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Abstract: In Japan, it is important to recycle the nutrients in manure for forage production
because most dairy cattle are fed inside, mainly with imported grain and home-grown roughage.
To understand the overall effect of manure use on grassland on the net greenhouse gas (GHG)
emission and GHG intensity of herbage production systems, the integrated evaluation of emissions of
carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) is essential. The objective of this study
was to compare the net GHG emissions (expressed in CO2-eq ha−1 y−1) and GHG intensity (expressed
in CO2-eq Mg–1 dry matter yield) of herbage production based on manure slurry + synthetic fertilizer
(slurry system) with that based on farmyard manure + synthetic fertilizer (FYM system). Calculations
of net GHG emissions and GHG intensity took into account the net ecosystem carbon balance (NECB)
in grassland, the CH4 and N2O emissions from grassland, and GHG emissions related to cattle waste
management, synthetic fertilizer manufacture, and fuel consumption for grassland management
based on literature data from previous studies. The net GHG emissions and GHG intensity were 36%
(6.9 Mg CO2-eq ha−1 y−1) and 41% (0.89 Mg CO2-eq Mg−1), respectively, lower in the FYM system.

Keywords: carbon dioxide; cattle waste management; fuel consumption for grassland management;
greenhouse gas intensity; lifecycle assessment; methane; net ecosystem carbon balance; nitrous oxide;
synthetic fertilizer manufacture

1. Introduction

Recent greenhouse gas (GHG) profiles of the agriculture sector in Japan show that major GHG
sources in terms of carbon dioxide equivalents (CO2-eq) are rice cultivation (methane (CH4), 41%),
enteric fermentation (CH4, 22%), manure management (CH4 and nitrous oxide (N2O), 19%), and soils
(N2O, 16%) [1]. In Japan, most dairy cattle are fed inside, mainly with imported grain and home-grown
roughage. Around 70% of the dairy cattle waste is composted [2] for use in crop and forage production.
Therefore, it is important to apply manure to meadows and pastures, which account for 13.4% of the
total agricultural land area of Japan [3]. In the year 2015, 570,475 Mg-N y−1 was excreted by livestock
in Japan, of which 304,285 Mg-N y−1 was applied to agricultural soil (4,496,000 ha) [1].

The application of farmyard manure (FYM) to grassland increases the net ecosystem carbon
balance (NECB) relative to manure slurry application [4]. This is mainly because the amount of
C input to grassland from FYM is greater than that from slurry, but the decomposition of FYM is
slower than that of slurry [4]. Consequently, FYM application has a greater potential to improve the C
stock in grassland soil than slurry application. However, emissions of CH4 and N2O from manured
grassland [5] need to be considered in evaluating the overall effect of manure application on the net
GHG emissions from grassland [3]. The soil of grassland usually acts as a sink of atmospheric CH4,
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and manure application only temporarily increases CH4 emission from grassland [3]. In contrast,
N2O emission increases with increasing the N surplus in grassland soil [6]. Therefore, judicial
application of organic and inorganic N is necessary to mitigate the N2O emission from grassland [3].
Cattle waste management, including slurry storage [7] and composting [8], is another source of GHG,
and in addition to CH4 and N2O emissions from cattle waste management, farm machinery used
for composting FYM also emits CO2 [9]. To maintain productive sward, supplemental fertilizers are
used to make up for nutrient insufficiencies in manure (e.g., N and P in the case of cattle manure) [5],
but their manufacture also emits GHG [10]. Furthermore, GHG emissions from fuel consumption for
grassland management also need to be taken into consideration [11].

To assess the net GHG emissions (i.e., integrated evaluation of CO2, CH4 and N2O) and GHG
intensity (GHGI) of herbage production systems, an integrated evaluation of the above processes
is necessary (Table S1). On that basis, the identification of important processes with significant
contributions is necessary in order to determine the priority of countermeasures to mitigate GHG.
To date, it is recognized that the quality and quantity of organic materials applied have great influence
on soil organic carbon [4,12]; however, insufficient information is available on the effect of manure
type (i.e., slurry or FYM) on the net GHG emissions and GHGI of herbage production systems.

The objectives of this study were: (1) to investigate the net GHG emissions (expressed in
CO2-eq ha–1 y−1) and GHGI (expressed in CO2-eq Mg–1 dry matter yield) of herbage production
systems based on manure slurry + synthetic fertilizer (slurry system) and on FYM + synthetic fertilizer
(FYM system); (2) to show the relative contributions of each process in GHG emission; and (3) to
show how farming practices can be adjusted to minimize emissions. My hypotheses were that the
FYM system reduces the net GHG emissions in comparison with the slurry system, and that the
contributions of grassland soil and cattle waste management to the net GHG emissions of herbage
production systems are greater than the other processes.

