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Abstract: This Special Issue presents efficient formulations and implementations of sequential and
variational data assimilation methods. The methods address three important issues in the context of
operational data assimilation: efficient implementation of localization methods, sampling methods
for approaching posterior ensembles under non-linear model errors, and adjoint-free formulations of
four dimensional variational methods.
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1. Efficient Formulation and Implementation of Data Assimilation Methods

Data Assimilation is the process by which imperfect numerical forecasts and sparse observational
networks are fused in order to estimate the state x∗ ∈ Rn×1 of a system [1,2] which (approximately)
evolves according to some model operator,

x∗p =Mtp−1→tp

(
x∗p−1

)
, for 1 ≤ p ≤ M , (1)

where, for instance, M : Rn×1 → Rn×1 is a numerical model which mimics the ocean and/or the
atmosphere dynamics, n is the number of model components, M is the number of observations
(which form the assimilation window), and p denotes time index at time tp. Sequential and smoothing
methods are commonly utilized in order to perform the estimation process [3–5]. In the context of
sequential data assimilation, when Gaussian assumptions are done over background and observational
errors, based on Bayes rule, the posterior mode of the error distribution can be computed as follows:

xa = xb + A ·HT · R−1 ·
[
y−H

(
xb
)]
∈ Rn×1 , (2a)

where xa ∈ Rn×1 is known as the analysis state. The analysis covariance matrix reads as

A =
[
B−1 + HT · R−1 ·H

]−1
∈ Rn×n , (2b)

where m is the number of observed components from the model domain, H : Rn×1 → Rm×1 is the
observation operator, B ∈ Rn×n is the unknown background error covariance matrix, and R ∈ Rm×m

stands for the data error covariance matrix. Likewise,H′(x) ≈ HT ∈ Rn×m is a linearized observation
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operator (with the linearization performed about the background state). Typically, the moments of the
prior distribution,

x ∼ N
(

xb, B
)

, (3)

can be estimated based on an ensemble of model realizations [6]. However, since ensemble members
come at high computational costs owing to current operational data assimilation settings (i.e., numerical
grid resolutions), ensemble sizes are bounded by the hundreds, while their underlying error
distributions range on the order of billions [7]. Consequently, sampling errors can impact the quality
of the analysis state [8]. In practice, localization methods can be utilized in order to mitigate the impact
of sampling errors during the assimilation steps [9]. However, the implementation of localization
methods is not immediate, and further analyses are needed before they can be implemented. Besides,
for highly non-linear observation operators, ensemble-based methods such as the ensemble Kalman
filter (EnKF) can fail to obtain reasonable estimates of posterior moments. Another important issue
is that prior errors might not follow a normal distribution (as is commonly assumed), and therefore
non-Gaussian models should be chosen to describe prior error distributions. For instance, Gaussian
mixture models (GMMs) are an option in this context. This Special Issue addresses all of these
important concerns in the context of sequential and variational data assimilation:

1. In the EnKF implementation based on a modified Cholesky decomposition (EnKF-MC) [10,11],
the covariance matrix estimator proposed by Bickel and Levina in [12] and the conditional
independence of model components regarding their spatial distances are exploited in order to
obtain sparse Cholesky factors of the precision background error covariance matrix. This is
done in order to reduce the computational cost of the analysis step, and to mitigate the impact of
spurious correlations during the assimilation of observations. Given the relation between A−1 and
B−1 in (2b) and by using the Bickel and Levina estimator, Nino-Ruiz proposes a “A Matrix-Free
Posterior Ensemble Kalman Filter Implementation Based on a Modified Cholesky Decomposition” [13].

2. Non-linear observation operators can be commonly found in the context of observations mapped
from satellite radiances. Consequently, posterior kernels of error distributions are no longer
Gaussian. Thus, alternatives to EnKF formulations are a must under such circumstances,
and therefore, sampling methods based on Markov chain Monte Carlo (MCMC) methods can be
exploited to successfully sample from posterior error distributions. In “Cluster Sampling Filters for
Non-Gaussian Data Assimilation” [14], Attia et al. propose filters which account for non-Gaussian
errors in prior and observations. Furthermore, the convergence of MCMC is sped up by using
Verlet integrators. On the other hand, Nino-Ruiz et al. [15] proposes “A Robust Non-Gaussian
Data Assimilation Method for Highly Non-Linear Models” wherein prior errors are modeled by fitting
GMMs while gradient approximations of the three-dimensional variational cost function are
exploited for accelerating its convergence towards posterior modes.

3. The application to actual scenarios of operational data assimilation methods are widely discussed
by Soldatenko et al. in [16] and by Kou et al. in [17].

We hope that you enjoy reading this Special Issue about efficient formulations and implementations
of ensemble-based methods.
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