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Abstract: The ongoing world-wide increase of installed photovoltaic (PV) power attracts notice
to weather-induced PV power output variability. Understanding the underlying spatiotemporal
volatility of solar radiation is essential to the successful outlining and stable operation of future
power grids. This paper concisely reviews recent advances in the characterization of irradiance
variability, with an emphasis on small spatial and temporal scales (respectively less than about 10 km
and 1 min), for which comprehensive data sets have recently become available. Special attention is
given to studies dealing with the quantification of variability using such unique data, the analysis
and modeling of spatial smoothing, and the evaluation of temporal averaging.
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1. Introduction

The last decade has seen a noticeable increase in the installed capacity of photovoltaic (PV) power
all over the world, and the corresponding fast-paced growth (e.g., 25% in 2015 [1]) is expected to
continue in the future. From well over 200 GW in the beginning of 2016 [2], the global PV capacity
is estimated to multiply more than tenfold until 2030, with capacity projections ranging between
3 TW and 10 TW [3]. As a result, problems related to the intrinsic variability of PV power production
will considerably increase as well [4,5]. These challenges include the correct estimation of a PV
system’s yield [6], the proper dimensioning of energy storage [7], the balancing of generation and
load [8], as well as the support of power quality (e.g., voltage and frequency stability) [9]. As PV
power variability is mainly determined by weather-induced heterogeneity in fields of downwelling
solar radiation [10], corresponding data-driven analyses and irradiance variability quantifications are
essential to the successful outlining and stable operation of future power grids [11].

In this context, variability in irradiance itself is as interesting as variability in irradiance
increments—that is, transitions from one point in time to another, also known as changes (e.g., [12]),
step changes (e.g., [13]), or ramp rates (e.g., [14]). Irradiance variability mainly impacts a PV system’s
yield and the proper dimensioning of energy storage, while increment variability affects power quality
as well as the maintenance of the generation load balance. The relevant spatiotemporal scales of
variability span many orders of magnitude: from meters and seconds through hundreds of kilometers
and multiple days, depending on the PV capacity and power grid size in question [15]. There is an
ongoing need to deepen the understanding of misrepresentation of temporal variability caused by
temporally coarse-resolution measurements [16,17], as well as how spatial smoothing (resulting from
many PV systems dispersed over a large area) affects variability [18,19]. This is especially true for
small sub-minute and sub-kilometer scales, which have only begun to receive increased scientific
attention in the last couple of years, and for which comprehensive data sets have recently become
available [10,12,15].
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Early ground-based analyses have characterized single-site irradiance on time scales ranging
from hours to months [20,21], while later studies have often been geared towards increasing temporal
resolutions of, e.g., 300 s [22,23], 60 s [24–27], 20 s [12,28,29], 15 s [30–40], 10 s [10,13,41], 5 s [42,43],
1 s [14,44–61], and occasionally even down to 0.1 s [62], 0.04 s [63], 0.01 s [16,17,64,65], and 0.0005 s [66].
However, the spatial coverage of many of these data has remained very confined due to the typically
small number of pyranometers in simultaneous operation. Satellite-derived irradiance data have
additionally been used in order to augment the ground-based measurements and to extend the
analyses to larger spatial scales on the order of tens of kilometers and more [10,29,67]. However, the
best possible temporal resolutions realized by these satellite data range between about 15 min and
1 h. In one way or another, all studies have thus been either bound by a restricted resolution in space,
a restricted resolution in time, or both. To exceed these limitations, some studies have employed
synthetically generated data, either by modelling cloud shapes of varying complexity [52,68–71] and/or
by deriving “virtual networks” from single-sensor data shifted in time [12,13,71]. Yet, these artificial
data do not automatically compare well to reality. To remedy some of the above-mentioned deficiencies,
increasing efforts have recently been devoted to the collection of high-resolution (≤ 1 s) ground-based
irradiance data using networks of multiple (up to 99) synchronized photodiode pyranometers deployed
over extended domains (between about 1 km2 and 80 km2), some of which are readily available
online [72–76].

