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Abstract: This study presents a new conceptual approach to estimate total column mole fractions
of CO2 and CH4 using partial column data. It provides a link between airborne in situ and
remote sensing observations of greenhouse gases. The method relies on in situ observations,
external ancillary sources of information (e.g., atmospheric transport models), and a regression
kriging framework. We evaluate our new approach using National Oceanic and Atmospheric
Administration’s (NOAA’s) AirCore program—in situ vertical profiles of CO2 and CH4 collected
from weather balloons. Our paper shows that under the specific conditions of this study and
assumption of unbiasedness, airborne observations up to 6500–9500 m altitude are required to achieve
comparable total column CO2 mole fraction uncertainty as the Total Carbon Column Observing
Network (TCCON) network provides, given as a precision of the ratio between observed and true
total column-integrated mole fraction, assuming 400 ppm XCO2 (2σ, e.g., 0.8 ppm). If properly
calibrated, our approach could be applied to vertical profiles of CO2 collected from aircraft using
a few flask samples, while retaining similar uncertainty level. Our total column CH4 estimates,
by contrast, are less accurate than TCCON’s. Aircrafts are not as spatially constrained as TCCON
ground stations, so our approach adds value to aircraft-based vertical profiles for evaluating remote
sensing platforms.
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1. Introduction

Satellite–based observations of greenhouse gases (CO2 and CH4) are becoming more common,
and provide an unprecedented spatial and temporal coverage of total column mixing ratios.
The standard method to validate these observations is to compare them with time/space-coincident
observations of airborne in situ vertical profiles, and/or ground-based total column abundance
estimates. This approach has been successfully used to validate retrievals derived (among others)
from Short Wave InfraRed (SWIR) spectra of the GOSAT TANSO-FTS (The Greenhouse Gases
Observing Satellite Thermal and Near infrared Sensor for Carbon Observation Fourier Transform
Spectrometer) [1–4], as well as column-integrated atmospheric CO2 mole fractions (XCO2) inferred
from ground-based Total Carbon Column Observing Network (TCCON) measurements [5–8].

Due to the inherent constraints in the in situ airborne instrumentation functionality (refer to
Tadić et al., 2014’s [2] discussion of limitations of Picarro 2301-m airborne analyzer), air traffic control
issues [3], and limitations of airborne platforms [9], the atmospheric column is rarely entirely sampled.
Total column abundance is usually obtained by combining measurements from the section of the
column that is observed with extrapolated estimates of the unobserved section(s) of the column.
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The major source of uncertainty and bias associated with this framework typically reported in remote
sensing validation studies is associated with the extrapolation of vertical profiles above and below the
observed section of the atmospheric column [2,3]. This uncertainty has been estimated to be typically
less than 1 ppm for XCO2 [1,4] and 2 ppb for XCH4 [10].

In our previous study, which aimed to evaluate the comparability between in situ measurements
and GOSAT satellite XCO2 retrievals [2], about 39% of the atmospheric mass resided above the in situ
observed fraction of the column. Thus we pursued three different extrapolation approaches to estimate
XCO2: (1) we made a simple linear extrapolation of the CO2 vertical profile between the highest aircraft
measurement altitude and the 1 hPa level, fixed at the Atmospheric Carbon Observation from Space
(ACOS) CO2 a priori concentration [11]; (2) we assumed a 140 hPa tropopause height (estimated from
coincident radiosonde measurements), and extrapolated the vertical profile to a constant 390 ppm
mole fraction through this level, and then maintained the ACOS a priori stratospheric profile shape
above this level; and (3) we maintained a constant mole fraction through the top-of-atmosphere (1 hPa)
using the mixing ratio value at the top of the observed vertical profile. We analyzed the extrapolation
error statistics by reviewing the differences between the three approaches. These three approaches
present a number of potential challenges. In the first two approaches, at least two different sources of
information were used to estimate total column abundance: for approach #1, a priori concentration at
1 hPa level; for approach #2, coincident radiosonde measurements and a priori vertical concentration
profiles. The third approach is based on an apparently incorrect hypothesis, since it is well established
that CO2 concentration decreases at higher altitudes [12]. In previous studies [2,3], where observed
and a priori profiles were combined to get a complete vertical profile, the offset between observed
and modeled fractions of the column was handled arbitrarily by shifting the a priori vertical profile to
match the observed profile at the point of contact (the highest measured altitude).