2. Materials and Methods

2.1. System Boundary and Functional Units

The system boundary comprised the following processes: the NECB in grassland, emissions
of CH4 and N2O from grassland, and GHG emissions related to cattle waste management
(i.e., slurry storage and composting FYM), synthetic fertilizer manufacture, and fuel consumption for
grassland management operations. The functional unit was defined as ha−1 y−1 of grassland or Mg−1

of dry matter yield. The study did not take into account the GHG emissions related to the manufacture
of farm machinery and buildings, transport of synthetic fertilizers, or indirect N2O emissions related
to leaching of nitrate (NO3

−) and redeposition of volatilized ammonia (NH3).

2.2. NECB and Emissions of CH4 and N2O from Grassland

The NECB and emissions of CH4, and N2O from grassland (1 ha) treated with slurry
(65.8 to 66.4 Mg ha−1 y−1) or FYM (36.5 to 39.2 Mg ha−1 y−1) were based on previous studies [4,5]
in which slurry or FYM was applied to the upper limit based on K requirement for herbage production.
Annualized values of NECB, emissions of CH4, and N2O were calculated by averaging the information of
two years.

2.3. GHG Emissions Related to Cattle Waste Management

Emissions of CH4 and N2O from stored slurry were calculated from emission factors
(EFs, 3.90% and 0.02%, respectively) in Japan [1]. Emissions of CH4 and N2O from composting
of applied FYM were estimated from a farm study [13] and EFs (3.8% and 2.38% to 2.39%, respectively)
in Japan [1]. Biogenic CO2 losses from manure were excluded (i.e., C neutral), but emissions of CO2 due
to the consumption of electricity or fuel for composting FYM were estimated from a farm study [13]
and EFs [14]. Emissions of CH4, N2O and CO2 per unit area of grassland (1 ha) were calculated by
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multiplying these emissions per unit weight of slurry or FYM and the weight of slurry or FYM annually
applied to grassland (Mg ha−1 y−1).

2.4. GHG Emissions Related to Synthetic Fertilizer Manufacture

GHG emissions from the manufacture of N and P fertilizers were estimated from the SimaPro 7.1
database (PRé Consultants, Amersfoort, Netherlands). Emissions of CH4, N2O and CO2 per unit area
of grassland (1 ha) were calculated by multiplying these emissions per unit weight of synthetic fertilizer
and the weight of synthetic fertilizer annually applied to grassland (kg ha−1 y−1). No K fertilizer was
used, because the applied slurry or FYM covered the K requirement for herbage production [4,5].

2.5. GHG Emissions Related to Grassland Management

GHG emissions due to fuel consumption by farm machinery for loading and spreading of manure
and fertilizers and for cutting and harvesting of herbage were estimated from a previous Japanese study
in the 1990s [15] and EF [14]. The emission of CO2 per unit area of grassland (1 ha) was calculated by
multiplying the fuel consumption per unit of operation, the operation unit necessary for management
of grassland (1 ha), and EF.

2.6. Overall Net GHG Emissions and GHGI of Herbage Production

Emissions of CH4 and N2O were converted to CO2-eq by using values of the 100-year global
warming potential, assumed to be 1 for CO2, 25 for CH4, and 298 for N2O [16]. The net GHG emissions
(CO2-eq ha–1 y−1) were calculated by considering the NECB and emissions of CH4 and N2O from
grassland (Section 2.2.) and the GHG emissions related to cattle waste management (Section 2.3.),
synthetic fertilizer manufacture (Section 2.4.), and grassland management (Section 2.5.) on an area
basis. The GHGI (CO2-eq Mg–1) was calculated by dividing the net GHG emissions by the dry matter
yield of grassland receiving slurry or FYM [4].