Altogether, there is a large body of literature touching on various aspects of irradiance variability
and its underlying processes in time and space. Recent topics of interest—especially in the realm of
small scales—have included, for example,

• the analysis of power spectra and non-linear characteristics of PV power and solar irradiance
time series [17,18,44,47,54,55,60,77–82],

• the consideration of sunshine number and sunshine stability number to characterize the level and
stability of the solar radiative regime [30–40],

• the intercomparison of solar irradiance fluctuations and power generation variability of co-located
PV plants [26,55,70,83],

• the characterization of PV power generation variability as a function of installed capacity and
plant size [14,26,48,56],

• the assessment of the effects of partial shadowing on performance reduction from single modules
to entire PV systems [63,84–86],

• the development of methods to infer irradiance and PV power estimates from whole sky photos
taken by purpose-built sky imager systems [59,87–95],

• the proposition of classification schemes and measures to quantify variability [26,50,51,96–101],
• the estimation of spatial smoothing, including correlation structures of irradiance and PV power,

as well as their increments [10,12,13,16,27,41,45,49,51,52,61,68,70,71,102–107], and
• the determination of temporal averaging effects and differences in temporal variability on time

scales between seconds and hours, including statistical downscaling [9,67,100,108–118].

With an emphasis on the three last-mentioned research topics and on sub-minute scales below
about 10 km, this short review article summarizes previous findings from the literature and concisely
recapitulates the essentials of characterizing normalized time-scale-specific changes in irradiance
(Section 2), as well as quantifying variability (Section 3) and averaging effects in space (Section 4)
and time (Section 5). The conclusions finally provide a short outlook onto possible further research
questions in light of the state-of-the-art (Section 6). The paper complements previous textbooks
and literature reviews on solar energy forecasting and resource assessment [119–128], the estimation
of variability in different renewable resources [15,129], the use of machine learning in solar power
applications [130–132], and small-scale structures of irradiance fields [133].

2. Irradiance Normalization and Time-Scale-Specific Changes

It is well-known that variability in global horizontal irradiance (GHI) can generally be influenced
by processes of both astronomical and atmospheric origin [119]. On the one hand, astronomical
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relationships cause seasonal and diurnal variations, which are accurately computable and relatively
small on short sub-minute time scales. On the other hand, atmospheric phenomena can affect irradiance
in complicated ways in a range of time scales (e.g., cloud dynamics can exert influence on the seasonal
cycle as well as sub-minute variability). Some studies aim to focus on the actual magnitude of irradiance
including all aforementioned influences, but occasionally employ a normalization to irradiance under
standard test conditions (STC) GSTC = 1000 Wm−2 [26,50]. In order to study the stochastic nature of
weather-induced variability on short time scales, most authors take measures to remove deterministic
trends from GHI time series G by estimating either the clearness index (a.k.a. transmission coefficient,
e.g., [20])

k =
G

Gextra
(1)

or the clear-sky index

k∗ =
G

Gclear
(2)

The clearness index represents a normalization of G to the extraterrestrial solar radiation Gextra

(i.e., irradiance at a particular location without considering the atmosphere), while the clear-sky index
relates G to a theoretical clear-sky radiation Gclear (i.e., irradiance at a particular location assuming
a cloud-free atmosphere). The extraterrestrial solar radiation Gextra is exclusively determined by
well-known astronomical interrelations, whereas the characteristics of Gclear depend on parameters of
atmospheric conditions and are thus model-specific. Many different clear-sky models have been
proposed to date [134–137], and the use of any of them introduces unique uncertainties to the
clear-sky index time series, which are not included in the source GHI observations. With Gclear thus not
being unambiguously defined, its values represent typical rather than effective clear-sky irradiance.
Nevertheless, many authors have favored the clear-sky index over the clearness index, although
nomenclature varies and some call k∗ as defined in Equation (2) “clearness index” (e.g., [100]).

