf.

6.1. Malaria

Because a disproportionately high global malaria burden occurs in the African region (90 percent
of global malaria cases and 91 percent of malaria deaths in 2016), and because ENSO influences
temperature and precipitation patterns in the continent, there has been interest in the influence of
ENSO-related climatic variability on malaria incidence, particularly assessing malaria predictability.
For northwest Tanzania, where there are two malaria seasons related to early and late rains,
Jones et al. [53] attribute the positive associations identified between rainfall, temperature, and malaria
to the influence of El Niño, noting that the 1998 epidemic was associated with El Niño-related heavy
rains. For Ethiopia, Bouma et al. [54] demonstrated how El Niño-related above-normal SSTs in the
Pacific, via an indirect link to anomalously high SSTs in the western Indian Ocean off the coast of
Ethiopia, and thus above-normal winter and spring land surface temperatures in the highlands,
are associated with an increased risk of malaria in the subsequent main malaria season. For five
countries in Southern Africa, Mabaso et al. [55] used the SOI to assess ENSO malaria associations for
the period 1988 to 1999, finding that below (above) normal incidence of malaria corresponded with a
negative (positive) SOI; El Niño (La Niña) suppresses (enhances) the chances of malaria incidence via
anomalously dry (wet) conditions. Further, there was evidence of possible Indian Ocean-based climate
influences on malaria incidence as well as non-climatic factors related to malaria control efforts and
response capacity, producing possible non-stationary ENSO malaria associations.

Although Dev [56] reported no association between annualised malaria incidence and annual
climate statistics in northeast India, this would be expected given that annualised climate and malaria
data will mask seasonally important malaria variations and thus associations with climate variables.
Apart from the title, there was no mention of El Niño in the body of the paper, which is symptomatic
of the opportunism displayed in some analyses that purport to report on ENSO malaria associations.
Zubair et al. [57] reported an association between ENSO phases and malaria for Sri Lanka for the

http://www.who.int/hac/crises/el nino/who_el_nino_and_health_global_report_21jan2016.pdf
http://www.who.int/hac/crises/el nino/who_el_nino_and_health_global_report_21jan2016.pdf
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period 1878–2000 that changed over time. Malaria epidemics were associated with El Niño phases
over the period of 1880 to 1927. From 1930 to 1980, epidemics had a stronger association with La Niña
phases than with El Niño. The authors cite an epochal change in the El Niño-rainfall relationship in Sri
Lanka around the 1930’s as the likely cause of the shift in the malaria relationship, noting a swing back
to the type of association found for the period 1880 to1927, post 1980. This study, like that of Mabaso
et al. [55] provides some evidence for the non-stationarity of ENSO phase malaria associations.

For north-eastern Venezuela, Delgado-Petrocelli et al. [58] applied geospatial techniques to the
investigation of the influence of ENSO warm, cold, and neutral phases on malaria incidence for
the period 1990–2000. They found significant differences in malaria incidence between the three
ENSO phases with incidence notably higher during La Niña (cold) phases of moderate intensity.
While interesting, this study did not provide an insight into the climate link that ties the ENSO phases
to variations in malaria incidence; only a passing reference is made to the possible impacts of El Niño
on the ecological system, the state of which is not expanded upon. Using data for French Guiana,
Hanf et al. [59] conducted a time series analysis of the association between monthly Plasmodium (P.)
falciparum case numbers and ENSO as measured by the Southern Oscillation Index (SOI) for the
period 1996 to 2009. While a three-month lagged inverse association was found between the SOI and
P. falciparum cases (a positive association with El Niño), the SOI only explained four percent of the
variation in malaria, with the remaining 96 percent most likely due to non-climatic causes, including
population immunity and socio-environmental factors that influence the breeding and ecology of
mosquito vectors [59]. As for the climate variables, little insight was provided by the authors, apart
from suggesting that ENSO has an impact on the climate that affects the population dynamics of the
malaria vectors (mainly Anopheles darlingi).

6.2. Dengue

Fuller et al. [60] utilised data on SST anomalies related to ENSO and two vegetation indices to
investigate ENSO-related drivers of dengue fever (DF) and dengue haemorrhagic fever (DHF) in
Costa Rica from 2003 to 2007. They found that La Niña (ENSO cool phase) conditions were more
likely to lead to greater numbers of DF/DHF cases because of La Niña’s association with more humid
conditions that favour the survival of greater numbers of Ades. Aegypti. Using five ENSO indices and
two vegetation indices, Fuller et al. [60] were able to explain 64 percent of the variance in DF/DHF
cases and reproduce the major epidemic of 2005. They suggest that such associations provide some
hope for advanced forecasting of dengue outbreaks.