3. Results and Discussion

3.1. NECB and Emissions of N2O and CH4 from Grassland

The NECB of the slurry system (−12.8 Mg CO2-eq ha−1 y−1) was far lower than that of the FYM
system (−1.8 Mg CO2-eq ha−1 y−1); that is, the FYM system contributed more to improving the C
stock in grassland than the slurry system (Figure 1). (Please note that negative NECB values represent
net CO2 emission from grassland to the atmosphere.) The NECB of the slurry and FYM systems
were similar to previously measured values in Japanese grasslands that respectively received only
synthetic fertilizers or FYM + synthetic fertilizers [17], suggesting that slurry C had limited capacity for
maintaining soil organic C in comparison with FYM C [12]. The emissions of N2O from grassland were
not significantly different between slurry and FYM systems (2.2 Mg CO2-eq ha−1 y−1 in slurry system,
2.3 Mg CO2-eq ha−1 y−1 in FYM system), because synthetic N fertilizer was also applied [18,19].
The emissions of CH4 were much smaller than those of CO2 and N2O (+0.034 Mg-CO2-eq ha−1 y−1 in
slurry system, −0.032 Mg-CO2-eq ha−1 y−1 in FYM system).
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Figure 1. Annualized emissions of CO2 (NECB), N2O and CH4 from grassland receiving manure + 
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(2.0 Mg CO2-eq ha−1 y−1, Table 3) in the FYM system (Figure 2). The emission of CO2 related to energy 
consumption (0.15 Mg CO2-eq ha−1 y−1, Table 4) was smaller than the emission of CH4 and N2O by 
composting. This is because the amount of CO2 emission for composting 1 Mg of FYM was only 4.1 
kg. The emission of N2O by slurry storage (0.028 Mg-CO2-eq ha−1 y−1, Table 5) was much smaller than 
the emission of N2O by composting FYM (2.0 Mg CO2-eq ha−1 y−1, Table 3), mainly due to the small 
EF for slurry storage (0.02%) in comparison with composting FYM (2.4%). 
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Figure 1. Annualized emissions of CO2 (NECB), N2O and CH4 from grassland receiving
manure + fertilizer.

3.2. GHG Emissions Related to Cattle Waste Management

The GHG emissions related to cattle waste management were due mainly to CH4 (2.9 Mg CO2-eq
ha−1 y−1, Table 1) in the slurry system and to both CH4 (4.2 Mg CO2-eq ha−1 y−1, Table 2) and N2O
(2.0 Mg CO2-eq ha−1 y−1, Table 3) in the FYM system (Figure 2). The emission of CO2 related to energy
consumption (0.15 Mg CO2-eq ha−1 y−1, Table 4) was smaller than the emission of CH4 and N2O by
composting. This is because the amount of CO2 emission for composting 1 Mg of FYM was only 4.1 kg.
The emission of N2O by slurry storage (0.028 Mg-CO2-eq ha−1 y−1, Table 5) was much smaller than
the emission of N2O by composting FYM (2.0 Mg CO2-eq ha−1 y−1, Table 3), mainly due to the small
EF for slurry storage (0.02%) in comparison with composting FYM (2.4%).

Table 1. Emission of CH4 related to storage of dairy cattle slurry.

OM in Slurry 1 CH4 Emission 2 CH4 Emission 3

Mg ha−1y−1 kg-CH4 ha−1 y−1 Mg-CO2-eq ha−1 y−1

1st year 2nd year 1st year 2nd year 1st year 2nd year
MeanMarch May March May March May March May March May March May

2.2 2.5 2.6 2.4 52 60 62 57 1.3 1.5 1.5 1.4
2.94.7 5.0 113 119 2.8 3.0

1 Organic matter content in slurry was determined as 1.764 × C content. 2 Emission factor of CH4 from slurry
storage was 2.38–2.39% (g-CH4 g-OM−1) [1]. 3 The 100-year global warming potential of CH4 was assumed to be 25
[16].
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Figure 2. Annualized emissions of N2O, CH4, and CO2 related cattle waste management.
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Table 2. Emission of CH4 related to composting.

Cattle Type
Number 1

Excreta 2 OM in Excreta on
the Farm 3

CH4 Emission on
the Farm 4 CH4 Emission per Unit Weight of FYM 5,6 CH4 Emission per Unit Area of Grassland

kg head−1 d−1 Mg-CO2-eq ha−1 y−1

Head Feces Urine kg (30 d)−1 kg-CH4 (30 d)−1 kg-CH4 Mg−1 kg-CO2-eq Mg−1 1st year 2nd year Mean

Lactating 84.1 43 14 17535 666
4.4 110 4.0 4.3 4.2Non-lactating 19.9 21 6 2024 77

1 Based on previous research on the dairy farm from which FYM was collected in this study [13]. 2 Based on the National Greenhouse Gas Inventory Report of Japan [1]. 3 Organic matter
content was assumed to be 16% in feces and 0.5% in urine of dairy cattle [1]. 4 Emission factor of CH4 from composting of dairy cattle excreta was assumed to be 3.8% (g-CH4 g-OM−1) [1].
5 FYM production was 168.8 Mg per farm per 30 d [13]. 6 The 100-year global warming potential of CH4 was assumed to be 25 [16].