Figure 1 presents (a) an example time series of surface irradiance recorded with 1 s temporal
resolution during the HD(CP)2 Observational Prototype Experiment (HOPE) campaign [138,139]
along with simulated clear-sky irradiance derived by a basic model [140], and (b) estimated clear-sky
index as per Equation (2). Several typical features of the clear-sky index are evident in the time series.
For example, the lowest clear-sky index values are usually greater than zero, because irradiance is
never attenuated completely, no matter how dark the cloud. Moreover, the upper boundary of k∗

often exceeds 1, mostly due to cloud enhancement (i.e., reflections from surrounding clouds add to the
measurement) and to a lesser degree due to imperfectly modelled clear-sky conditions. Under broken
cloud conditions, cloud enhancement has been reported to lead to single-point irradiance observations
exceeding their clear-sky expectation by more than 50% on sub-minute time scales [17,64,65,141–144].
However, cloud enhancement cannot be unambiguously identified using absolute values of k∗,
because these can be biased by the clear-sky model of choice.
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Figure 1. (a) An example of a diurnal cycle of measured global horizontal irradiance (GHI) along
with simulated clear-sky irradiance derived by a basic model [140]; (b) A corresponding clear-sky
index estimate k∗ according to Equation (2). The irradiance data were measured during the HD(CP)2
Observational Prototype Experiment (HOPE) campaign [138,139] with 1 s temporal resolution near
Jülich, Germany, on 25 April 2013, and have been conditioned to exclude times of low solar elevation
angles α < 15◦ after sunrise and before sunset.

On these short time scales, the probability density function of clear-sky index time series is
typically bimodal in nature, with the two peaks respectively representing states with and without
cloud coverage [22–24,145,146]. Figure 2 correspondingly shows two estimates of the clear-sky index
probability density function based on a histogram of the example time series shown in panel (b)
of Figure 1, as well as a kernel density estimate (KDE) [147] of all available data from that sensor
(about 4.5 · 106 s worth of 1 s data). While the histogram does not correspond to a perfectly bi-modal
distribution due to the limited number of data available from the single-day example, the kernel
density estimate clearly illustrates the two peaks representing overcast and clear skies.
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Figure 2. Probability density estimates of clear-sky index k∗ based on the single-day example time
series previously shown in Figure 1 (histogram, black lines), as well as a considerably longer series
containing a total of about 4.5 · 106 s worth of single-sensor 1 s measurements collected during the
HOPE campaign [138,139] (kernel density estimate, KDE, dashed blue line). The KDE was derived
using Gaussian kernels with a smoothing bandwidth (i.e., smoothing kernel standard deviation) of 0.05.

The statistical moments associated with a given clear-sky index time series of length T, such as
the sample arithmetic mean

k∗ =
1
T

T

∑
t=1

k∗(t) (3)

and the sample standard deviation

σk∗ =

√√√√ 1
T − 1

T

∑
t=1

(k∗(t)− k∗)2 (4)

can be used to characterize the time series’ variability to a degree [51]. However, these measures do
not consider the chronology of the observations, and are thus not suited to assess changes therein
(i.e., temporally shuffling all clear-sky index data will affect neither the respective probability density
function nor the corresponding moments). Instead, characterizations of clear-sky index variability can
be geared towards changes over specified intervals of time τ by deriving statistics of k∗ increments

∆k∗τ(t) = k∗(t + τ)− k∗(t) (5)

which are a useful measure of intermittency [148]. Figure 3 presents an illustrative example of
thus-derived clear-sky index increments for three short-term time steps τ = 5 s, τ = 10 s, and τ = 60 s,
based on a five-minute subset of the data previously shown in Figure 1. The short duration of the series
was specifically selected to facilitate an intuitive comprehension of the nature of increment time series.
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Figure 3. A five-minute subset of the time series previously shown in Figure 1 (there indicated by a
vertical gray line). (a) Clear-sky index k∗ time series; (b) Corresponding clear-sky index increments
∆k∗τ(t) as per Equation (5) for three distinct short-term increment time steps τ = 5 s, τ = 10 s,
and τ = 60 s. The underlying irradiance data were collected during the HOPE campaign [138,139].