In a three-country study of the potential relationship between climate and dengue incidence,
Johansson et al. [61] reported no systematic association between multi-annual dengue outbreaks
and ENSO. In Puerto Rico, on multiyear time scales, temperature, and dengue incidence were only
ephemerally associated with ENSO. For Thailand, they found that although ENSO was associated
with temperature and precipitation, the association of dengue with precipitation was nonstationary
and likely to be spurious. In Mexico, no association between ENSO and dengue was observed.
Such findings caused Johannsson et al. [61] to conclude that the evidence for a consistent and
reproducible ENSO dengue link was weak. They attribute this to the possible obfuscation of ENSO
influences by local small scale climate variations, inadequate data, randomly coincident outbreaks,
and other, more substantive non-climatic factors that regulate transmission dynamics.

Using wavelet analysis and the Generalized Additive Model (GAM) approach, Xiao et al. [62]
investigated the periodicity of dengue and the dose-response relationship between an ENSO time
series, weather variables and dengue incidence in Guangdong Province, China for the period 1988 to
2015. They found an inverted U-shape association for an ocean-based ENSO index-dengue relationship
(ENSO index threshold of 0.6 ◦C), plus evidence for ENSO in the previous 12 months, possibly
driving the 1995, 2002, 2006, and 2010 dengue epidemics, and a relatively high dengue incidence
during 1997–2001 following the very strong 1997–1998 El Niño event. Although associations between
temperature, humidity, and rainfall and dengue were explained in the analysis, an attempt to physically
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link ENSO-related SST anomalies to local weather variables, and ultimately to dengue incidence was
not attempted, making the posited 12-month ENSO dengue lag association difficult to justify on
physical climate grounds, notwithstanding the role of possible non-climatic factors.

Similar to Xiao et al. [62], Liyanage et al. [63] also reported ENSO dengue associations. They used
the Oceanic Niño Index (ONI) to explore ENSO’s impact on dengue incidence over 10 Medical Officer
of Health divisions in the Kalutara district of Sri Lanka for the period 2009–2013. The relative risk of
dengue increased significantly with rainfall and ONI values in excess of 0.5 ◦C six months in advance of
increases in dengue incidence. This association was likely due to the known lag relationships between
ENSO extremes and rainfall, with anomalous high rainfall a characteristic of the inter-monsoon
period that follows El Niño-related below normal rainfall. The sensitivity of dengue to ENSO was
also apparent in Bangladesh, where Banu et al. [64] suggested the existence of a weak non-linear
association between Niño 3.4 temperatures and dengue incidence such that the higher the Niño 3.4
index, the higher dengue incidence at a 4-month lag. The Niño 3.4 to dengue link was explained via
the way in which winter El Niño events lead to a general warming of the tropical atmosphere that
persists into the next summer. This leads to atmospheric circulation pattern changes over the Indian
Ocean region, and greater moisture transport and monsoon rainfall over Bangladesh that extends
the breeding season for mosquitoes and their spatial distribution. Banu et al. [64] also noted possible
interactive effects between ENSO and the IOD that might influence dengue incidence. In a study on
climate and dengue associations in Singapore for the period 2001–2008, Earnest et al. [65] found, using
a Poisson model, negative associations between the SOI and dengue, implying that El Niño events
engender high dengue incidence. However it is worth noting that weekly SOI values were used in this
analysis. From a climatological perspective, this is probably not best practice because SOI values at
this time scale are very “noisy” and are more likely to represent weather phenomena other than ENSO.

For Queensland Australia, Hu et al. [66] applied a seasonal auto-regressive integrated moving
average model for the period 1993 to 2005 to the analysis of the numbers of notified dengue fever cases
and the numbers of postcode areas with dengue fever cases in relation to ENSO as described by the
SOI. They found that a decrease in the average SOI (warm phase conditions) during the preceding
3–12 months was significantly associated with an increase in the monthly numbers of postcode areas
with dengue fever cases. The SOI dengue links were explained via El Niño’s tendency to bring much
warmer conditions to Queensland that may enhance dengue fever transmission. This of course assumes
that El Niño, which also brings drier, verging on drought, conditions to Queensland, does not affect
the number of vectors through the lack of water for suitable breeding sites. That said, the tendency
to store water during dry conditions may well provide suitable breeding sites for the dengue vector.
In contrast to Johansson et al. [61], Tipayamongkholguln et al. [67], analysing dengue data for Thailand
using Poisson regression, found that up to 22% (in eight northern inland mountainous provinces)
and 15% (in five southern tropical coastal provinces) of the variation in the monthly incidence of
dengue cases were attributable to global ENSO cycles as described by the ENSO multivariate and
sea level pressure indices, with the tendency for dengue incidence to increase during El Niño phases.
However, the authors noted some geographical heterogeneity in ENSO dengue associations, with not
all individual provinces revealing statistically significant associations. In an attempt to explain the
ENSO link to dengue epidemics, Tipayamongkholguln et al. [67] pointed to ENSO’s warming effect on
local temperature such that replication of the dengue virus and the biting behaviour of the mosquito
vector Aedes aegypti is enhanced. In doing so, and similar to other epidemiological studies of ENSO
dengue associations, little attempt is made to discuss the climate linking mechanisms that underpin
the statistical relationships described.