Table 3. Emission of N2O related to composting dairy FYM.

Cattle Type
Number 1

Excreta 2 N in Excreta on the
Farm 3

N2O Emission on
the Farm 4 N2O Emission per Unit Weight of FYM 5,6 N2O Emission per Unit Area of Grassland

kg head−1 d−1 Mg-CO2-eq ha−1 y−1

Head Feces Urine kg (30 d)−1 kg-N2O-N (30 d)−1 kg-N2O Mg−1 kg-CO2-eq Mg−1 1st year 2nd year Mean

Lactating 84.1 43 14 717 17.2
0.18 53 1.9 2.1 2.0Non-lactating 19.9 21 6 79 1.9

1 Based on previous research on the dairy farm from which FYM was collected in this study [13]. 2 Based on the National Greenhouse Gas Inventory Report of Japan [1]. 3 N content was
assumed to be 0.4% in feces and 0.8% in urine [1]. 4 Emission factor of N2O from composting of dairy cattle excreta was assumed to be 2.4% (g-N2O-N g-N−1) [1]. 5 FYM production was
168.8 Mg per farm per 30 d [13]. 6 The 100-year global warming potential of N2O was assumed to be 298 [16].
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Table 4. Emission of CO2 related to energy consumption for composting dairy FYM.

Energy Consumption CO2 Emission
on the Farm 2,3

FYM Production
on the Farm 1

CO2 Emission per
Unit Weight of FYM 1

CO2 Emission per Unit Area of
Grassland 4

Electricity 1 Light Diesel Oil 1 Mg-CO2 ha−1 y−1

kWh (30 d)−1 L (30 d)−1 kg-CO2 (30 d)−1 Mg (30 d)−1 kg-CO2 Mg−1 1st year 2nd year Mean
712.4 160 688 168.8 4.1 0.15 0.16 0.15

1 Based on previous research on the dairy farm from which FYM was collected in this study [13]. 2 378 g-CO2
was assumed to be emitted by 1 kWh of electricity consumption [14]. 3 2619 g-CO2 was assumed to be emitted by
consumption of 1 L light diesel oil [14]. 4 CO2 emission per unit area of grassland was calculated by multiplying the
CO2 emission per unit weight of FYM and the weight of FYM applied to 1 ha of grassland.

Table 5. Emission of N2O related to storage of cattle slurry.

N in Slurry N2O Emission 1 N2O Emission 2

kg-N ha−1 y−1 kg-N2O-N ha−1 y−1 Mg-CO2-eq ha−1 y−1

1st year 2nd year 1st year 2nd year 1st year 2nd year
MeanMarch May March May March May March May March May March May

150 150 150 150 0.030 0.030 0.030 0.030 0.014 0.014 0.014 0.014
0.028300 300 0.060 0.060 0.028 0.028

1 Emission factor of N2O from slurry storage was 0.02% (g-N2O-N g-N−1) [1]. 2 The 100-year global warming
potential of N2O was assumed to be 298 [16].

3.3. GHG Emissions Related to Fertilizer Manufacture

The GHG emission related to fertilizer manufacture in the FYM system (1.5 Mg CO2-eq ha−1 y−1,
Table 6) was almost double that for the slurry system (0.82 Mg CO2-eq ha−1 y−1, Table 6), mainly
owing to the difference in N application rate. Slurry contains substantial amount of readily available
N, however, most of N in FYM is in organic form. Therefore, the amount of N fertilizer supplemented
to grassland in FYM system (159 to 177 kg-N y−1) was greater than that in slurry system (90 kg-N y−1).

3.4. GHG Emissions Related to Grassland Management

The GHG emissions related to grassland management were similar between the FYM and slurry
systems (0.49 vs. 0.47 Mg CO2-eq ha−1 y−1, Table 7), because the herbage yields were not significantly
different between the slurry (8.8 Mg y−1) and FYM (9.5 Mg y−1) systems. The GHG emissions related
to grass cutting, turning and harvesting, bailing and wrapping were greater than those related to
loading and spreading of slurry or FYM. This is mainly because slurry and FYM were spread twice
and once a year, respectively; however, grass cutting, turning and harvesting, bailing and wrapping
was performed four times a year in both the slurry and FYM systems.
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Table 6. Emissions of GHG related to synthetic fertilizer manufacture.