The probability density functions of single-point clear-sky index increments generally exhibit
a slim central peak (representing a high probability of occurence from relatively small changes),
enclosed by widespread tails of decreasing probabilities from stronger variations. For increasing
increment time steps, the numbers of high-magnitude changes also increase, leading to more
pronounced tails of the corresponding distributions [78]. These general characteristics are illustrated
for the same three time steps as before (τ = 5 s, τ = 10 s, and τ = 60 s) by means of kernel density
estimates in Figure 4, using the same data as for the KDE in Figure 2 (i.e., about 4.5 · 106 s worth of 1 s
clear-sky index data).
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Figure 4. Kernel density estimates of clear-sky index increments, using about 4.5 · 106 s worth of
single-sensor 1 s data collected during the HOPE campaign [138,139]. The estimates were derived
for increment time steps τ = 5 s, τ = 10 s, and τ = 60 s using Gaussian kernels with a smoothing
bandwidth of 0.01.

Comparisons of spatially averaged increment distributions of multiple pyranometers (or PV plants
of different capacities) indicate that the numbers of high-magnitude changes and, thus the width of the
increment distribution, are reduced for an increasing number of sensors (or larger PV plants) [26,48,56].
However, higher-than-normal (i.e., compared to a Gaussian distribution) probabilities of comparatively
high-magnitude changes remain common across time scales (e.g., increments on the order of tens
of standard deviations can be recorded on a regular basis [44,104]). Similarly, temporal averaging
on scales & 1 s can also result in a narrowing of increment distributions, and hence a potential
underestimation of actual variability [111]. Yet, this drawback can be acceptable, for example,
when variability at different locations is compared by means of data featuring diverse temporal
resolutions [50].

3. Variability Quantification

Several different single-number metrics have been proposed to quantify variability in irradiance,
normalized irradiance, and/or PV power (some of the underlying concepts can be applied to several
of these quantities) within a well-defined period. These include specialized measures such as the
variability index (VI) [96], which is tailored specifically to employ measured irradiance G and simulated
clear-sky irradiance Gclear, and is defined as

VI =

T−1

∑
t=1

√
[G(t + 1)− G(t)]2 + ∆T2

T−1

∑
t=1

√
[Gclear(t + 1)− Gclear(t)]2 + ∆T2

(6)
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with T denoting the number of consecutive observations and ∆T representing the averaging interval
of the time series (e.g., ∆T = 1 for minute-averaged irradiance measurements). In contrast,
the intra-hour variability score (IHVS) [98] and the daily aggregate ramp rate (DARR) [26] have
also been proposed to be used with irradiance data, but can easily be adapted to other quantities,
because they simply represent the sum of all absolute increment values during a given hour or day,
respectively. For example, the DARR of any time series X can be defined as

DARR =
T−1

∑
t=1

|X(t + 1)− X(t)|
C

(7)

with T again denoting the number of consecutive observations and C representing an (optional) scaling
constant (e.g., for irradiance, C = 1000 Wm−2 can be used to normalize to STC [26]). The variability
score (VS) [50] is another versatile measure, which can be defined for any time step τ as

VSτ = max[∆X0 × P(|∆Xτ | > ∆X0)] (8)

with ∆Xτ = X(t + τ) − X(t) denoting all increments of X using time step τ (i.e., analogous to
Equation (5)), ∆X0 consisting of values between 0 and max(|∆Xτ |), and P(|∆Xτ | > ∆X0) representing
the probability of absolute increment values greater than ∆X0 to occur. In its original formulation,
the VS is calculated based on increments in temporally averaged data, with averaging time scale
∆T = τ, and it is expressed as a percentage, with ∆Xτ and ∆X0 representing either increments in
irradiance normalized to STC or increments in rated PV power capacity [50]. However, the concept
of the variability score can generally also be applied to other time series, such as clearness index or
clear-sky index. The variability score compares well to the variability index, as both yield comparable
estimations of variability with a very high linear correlation between the two measures for a given
time scale [16,50].