Ferreira [68] applied spatial analysis techniques to the exploration of ENSO dengue associations
for the countries of the Americas over the period 1995–2004. His results indicated that among the
five years with a high number of dengue cases (1997, 1998, 2002, 2001, and 2003), four are associated
with El Niño events (see Table 3 above). Furthermore, there appeared to be a spatial trend in the
strength of the association between the SOI and dengue occurrence such that warm (cool) or El Niño
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(La Niña) phases were associated with high (low) incidence in Mexico, Central America, the northern
Caribbean islands, and the extreme north-northwest of South America, while other more poleward
regions showed little dengue response to either El Niño or La Niña.

6.3. Diarrhoea

Notwithstanding the complex pathways linking climate anomalies and diarrhoea [69] and the
challenges this poses for quantifying the effects of weather and climate on water-associated diseases in
general [70–72], diarrhoeal illness is generally sensitive to climate anomalies [73–78] with unusually
warm conditions conducive to enhanced pathogen replication and survival rates, while rainfall
surpluses may transport faecal matter into water courses with micro-organisms becoming concentrated
in water bodies during periods of rainfall deficit. While Demisse and Mengisitie [79] noted that El Niño
has an impact on diarrhoea incidence for a number of major geographic regions, many of the cited
papers address temperature/rainfall-diarrhoea association as opposed to climate driven variations in
diarrhoea moderated by ENSO.

In the Pacific Islands, where diarrhoea is the most significant water-borne disease and ENSO has
marked impacts on climate, there is a paucity of evidence for explicit El Niño-diarrhoea associations,
although this is implied in a number of studies [80–82]. For West Africa, de Magny et al. [83] suggested
associations of diarrhoea with El Niño where ENSO, via the so-called Indian Oscillation and associated
variations in large scale rainfall and temperature fields, may well influence cholera dynamics and
thus diarrhoea. In a consideration of the spatial dynamics of cholera across the African continent,
Moore et al. [84] demonstrated a clear shift in the annual geographic distribution of cholera in El Niño
years, with the burden shifting away from Madagascar and parts of southern, Central, and West Africa,
to continental East Africa. They found that during El Niño years for East Africa, there were around
50,000 additional cases of cholera in areas with increased rainfall, along with marked increases in
some regions with decreased rainfall. Such findings suggest a complex relationship between ENSO,
rainfall and cholera, and by implication with diarrhoea incidence. For the Great Lakes Region of Africa,
Nkoko et al. [85] applied a multiscale, geographic information system-based approach to assess the
association between cholera outbreaks and ENSO. They found that cholera greatly increased during El
Niño events, but decreased or remained stable between events because of El Niño-moderated controls
on rainfall. For Uganda, Alajo et al. [86] found similar El Niño-moderated impacts on cholera via
positive rainfall anomalies.