Emission from Synthetic N Fertilizer Manufacture
per Unit Weight 1,2

N application Rate GHG Emissions

kg-N ha−1 y−1 Mg-CO2-eq ha−1 y−1

1st year 2nd year 1st year 2nd year Mean

kg Mg-N−1 kg-CO2-eq Mg-N−1 Slurry FYM Slurry FYM Slurry FYM Slurry FYM Slurry FYM

CO2 2769 2769
90 177 90 159 0.77 1.51 0.77 1.36 0.77 1.43CH4 0.13 3

N2O 19.3 5751

Emission from Synthetic P Fertilizer Manufacture
per Unit Weight 1,2

P2O5 Application Rate GHG Emissions

kg-P2O5 ha−1 y−1 kg-CO2-eq ha−1 y−1

1st year 2nd year 1st year 2nd year Mean

kg Mg-P2O5
−1 kg-CO2-eq Mg-P2O5

−1 Slurry FYM Slurry FYM Slurry FYM Slurry FYM Slurry FYM

CO2 1117 1117
49 67 46 45 0.06 0.08 0.05 0.05 0.06 0.07CH4 2.07 52

N2O 0.038 11

Emission from Synthetic K Fertilizer Manufacture
per Unit Weight 1,2

K2O Application Rate GHG Emissions

kg-K2O ha−1 y−1 kg-CO2-eq ha−1 y−1

1st year 2nd year 1st year 2nd year Mean

kg Mg-K2O−1 kg-CO2-eq Mg-K2O−1 Slurry FYM Slurry FYM Slurry FYM Slurry FYM Slurry FYM

CO2 617 617
0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.00CH4 1.38 35

N2O 0.049 15

Total 0.82 1.6 0.82 1.4 0.82 1.5
1 Based on the SimaPro 7.1 database. 2 The 100-year global warming potential was assumed to be 1 for CO2, 25 for CH4, and 298 for N2O [16].
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Table 7. Emission of CO2 related to fuel consumption for grassland management and transport.

Machine Operation

Consumption of Light Diesel
Oil per Operating Unit

Operating Unit CO2 Emission 8

Mg-CO2 ha−1 y−1

1st year 2nd year 1st year 2nd year Mean

L ha−1 unit−1 Slurry FYM Slurry FYM Slurry FYM Slurry FYM Slurry FYM

Loading FYM 1 30 Mg unit−1 10.0 0 1.22 0 1.31 0.00 0.03 0.00 0.03 0.00 0.03
FYM transport 1,2 30 Mg unit−1 2.15 0 1.22 0 1.31 0.00 0.01 0.00 0.01 0.00 0.01
FYM spreading 1 30 Mg unit−1 3.3 0 1.22 0 1.31 0.00 0.01 0.00 0.01 0.00 0.01

Slurry transport 2,3 80 Mg unit−1 18.4 0.83 0 0.82 0 0.04 0.00 0.04 0.00 0.04 0.00
Slurry spreading 3 80 Mg unit−1 3.8 0.83 0 0.82 0 0.01 0.00 0.01 0.00 0.01 0.00

Fertilizer distribution 2,4 500 kg unit−1 2.4 1.42 2.45 1.38 2.03 0.01 0.02 0.01 0.01 0.01 0.01
Grass cutting 2 ha unit−1 8.1 4 4 4 4 0.08 0.08 0.08 0.08 0.08 0.08

Turning and harvesting 2 ha unit−1 15.35 4 4 4 4 0.16 0.16 0.16 0.16 0.16 0.16
Bailing haylage 2,5 7 Mg-DM unit−1 19.6 1.10 1.21 1.41 1.50 0.06 0.06 0.07 0.08 0.06 0.07

Wrapping haylage 2,6 3 Mg-DM unit−1 11.1 2.57 2.83 3.30 3.50 0.07 0.08 0.10 0.10 0.09 0.09
Haylage transport 2,7 7 Mg-DM unit−1 5.6 1.10 1.21 1.41 1.50 0.02 0.02 0.02 0.02 0.02 0.02

Total 0.47 0.49
1 Loading, transport, and spreading of 30 Mg-FYM was assumed to be 1 operating unit [15]. 2 Grassland was assumed to be 500 m from cowshed [15]. 3 Loading, transport, and spreading
of 80 Mg-slurry was assumed to be 1 operating unit [15]. 4 Distribution of 500 kg fertilizer was assumed to be 1 operating unit [15]. 5 Bailing of 7 Mg-DM haylage was assumed to be 1
operating unit [15]. 6 Wrapping of 3 Mg-DM haylage was assumed to be 1 operating unit [15]. 7 Transport of 7 Mg-DM haylage was assumed to be 1 operating unit [15]. 8 2619 g-CO2 was
assumed to be emitted by consumption of 1 L light diesel oil [14].
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3.5. Overall Net GHG Emissions and GHGI