Finally, changes in the variability of any increment time series ∆Xτ are also reflected by changes
of the corresponding standard deviation

σ∆Xτ =

√√√√ 1
T − 1

T

∑
t=1

[∆Xτ(t)− ∆Xτ ]2 (9)

with T denoting the number of increment values in the series, and ∆Xτ representing the mean
increment values (in practice, ∆Xτ → 0). Increment standard deviation σ∆Xτ characterizes typical
excursions from the mean, and has become a well-established measure to quantify variability in
irradiance, clear-sky index, and PV power output [10,15,19,28,51,111]. For example, the standard
deviation is particularly convenient when considering averaged k∗ time series across multiple
pyranometers, as it will change as n−0.5 for a number of n uncorrelated locations, regardless of the
underlying distribution [51]. Note, however, that the non-Gaussianity of irradiance-related increment
statistics causes the standard deviation to not necessarily represent the size of extreme fluctuations
appropriately. For example, the universal three-sigma rule, stating that a range of ± 3 σ∆Xτ around
the mean will cover 99.73% of all values if ∆Xτ are normally distributed [149], does not apply to
increments in irradiance, clear-sky index, or PV power.

Figure 5 compares daily values of the clear-sky index variability score VSk∗
τ (cf. Equation (8))

and the clear-sky index increment standard deviation σ∆k∗τ (cf. Equation (9)) for three time steps
τ = 5 s, τ = 10 s, and τ = 60 s. Although increasing standard deviations generally correspond to
increasing variability scores, there is considerable spread around the least-square fits shown in Figure 5.
Consequentially, the coefficients of determination 0.60 . R2 . 0.65 associated with the fits only
indicate a moderate correlation between the two quantities considered. As both measures are actively
being used to quantify variability throughout the literature, it may be worthwhile to systematically
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compare the two in a more detailed manner in order to improve the interpretability of their values.
However, such an analysis would go beyond the scope of this review.
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Figure 5. A comparison between daily values of the clear-sky index variability score VSk∗
τ

(cf. Equation (8)) and the clear-sky index increment standard deviation σ∆k∗τ (cf. Equation (9)) for
three time steps (a) τ = 5 s, (b) τ = 10 s, and (c) τ = 60 s, using 105 days worth of single-sensor 1 s
clear-sky index estimates derived from irradiance data collected during the HOPE campaign [138,139]
(i.e., the same data as in Figure 4). Least-square fits are included as dashed lines, and the corresponding
coefficients of determination R2 are quoted in each panel.

Additionally, a number of studies have applied classification schemes in order to group sets of
time series according to their variability characteristics. Typically, the resulting variability classes are
made up of at least “high-variability”, “medium-variability”, and “low-variability” [97], although the
nomenclature varies (e.g., high variability can be called “mixed-sky”, medium variability “clear-sky”,
and low variability “overcast” [51]). Some authors split the range of a single-number metric into
subsets using fixed thresholds [101], while others employ multivariate classification schemes [51,100]
or machine learning algorithms [97,99].

4. Spatial Averaging

Compared to a single-point irradiance measurement, the larger the panel-covered area of a
PV plant, the less variable its power production becomes [26], especially on short sub-minute time
scales [55,56]. Similarly, the power output of a single high-capacity PV plant occupying a relatively
small area is more variable than the aggregate power of a large number of small plants amounting to a
similar total capacity, but occupying a considerably larger area [28]. In lieu of suitable PV power data,
averages of irradiance or clear-sky index increments can serve as output variability estimates of a set
of PV power plants located at different locations [10].