Building on the earlier work of Pascual et al., [87], who demonstrated associations between
cholera and ENSO-related regional temperature anomalies in Bangladesh, Hashizume et al. [88]
further investigated climate variability and cholera associations. Based on an analysis of cholera
hospitalisations for Dhaka and Matlab in Bangladesh, over the period 1983–2008, they found that
the strength of cholera-Indian Ocean Dipole and -ENSO associations changed across time scales,
with Dhaka demonstrating little association with ENSO, while in Matlab, the ENSO effect was quite
dominant. Based on this finding, Hashizume et al. [88] suggested the existence of non-stationary and
possibly non-linear associations between cholera hospitalizations and large-scale modes of climatic
variability such as ENSO. This resonates with the conclusions drawn in an earlier study by Rodo et
al. [89] for Bangladesh, which found a strong and consistent signature of ENSO in cholera incidence
for the period 1980–2001, while for 1893–1920 and 1920–1940, the ENSO-cholera association was
weaker and uncorrelated, respectively. They suggested that the switch to more visible ENSO-cholera
associations for the period 1980–2001 was related to a change in the background climate state of the
Pacific Ocean in the mid-1970s, that resulted in stronger El Niño events and associated health-sensitive
climate anomalies. In a purely statistical analysis of the association between ENSO and monthly
cholera incidence for an 18-year period, based on power spectral analysis, Ohtomo et al. [90] found that
dominant periodic modes of cholera incidence for Dhaka, Bangladesh at 11·0, 4·8, 3·5, 1·6, and 1·0 years
coincided with similar spectral modes of variability for Pacific Ocean SSTs. Based on this finding,
they concluded, without an attempt to put forward a bridging mechanism tying ENSO related climate
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anomalies to cholera, that cholera incidence in Bangladesh may be influenced by the occurrence of
El Niño. Supposedly stimulated by previous work on ENSO-cholera associations for Bangladesh,
Martinez et al. [91] developed an El Niño-based forecasting scheme of cholera for Dhaka in an attempt
to predict cholera incidence during the 2015–2016 El Niño event.

Peru has received considerable attention in relation to El Niño-diarrhoea associations and cholera,
most likely due to the drastic changes in hydroclimate conditions experienced there during El Niño
events. For example, Checkley et al. [92] reported that El Niño-related increases in ambient temperature
were associated with higher rates of daily admissions for diarrhoeal disease, most likely related to
contaminated food and water. Similarly, Bennett et al. [93] found El Niño-diarrhoea associations based
on an analysis of daily surveillance data for 367 children in Lima, Peru, for the period 1995 through
1998. Spring diarrhoeal incidence increased by 55% during El Niño compared with before El Niño,
pointing to anomalously high temperatures and increased levels of temperature-sensitive pathogens in
food and water as the explanation for El Niño-temperature-diarrhoea associations. These findings echo
those of Lama et al. [94] who reported associations between El Niño-related elevated air temperatures,
cholera, and acute diarrhoea in adults in Lima, Peru for the period 1991–1998. Although focusing
strictly on cholera, Ramirez and Grady [95] found increased disease rates in Piura, Peru during El
Niño events, but that the association was non-stationary, mediated by local hydrology; the association
was evident in the latter part of the 1990s but with little evidence of El Niño-cholera associations in
the early 1990s. Lastly, Raszl et al. [96] discussed how Vibrio parahaemolyticus outbreaks related to
unusually warm coastal waters along the Pacific coast of South America during El Niño events was
associated with increases in diarrhea and other similar gastrointestinal-related symptoms as a result of
human consumption of infected shellfish.

7. ENSO and Health Forecasting

Due to an improvement in the climate science community’s understanding of the large scale
mechanisms that influence climate, plus rapid advances in computing technology, seasonal to
inter-annual to decadal climate forecasts have become a real prospect [2,97]. This, coupled with
an increasing knowledge of the nature of climate-health associations, has spawned a number of
attempts to construct disease early warning systems based on seasonal predictions of health-sensitive
climate fields, so that potential health threats may be anticipated several months in advance.

A key source of the potential seasonal predictability of health-sensitive climate variables is ENSO.
Given this, the hope is that with time, accompanied by an improvement in the understanding of
ENSO health associations, effective seasonal forecasting of climate (ENSO)-sensitive health outcomes
will become operationally possible [98]. Generally, two broad approaches have been adopted in
constructing climate-sensitive disease early warning systems based on known climate and health
links, namely numerical and statistical. Numerical schemes take the output from seasonal climate
forecast models, usually in the form of a rainfall and/or temperature time series, and ingest this into
numerical process-based disease models for diseases such as malaria and dengue (e.g., Liverpool
Malaria Model, [99]). Typically the output from disease models includes disease parameters such
as disease transmission, size of mosquito population, and disease incidence [100]. Statistical or
empirically based forecasting schemes generally draw on a variety of statistical methods and use
empirical observations of climate and disease incidence to construct transfer functions that statistically
link climate disease associations. Although a simple distinction has been drawn here, between
numerical and statistical/empirical models this does not mean to imply that numerical approaches do
not draw on statistical methods and vice versa. In most cases, the output from both numerical and
statistical models are probabilistic statements about the likelihood of a given climate sensitive disease
exceeding a critical threshold and often statistical schemes, when run in forecast mode, will use the
numerical output from climate models to force the climate-disease transfer functions so as to gain
estimates of disease incidence. Furthermore, many dynamic disease models use statistical functions
to model the relationship between disease sensitive climate variables such as temperature, and for
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example, in the case of mosquito borne diseases, the rate of development of the parasite within the
mosquito (the sporogonic cycle) and the mosquito biting/feeding rate (the gonotrophic cycle).