The net GHG emissions was 19 Mg CO2-eq ha−1 y−1 in the slurry system and 12 Mg CO2-eq
ha−1 y−1 in the FYM system (Figure 3). The GHGI was 2.2 Mg CO2-eq Mg−1 in the slurry system and
1.3 Mg CO2-eq Mg−1 in the FYM system. Thus, the net GHG emissions of the FYM system was 36%
(6.9 Mg CO2-eq ha−1 y−1) less and the GHGI of the FYM system was 41% (0.89 CO2-eq Mg−1) less
than that of the slurry system.

The contribution of grassland soil, cattle waste management, fertilizer manufacture and
grassland management to the net GHG emissions were 78% (CO2: 66%, N2O: 11% and CH4: 0.2%),
15% (CO2: 0.0%, CH4: 15%, N2O: 0.1%), 4% and 2% in the slurry system, and 33% (CO2: 14%, N2O: 19%
and CH4: −0.3%), 51% (CO2: 1%, N2O: 16%, CH4: 34%), 12% and 4% in the FYM system, respectively.
These results collectively suggest that NECB and the N2O emissions from grassland and the CH4

and N2O emissions related cattle waste management are crucial to the control of net GHG emission
and GHGI.
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Figure 3. Annualized overall net GHG (greenhouse gas) emissions from herbage production.

The FYM system reduced the net GHG emissions and GHGI relative to the slurry system (Figure 3).
The net reduction was due largely to the improvement of C stock in grassland (Figure 1). Although the
emissions of GHG related to cattle waste management and fertilizer manufacture were greater in the
FYM system than in the slurry system (Figure 3), the FYM system maintained an advantage in net
GHG emissions and GHGI, due mainly to the difference in NECB in grassland (Figure 1)—that
is, the persistent organic matter in FYM decomposed slowly in the soil and contributed to the
improvement of C stock, but the labile organic matter in slurry decomposed quickly in the soil
and was released to the atmosphere as CO2 [4]. Our results support the validity of FYM application for
the mitigation of GHG emissions [20,21], not only from grassland, but also during herbage production.
In the slurry and FYM systems, N and P were supplemented based on the fertilizer recommendation.
Therefore, the yields in the slurry (8.8 Mg y−1) and FYM (9.5 Mg y−1) systems were comparable to the
standard yield (8–10 Mg y−1) in Nasu, Japan [4].

3.6. Adjustment of Farming Practices

These results show that the FYM system improved the net GHG emissions and GHGI relative
to the slurry system (Figure 3). In Japan, a substantial amount of manure is derived from imported
feed, and thus represents the net import of organic matter, which must be used with care for fertility
management [3]. Making maximum use of manure in consideration of N, P, and K requirements
for herbage production to reduce synthetic fertilizer rates to the absolute minimum is crucial to
mitigating overall GHG emissions [18,22]. Applying manure and synthetic N fertilizer in excess of
demand increases N2O emissions from grassland [23,24]. Therefore, the tightening of N application
rates can limit overall GHG emissions. Mixing low-quality dried grass as a bulking agent into FYM
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reduced CH4 and N2O emissions [2] and could further improve the C stock in grassland. For this
goal, both the selection of appropriate methods for cattle waste management and the decision to base
fertilizer application rates on the N supply from manure are crucial to reducing the net GHG emissions
and GHGI.

4. Conclusions

The FYM system reduced the overall net GHG emissions and GHGI by 36%
(6.9 Mg CO2-eq ha−1 y−1) and 41% (0.89 Mg CO2-eq Mg−1), respectively, relative to the slurry
system. The net reduction was due largely to the improvement of C stock in grassland. Although
the emission of GHG related to cattle waste management and supplemental fertilizer manufacture
was greater in the FYM system than in the slurry system, the FYM system maintained an advantage.
NECB and the N2O emissions from grassland and the CH4 and N2O emissions related to cattle waste
management are crucial to the control of net GHG emissions and GHGI.

Supplementary Materials: The following is available online at http://www.mdpi.com/2073-4433/9/7/261/s1,
Table S1: Calculation bases of greenhouse gas emissions.
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