An illustrative example of spatial averaging is shown in Figure 6, where (a) single-sensor
clear-sky index estimates are contrasted with the spatially averaged values of up to 99 synchronized
pyranometers dispersed over an area of approximately 80 km2, and (b) 1 min increments are shown for
both the single sensor and the spatial average. Pronounced spatial smoothing is evident in both panels.
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Figure 6. An example of spatial averaging: (a) the same 1 s single-sensor clear-sky index k∗ time series
as in Figure 1 along with a corresponding spatially averaged 1 s clear-sky index computed over as
many as 99 pyranometers dispersed over an area of about 80 km2; (b) 1 min clear-sky index increments
∆k∗τ derived according to Equation (5) for both the single-sensor time series and the spatial average.
The underlying irradiance data were collected during the HOPE campaign [138,139].

As a characterization of the spatial structure of ∆k∗τ fields, it is useful to consider spatial two-point
correlation coefficients between locations i and j:

ρ
∆k∗τ
ij =

T

∑
t=1

(∆k∗τ,i(t)− ∆k∗τ,i)(∆k∗τ,j(t)− ∆k∗τ,j)√
T

∑
t=1

(∆k∗τ,i(t)− ∆k∗τ,i)
2

T

∑
t=1

(∆k∗τ,j(t)− ∆k∗τ,j)
2

(10)

which govern the process of spatial averaging (i.e., the standard deviation σx+y of the sum of

two random variables x + y with correlation coefficient ρxy is σx+y =
√

σx2 + σy2 + 2ρxyσxσy.
In Equation (10), ∆k∗τ,i(t) and ∆k∗τ,j(t) are the two individual increment time series at the two locations

i and j, while ∆k∗τ,i and ∆k∗τ,j are the corresponding arithmetic means (computed as in Equation (3)),
and the quantity T denotes the number of data points in each of the two time series. These correlation
structures can, for example, serve to directly model the generation variability of distributed and/or
large PV plants based on a single pyranometer, using a wavelet approach [48,58,83,97].

Increment correlations (in both time and space) have been shown to depend on effective cloud
speed [10,28], different daily variability categories [13,97], and short-term sky types [51]. Moreover,
correlation coefficients can be influenced by the sensor pair orientation relative to the direction of
cloud motion [49,52,68,71,103]. For all measures and approaches considered, increment correlation
structures consistently decrease with increasing pair distance, and the rate of decrease becomes smaller
(longer decorrelation distances) when considering larger-increment time steps. Along-wind increment
correlation structures have also been suggested to feature negative peaks, with correlation coefficients
reaching values between −0.5 < ρ

∆k∗τ
ij < 0 [12,13,49,70,71].
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Several methods have been suggested to simulate increment correlation structures for specific
time scales. Many authors have employed empirical fits to measured data [10,13,70,97,103,104,106],
while others used simplified cloud shapes generated by randomly positioned and subsequently
blurred squares [70], unions of randomly positioned discs [68], double-sigmoidal clear-sky
index deviations [71], or fractal structures [52]. For example, k∗ increment correlation structures
were extracted from hourly satellite-derived irradiance data, with pair distances in the
range of 10 km ≤ dij ≤ 300 km [10]. Taking increment time lags of 1 h ≤ τ ≤ 4 h and
estimated relative cloud speed v into account, the correlation structure was estimated as
ρ

∆k∗τ
ij = (1 + dij · τ−1 · v−1)−1, implying a linear interrelation between pair distance dij and time lag

τ for fixed values of ρ
∆k∗τ
ij . Similar implications were made by other proposed models, for example

ρ
∆k∗τ
ij = exp(dij · ln(0.2) · 1.5−1 · τ−1 · v−1) [106] and ρ

∆k∗τ
ij = exp(− dij

0.5·τ·v ) [70,83]. These models were
obtained as curve fits from different data with relatively coarse spatiotemporal resolutions.
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Figure 7. Some examples of previously proposed models to estimate the two-point correlation
coefficient of clear-sky index increments ρ

∆k∗τ
ij as a function of distance dij for increment time scale

τ = 10 s and cloud speed v = 10 ms−1. Panel (a) shows examples of isotropic (i.e., without considering
the direction of cloud motion) correlation structures proposed by Hoff and Perez [10], Perez et al.
[106], and Lave et al. [83] (each derived from simple equations implying a linear relationship between
dij, τ and v), as well as Lohmann et al. [52] (based on 3 h worth of 1 Hz k∗ field data simulated by a
fractal cloud model with an assumed average cloud cover of 50 %). Panel (b) presents along-wind
structures according to models proposed by Lonij et al. [103], Arias-Castro et al. [68], and Widén [13]
(the presented curves were extracted from Elsinga and van Sark [71]; cf. their Fig. 2), as well as the
afore-mentioned fractal model [52].