Thomson et al. [101] describe one of the first efforts aimed at seasonal forecasting of
malaria in Africa based on ensemble predictions of rainfall and temperature from global coupled
ocean-atmosphere climate models, and firmly established statistical climate-malaria links. The models
achieved probabilistic predictions of anomalously high and low malaria incidence based on rainfall
thresholds for Botswana up to four months in advance. Building on this work, Connor et al. [102]
presented a framework for the integration of climate model based seasonal climate forecasts into
early warning systems for climate sensitive diseases such as malaria and dengue. This work and that
of Thomson [101] has been influential in guiding further endeavours related to the development of
operational seasonal forecasts of malaria in southern Africa using outputs from numerical climate
models run by forecasting centres such as the European Centre for Medium Range Weather Forecasting
(ECMWF) [103,104]. For India, Lauderdale et al. [105] explored the feasibility of malaria forecasting by
using a ECMWF seasonal forecast model to drive a numerical process-based dynamic malaria disease
model. Using hindcasts from the ECMWF model, simulated forecasts of malaria were produced.
These demonstrated probabilistic skill in predicting the spatial distribution of Plasmodium falciparum
incidence particularly in regions where high seasonal and inter-annual variability of disease incidence
is a characteristic. As well as showing some ability to predict the spatial distribution of malaria the
seasonal forecast model was able to distinguish between years of “high”, “above average” and “low”
malaria incidence in the peak malaria transmission seasons with a three month lead time [105].

A number of statistical/empirical seasonal health forecasting models have been developed.
For example, Lowe et al. [106] incorporated precipitation, minimum temperature, and Niño 3.4
index forecasts in a Bayesian hierarchical mixed model to make monthly predictions of dengue
incidence in Ecuador for 2016. The ENSO element of this forecast system was in the form of
Niño 3.4 SSTs derived from a structural time-series SST prediction model. It was found that the
dengue forecast model was able to correctly predict an early peak in dengue incidence in March,
2016, with a 90% chance of exceeding the mean dengue incidence for the previous five years.
Interestingly, when Lowe et al. [106] controlled for confounding due to chikungunya cases incorrectly
recorded as dengue, this improved the prediction of the magnitude of dengue incidence. A similar
approach was adopted by Lowe et al. [107] in the development of dengue forecasts for southeast
Brazil. Poveda et al. [108] describe how satellite imagery of vegetation activity along with ENSO
sensitive climate variables can be used as environmental indicators for malaria occurrence in Columbia.
Armed with this knowledge, they demonstrate how statistical models and geographical information
systems are applied by the Colombian health authorities to develop early warning systems for malaria.
For the Solomon Islands in the western Pacific, where ENSO has clear impacts on rainfall as a disease
sensitive climate variable, Smith et al. [109] applied stepwise regression to analyse climate variables and
climate-associated malaria transmission at different lag intervals in order to identify rainfall thresholds
associated with malaria categorised into three incidence categories. Study results not only revealed
clear rainfall thresholds, but significant lag associations between rainfall and increases in malaria
incidence such that drier October–December periods are followed by higher malaria transmission
periods in January–June. Based on these statistical relationships an experimental early warning system
has been proposed for the Guadalcanal region of the Solomon Islands [109]. Chuang et al. [110] used
cross-wavelet coherence to evaluate the regional El Nino Southern Oscillation (ENSO) and Indian
Ocean Dipole (IOD) effects on dengue incidence and local climate variables for Taiwan. Their work
revealed the importance of non-linear and lag effects of minimum temperature and precipitation on
dengue. These associations were applied in the successful prediction of dengue transmission between
2013 and 2015 [101].