Figure 7 contrasts estimated clear-sky index increment correlation structures ρ
∆k∗τ
ij as a function of

distance dij for increment time scale τ = 10 s and cloud speed v = 10 ms−1, based on several proposed
models [10,13,52,68,83,103,106]. Isotropic structures obtained without regards to the direction of cloud
motion and structures calculated along the main wind direction are respectively considered in panels
(a) and (b). While each isotropic curve in panel (a) decreases monotonously from 1 towards 0 for
increasing distances, the rate of decrease differs considerably between models. For example, at a
pair distance of dij ≈ 100 m, model results range between 0 . ρ

∆k∗τ
ij . 0.5. Similarly, all along-wind

correlation structures in panel (b) decrease with distinct rates for increasing distances up to dij = 100 m,
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where differences between models range between −0.5 . ρ
∆k∗τ
ij . 0. For further increasing distances

dij > 100 m, each curve transitions to its own unique character of constant or increasing correlation
coefficients, approaching 0.

5. Temporal Averaging

Similar to spatial averaging, irradiance variability is reduced when considering temporally
averaged data. Figure 8 presents examples of such temporal averaging, based on the example period
employed in the previous figures, using two different averaging periods of 1 min and 10 min. Panel (a)
shows the clear-sky index time series for these averages, while panel (b) illustrates the averaging effect
on 10 min increments in the clear-sky index. The misrepresentation of variability is evident for the
longer averaging time in both panels.

0.
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]
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∆
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1 min averages 10 min averages

Figure 8. An example of temporal averaging: (a) Averages of 1 min and 10 min temporal resolutions
based on the 1 s single-sensor clear-sky index k∗ time series shown in Figure 1 (collected during
the HOPE campaign [138,139]); (b) Corresponding 10 min clear-sky index increments ∆k∗τ derived
according to Equation (5).

As indicated in Section 1, ground-based solar irradiance observations have often been averaged
using a range of different temporal resolutions (from hours to fractions of a second), and there is
no broad agreement on the ideal temporal resolution best-suited to record all relevant variability.
Early studies showed temporal averaging on time scales larger than minutes to introduce considerable
smoothing to the clear-sky index, and to affect its probability distribution [23,24]. More recent analyses
have concluded that the temporal resolution required to determine irradiance variability across
time scales may be as small as 0.1 s [17,63,65], 0.4 s [16], or 1 s [111]. The studies that argued for
second-or-higher resolutions were based on

1. determining instantaneous irradiance variations for each of a few hundred days in spring and
summer by calculating the second temporal derivative of each observation, considering the
minimum (i.e., negative) value of a day’s derivatives to represent the day’s most severe fluctuation,
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and then computing an ideal averaging time by assuming the variations to feature parabolic
shapes and accepting an error of 10 Wm−2 in the measurements [17];

2. assessing the reduction of the standard deviation of an irradiance time series (measured during
7 h on a single summer’s day) as a function of increasing averaging time scales [63];

3. separately studying the variability index and the variability score of irradiance for seven selected
days as functions of increasing averaging time scales [16]; and

4. characterizing the changes of k∗ and ∆k∗τ standard deviations as a function of averaging time
using thousands of hours worth of irradiance observations with raw temporal resolutions ranging
from 0.01 through 1 s [111].

In addition to these differences in methods and quantity of data, some of the studies were
limited to specific geographic areas (i.e., Southern Norway [17], Southern Finland [63], and Eastern
Canada [16]), whereas another compared data from four different regions in the Northern Hemisphere
(i.e., Eastern Canada, Germany, Hawaii, and Arizona) [111].

In practice, the effectively necessary temporal resolution of data strongly depends on the spatial
scale considered. On the one hand, fluctuations of up to±50% from one second to the next (and changes
of more than 90% within 20 s) have been documented in the feed-in of a relatively small 48 kWp
PV plant [56]. On the other hand, considerably larger multi-megawatt utility-scale PV plants may
not require highly resolved measurements on the order of seconds for monitoring purposes [150],
while minute-averaged observations may be resolved too coarsely [26].

In view of the relatively small number of high-resolution datasets available to date, several
methods have been proposed to downscale more easily-accessible low-resolution data to smaller
scales. For example, Markov-model-based approaches have been applied to 15-min PV power [118],
hourly irradiance [112], hourly weather observations [69,109], or daily clearness index [151], in order
to simulate variability on temporal scales well below those of the input data. Other downscaling
approaches include providing a library of representative high-resolution irradiance samples [152] as
well as simulating changes in the clear-sky index differently for different classes of variability [100,117].
A number of other sophisticated methods have been proposed to simulate relatively high-resolution
data in time and/or space (using, for example, copulas or Markov chains), but without conditioning
to large-scale information [27,41,61,105,153,154]. While these last-mentioned approaches were not
specifically designed to downscale coarsely resolved real-world measurements, they can likely be
adapted for this purpose.

6. Conclusions

This article concisely reviews recently published essentials from the literature regarding
the quantification and small-scale averaging of irradiance variability in time and space.
Complementing previous textbooks and literature reviews [15,119–133], the paper emphasizes
relatively small sub-minute scales below about 10 km. Despite the many articles touching on the
subject of irradiance variability, suitable high-resolution measurement data are still relatively scarce.
While some small-scale irradiance data have been publicly released [e.g., 72–76], there is still a need
for more high-resolution measurements to robustly validate previous findings [52]. Granting open
access to such data and corresponding models is considered best practice in order to foster scientific
discussion and facilitate knowledge-based energy policies [155].

Beyond the collection of more suitable in-situ data, and with new satellite generations such as
Meteosat Third Generation (MTG) in the pipeline, future efforts may also be geared towards inferring
characteristics of small-scale variability from large-scale spaceborne observations. Two initial studies
show great promise in this regard [67,99]. Both can be developed further in order to estimate complex
climatological variability characteristics [67], and to eventually nowcast the character of short-term
volatility in real time [99].

With regards to the applicability of irradiance variability research to PV power systems, there is
a need for considering variability in irradiance on tilted surfaces as well as its effects on the
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processes of energy conversion. While most of the research presented in this review has been
based on global horizontal irradiance, PV systems typically feature tilted modules. On a daily basis,
irradiance variability has been shown to be higher on an inclined plane than on the horizontal [6,156],
but corresponding analyses of high-resolution sub-minute data are still lacking. Likewise, an extensive
validation of models separating direct and diffuse irradiance (a necessary step to predict irradiance on
an inclined plane as a function of GHI) is not yet possible on sub-minute scales for lack of suitable data
(it has, however, recently been performed using minute-scale data [157,158]). In general, small-scale
specific phenomena such as cloud enhancement may call for future adaptations and extensions of
well-established large-scale-based methods and conclusions [159].

The studies covered by this review have unanimously identified clouds as the dominant source of
short-term fluctuations in surface irradiance and photovoltaic power. Beyond that, aerosols have been
shown to considerably affect irradiance variability as well, albeit on relatively large spatiotemporal
scales and with an emphasis on concentrated solar power applications [160–171]. In consideration of
extreme dust events, such as forest fires or sand storms (which can quickly generate large numbers of
aerosols [172]), aerosol-induced small-scale irradiance variability could be non-negligible and further
research is necessary in this regard. However, corresponding high-quality data sets of both aerosol
optical depth and surface irradiance are relatively difficult to obtain [160], especially on the small
scales considered in this review.
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