While the potential for ENSO-based health forecasting is clear, despite improvements in
observations and models, ENSO predictability and long-lead seasonal forecast skill, generally taken to
mean the extent or lead-time for which boreal winter SST or any other ENSO index can be predicted
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with measurable skill, remains an issue [111]. A case in point is the 2014 ENSO forecast. Rather than a
strong 2014 El Niño event occurring, as forecast, only weak warming in the key El Niño oceanic regions
(Figure 5) was observed. This forecast “bust” [112,113] caused the ENSO prediction community to
critically examine the efficacy of many of the significant ocean and atmosphere system components
drawn on as a source of ENSO predictability [114–116]. A particular challenge for ENSO based
health forecasting is the so-called “spring predictability barrier” [117–119]. This is basically a hiatus
in ENSO forecasting accuracy for Northern Hemisphere spring when both dynamic and statistical
ENSO prediction models display a sharp fall in their ability to predict sea surface temperature fields;
following spring, the model ability to predict ENSO improves markedly. It is likely that the spring
predictability problem exists because during this season El Niño/La Niña events are often in the stage
of decay, following a winter peak, sliding into a neutral phase, which may persist or eventuate in a El
Niño/La Niña later in the year. Consequently, the ENSO signal to noise ratio is low. Further during
spring, the ocean does not exert a strong influence on the atmosphere because climatological (average)
SST gradients in the tropical Pacific Ocean are much reduced and thus strong ocean-atmosphere
coupling is compromised [117].

Given the expectations of the broad ENSO forecast user community related to ENSO forecasts
as a panacea for climate risk management problems, much effort has been invested in improving
predictability [120–122] with seasonal health forecasting scheme developers conscious that validation of
predictions is a requisite part of the forecasting development process [104,123]. Further to the issues of
predictability, other constraints related to seasonal health forecasting may well bear implications for the
operationalisation of ENSO (climate)-sensitive disease early warning systems. Increasingly, seasonal
health forecasts are couched in probabilistic terms that have been found to pose communication
and uptake problems, making it imperative for forecast developers to think carefully how forecasts
are provided to end users [124]. In the context of climate services based on climate forecasts,
Ballester et al. [125] provide a sobering review of some of the challenges related to the construction of
seasonal health forecasts. These include the capital and human resources and the associated governance
arrangements required for development and implementation; the need for forecasting tools to master
the complexity of the interactions between climate, disease transmission, socioeconomic disparities,
and vulnerability; the imperative for integrated climate and health data sets; and acknowledgement
that early warning systems and the climate forecasts on which they are based may only be effective
when certain windows of opportunity present themselves, such as during ENSO events when there is
a clear climate signature in a range of health responses.

8. Climate Change and ENSO

The recent 2015–2016 El Niño event is a timely reminder of the mammoth impacts that ENSO
events can have on ecosystems and society. For instance, extensive forest fires in Indonesia and an
associated haze hazard across the wider region, devastating floods in Peru, severe coral bleaching
in a number of places across the Pacific, and widespread health issues throughout the Pacific and
elsewhere over the course of the 2015–2016 El Niño are similar to the type of impacts that occurred
during previous El Niño episodes, such as in 1982–1983 and 1997–1998 [126,127]. Although attention is
often directed to El Niño impacts, intense La Niña events can be equally impactful as is evidenced for
the 1998–1999 La Niña event that spawned catastrophic flooding in Bangladesh, Venezuela, and China,
with a large number of lives lost [128,129]. Understandably consternation associated with such impacts,
twinned with the worrisome spectre of anthropogenic climate change has precipitated an immense
interest in establishing how ENSO might respond to climate change and the implication this holds for
future population health. Two broad approaches have been applied to establish ENSO responses to a
warmer world: the analysis of paleoclimate records and the conduct of numerical climate modelling
experiments [13,130].

That inter-annual climate variability similar to that associated with ENSO has been a characteristic
of the Pacific Basin for millennia is borne out by a number of paleoclimate studies. These revealed not
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only that strong east to west Pacific contrasts in ocean temperatures, similar to the current climatological
difference of 2 ◦C, existed in the past [131], but that ENSO frequency has not changed significantly
since the Pliocene (5.333 to 2.58 million years before present when global temperatures were 2–3 ◦C
higher than present [132]. Similarly there is evidence for ENSO events and associated inter-annual
climate variability during the last glacial maximum [133], and the Medieval Climate Anomaly and the
Little Ice Age [134]. Paleoclimate studies have also revealed that, compared to previous centuries and
millennia, twentieth-century ENSO activity has been considerably stronger [135–137], which has been
interpreted as possible evidence for a link between global warming and ENSO response [138]. In brief,
the upshot of most paleoclimate studies is that ENSO and marked inter-annual climate variability
originating in the Pacific Basin is a characteristic of the global climate system, whether it be in a cooler
or warmer state than present.

While it is likely that ENSO will be a feature of a warmer world [13], the question remains as to
whether the intensity and frequency of El Niño/La Niña events might change with anthropogenic
climate change. About the only way to answer this question is by performing climate model
experiments using a range of greenhouse gas concentration scenarios, currently codified as
Representative Concentration Pathways (RCP). Cai et al. [130] and Wang et al. [13] provided useful
summaries of the current thinking on how ENSO climatology might respond to greenhouse warming
based on a review of results from climate models in the Coupled Model Inter-comparison Project
phases 3 (CMIP3) and 5 (CMIP5) [139] and the work of others. They concluded that there is some
modelling-based evidence for increases in the frequency of ENSO events with global warming.
However, in relation to whether future El Niño/La Niña events will become stronger or weaker,
Wang et al. [13] were far more cautionary in their conclusions than Cai et al. [130], with the former
concluding that evidence for a stronger or weaker El Niño/La Niña under global warming is unclear
in contrast to the latter who confidently stated there will be an increased frequency of extreme El Niño
and La Niña events. That an unequivocal greenhouse warming response of ENSO in climate models
is not apparent stems from a range of factors. These include complex competing ocean-atmosphere
feedback processes that have a negating effect on some of the key elements of the ENSO system [13,139],
plus general uncertainties related to the ability of climate models to simulate the current ENSO state,
the sensitivity of ENSO onset and cessation to global warming, difficulties with parameterizing climate
processes that occur at scales less than that resolved in models, and how climate change-related distant
influences from the Atlantic and Indian Oceans will affect ENSO [130].

Clearly, the equivocal findings regarding the possible impacts of climate change on ENSO hold
important implications for future ENSO-health associations. Given the state of the science, perhaps
all that can ventured at this point is that ENSO will be influenced in some way by climate change,
with associated implications for health. The direction of such an alteration will depend on a number
of climate and non-climate related drivers. The climate drivers include ENSO-related variability in
rainfall, temperature, storm activity and ocean currents, layered upon changes to the mean climate
state attributable to climate change. Moreover, a factor that makes speculation about the health risks of
an altered ENSO phenomenon challenging is the significant inter-event variability of ENSO climate
outcomes—is there a canonical El Niño/La Niña—and the decadal scale non-stationary relationship
between ENSO and climate and thus health risks. While these generalities might seem inconsequential
in terms of furthering our understanding of climate change, ENSO and health relationships, they serve
as a reminder that caution is required when telescoping current ENSO health associations into the
future in the absence of a firm understanding of how ENSO related climate variability may respond to
further greenhouse warming. Lastly, and notwithstanding issues associated with a non-stationary and
highly variable ENSO climate system and associated implications for health impacts, if the probability
of future ENSO events can be constrained as a result of the convergence of climate modelling results,
then estimating future ENSO-related health risks will largely be conditioned on non-climate factors
such as the efficacy of early warning systems embedded in wider disaster risk reduction strategies.
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9. Conclusions

The El Niño Southern Oscillation (ENSO) is an important of mode of climatic variability that
exerts a discernible impact on ecosystems and society. For this reason, ENSO has attracted much
interest in the climate and health science community, with many analysts investigating ENSO health
links through considering the degree of relationship between an ENSO teleconnection index and a
time series of incidence data for a specific climate-sensitive disease. While a plethora of teleconnection
indices exist, from single variable atmospheric and oceanic to blended multivariate indices, with many
of these applied in ENSO health studies, there remains no common consensus as to which ENSO
index best describes ENSO behaviour. Accordingly, we encourage caution in the application of
ENSO indices in climate and health studies via a consideration of the appropriateness of a range of
teleconnection indices in terms of the geographical location, the climate variable, the disease of interest
and, if comparative analyses are of interest, the index-producing agency.

In this review, we emphasised the complexity of ENSO as a physical phenomenon in that it
possesses various “flavours”, and its long term relationship with climate impacts is non-stationary.
Accordingly, perhaps it is no surprise that ENSO health associations are multifarious. The majority
of studies considered here did not report an unequivocal association between ENSO and a given
health outcome. This review revealed an implicit but unfounded assumption that because a disease
is broadly climate sensitive, and ENSO has an impact on climate, then an ENSO disease association
should follow. In some ways this constitutes a leap of faith between a large scale mode of climatic
variability, and a disease outcome for a specific location or region. That an ENSO signal is not clearly
evident in the incidence of some climate-sensitive diseases may be attributed to the varying strength
of ENSO-climate links that may be geographically, seasonally as well as climate variable dependent.

A worrying feature of many of the ENSO health studies is that the relationship between ENSO
and disease is often viewed through a purely statistical lens. Few plausible explanations are offered
as to why ENSO, as represented by a time series of a teleconnection index, might be a driver of
disease incidence. This signposts the need to move beyond a purely statistical/mechanical treatment
of climatic-health variability associations to one where diagnostic analyses are undertaken to identify
the underlying climate mechanisms that form the cascade of processes that link ocean-atmosphere
interactions with health. While this might be viewed as unnecessary in some quarters of the climate
and health community, in terms of scientific credibility and a holistic understanding of ENSO health
links, we suggest that fully integrated all-encompassing analyses are preferable to blunt statistically
motivated analyses.

Although not expressed as such, partial and situation dependent evidence of ENSO-health
associations has engendered what might be referred to as a post-normal turn in the climate and health
science community in that there is a drive to apply the science of ENSO and health linkages to the
betterment of society and the achievement of sustainable development goals. This is most evident in
the energy applied to the development of climate informed seasonal health forecasts for a range of
diseases. Despite the enthusiasm for these, a number of consequential challenges exist in relation to
seasonal health forecasts, including the fundament issue of ENSO predictability; only certain windows
of opportunity may exist for forecasting; effective ways of communicating ENSO-health warnings to a
range of stakeholders remains elusive; and long-term ENSO-health links lack stability. Fully integrated
approaches to seasonal forecasting are needed.

The looming spectre of climate change has precipitated much speculation about the associated
health risks, with a temptation to project the likely impacts of future ENSO events on health.
Conceptually, and notwithstanding the importance of non-climate factors, projecting how future
ENSO events could impact health will depend on knowing about future ENSO strength and frequency
as well as the future relationship between ENSO and a range of health-sensitive climate variables.
While paleoclimatic evidence and climate modelling experiments indicate that ENSO events will
remain an important feature of global climate, with ENSO frequency likely to increase, it is difficult
to say how population health might respond to a changing ENSO climatology. This is because there
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are divergent opinions in the climate change modelling literature about possible changes in ENSO
strength, which plays a critical role in determining societal impacts, including health, as demonstrated
for previous strong ENSO events. Of course, the worst case future ENSO-health scenario is one in
which there is an increase in the frequency and strength of both El Niño and La Niña events as a
consequence of climate change, with no additional adaptation strategies.

So what of the future for ENSO-health research? An imperative to unravel the complexities of
ENSO-health relationships is to build integrated data bases comprising not only climate and health
data but “other” environmental data, as well as information on population characteristics including
dynamic measures of vulnerability. Achieving this imperative appears a long way off as the research
field is still characterised by disparate data sets of variable quality and length, which work against
meaningful analyses of climate and health associations. Most epidemiological analyses treated ENSO
events as a continuous time series, as represented by a specific teleconnection index. However, there is
strong evidence that health responses to El Niño or La Niña events are more often than not restricted
to periods within or immediately following such events. Given this, quiescent periods in terms of
the climate drivers of disease could be excluded from ENSO health analyses, with analyses based
around ENSO phase composites to identify patterns of anomalous disease incidence tied to unusual
climate conditions.

Furthermore, most ENSO health analyses treated all El Niño or La Niña events as similar despite
strong evidence to the contrary. Accordingly, consideration needs to be given to how health impacts
might play out under different ENSO flavours, perhaps starting with exploring the contrasts between
eastern Pacific and central Pacific El Niño events. Typically, ENSO health analyses use either the
SOI or Niño 3.4 teleconnection indices as indicators of ENSO behaviour. As yet, there has been
no attempt to systematically establish which of a range of possible ENSO indices might be best for
analysing ENSO health associations for a particular location, region or disease. Research along these
lines is needed because some teleconnection indices are likely to be more pertinent for ENSO-health
analyses in the Pacific Basin compared to others that might have wider geographical applicability.
By default, most ENSO-health analyses focus on the impact of El Niño with the health effects of La
Niña, or “exaggerated normal climate conditions” largely ignored. Notwithstanding the asymmetric
relationship between El Niño and La Niña, exploring the health impacts of strong La Niña events could
shed further light on the nature of the burden of climate-sensitive disease. In the same vein, drawing
on classifications of past ENSO events, archival records of disease incidence could be searched for
historical evidence of ENSO-related health events.

Effort is also required to move seasonal health forecasting beyond the proof of concept phase
through establishing when, where, why, and how ENSO impacts occur in both deterministic and
probabilistic frameworks. As the rendering of past ENSO events is improved in climate models,
the ENSO and health research community will need to consider how an alteration of ENSO climatology
in tandem with changes in non-climate factors might play out in terms of ENSO-related health
impacts under climate change. Lastly, future work on ENSO health associations will necessarily
involve the deployment of expertise from a range of disciplines, given that forcing of health outcomes
via ENSO moderated climate events represents just one dimension of what constitutes a “wicked”
research problem.
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