In this study, we further build on the idea of combining different information sources to estimate
total column abundance from partial column airborne observations using semi-continuous and discrete
flask observations, developing, within the umbrella of geostatistics, a formalized and robust approach
to characterize its error statistics. Our goals are three-fold: (a) develop a reproducible method for
estimating XCO2 and XCH4 from partial column sampling and model estimated vertical profiles;
(b) assess the error statistics of such an approach, based on comparison of those estimates with full
column measurements using AirCore vertical profiles and study-specific choice of models and locations
(see Appendix A); and (c) assess the benefit of using continuous vs. discrete measurements (flask
samples), and estimate the optimal number of equally spaced flask samples needed to achieve desired
level of accuracy in total column estimate and its associated uncertainty (see Bakwin et al., 2003 [13]
for more on flask vs. continuous measurements) within the framework of the study. The work was
performed in Matlab 2016a, using code purposely developed for this study.

2. Materials and Methods

2.1. Materials

2.1.1. AirCore Observations

The AirCore technique is an atmospheric sampling system that consists of a long (60–100 m) piece
of coiled tube open to the atmosphere at one end of the tube and closed at the other end, filled with a
known mixture of balanced air. Upon ascent, air in the tube flows out of the tube in order to maintain
pressure equilibrium with surrounding atmospheric conditions, while during descent air flows back
into the tube, replacing the residual fill gas. The AirCore is flown to a maximum altitude of ~30 km by
weather balloons. Molecular diffusion and mixing, caused by shear flow between the walls and the
center of the tube, limits lateral mixing to less than 1 m. This provides “independent” measurements of
dry mole fraction of CO2, CH4, and CO at a 1 m resolution along the tube length. The preserved vertical
composition of the atmosphere is then retrieved using ground-based measurement instruments [14].
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The AirCore has been shown to be a viable high-altitude-range sampling system for CO2 and
CH4 [14]. Its comparability with other in situ and flask measurements is better than 0.05 ppm for CO2

and 0.4 ppb for CH4 under laboratory conditions. Karion et al. (2010) [14] validated AirCore retrievals
of CO2 and CH4 on aircraft flights to ~8 km, showing very good agreement (standard deviation of
differences of 0.3 ppm CO2 and 5 ppb CH4 with flasks, and 0.4 ppm CO2 and 5 ppb CH4 with in situ
analyzer). Membrive et al. (2017) [15] recently compared several AirCore vertical profiles collected
during the same balloon flight, and found that the uncertainty in CO2 and CH4 measurements was
0.25 ppm and 3 ppb, respectively, and in an ideal case could reach 0.1 ppm, and 2 ppb respectively.

In this study we used all AirCore measurements available through October 2016 to generate
pseudo vertical profiles representing aircraft-based in situ and discrete (flasks) vertical profiles.
This was done by sampling AirCore profiles within ranges of altitudes corresponding to simulated
continuous sampling, or by sampling AirCore profiles at discrete points to simulate flask measurements
(i.e., AirCore profiles provided information about the true profile). By comparing the resulting total
column estimates using our method with total column estimates based on entire AirCore profiles,
we assessed the accuracy of our approach.

2.1.2. Atmospheric Transport Models

Atmospheric transport models bring important information about contribution of transport to
the structure of the vertical profiles that cannot be derived using a simple interpolation from the top of
an in situ vertical profile to the top of the atmosphere. We used two atmospheric transport models to
simulate vertical transport and generate an auxiliary dataset for the geostatistical analytical framework.

Specifically, we used the Parameterized Chemistry Transport Model (PCTM, [16]) and the
GEOS-Chem model (e.g., [17–19]) to simulate CO2 and CH4 modeled vertical profiles, respectively.
We selected these models for two reasons. First, both models are widely used by the CO2 and CH4

modeling communities and are therefore representative of current understanding of atmospheric
transport. Second, both models have a well-resolved vertical structure of the atmosphere with
56 and 47 layers, respectively. This allows each model to resolve vertical variations in CO2 and
CH4 mixing ratios in great detail.

PCTM has global coverage, with a spatial resolution of 1 degree latitude by 1.25 degrees longitude.
PCTM transports CO2 fluxes through the atmosphere using winds from NASA’s Modern-Era
Retrospective Analysis for Research and Applications (MERRA) meteorological product [20]. We used
biospheric and anthropogenic CO2 fluxes from NOAA’s CarbonTracker [21] to simulate atmospheric
concentrations of CO2 at a 3-h time resolution. Although these fluxes have been optimized to
match in situ CO2 observations from NOAA Cooperative Air Sampling Network from around the
globe, this optimization process does not use AirCore observations. CarbonTracker also provides
global model output from atmospheric transport model TM5, but these model simulations have only
25 vertical levels, less than half the number in PCTM, therefore we did not use TM5 output in our
study. (Refer to [22]).

We used the GEOS-Chem model to simulate atmospheric XCH4. A number of existing studies use
GEOS-Chem to simulate atmospheric CH4 at regional to global scales (e.g., [17–19,23]). GEOS-Chem
simulations used here have global coverage, and a spatial resolution of 2 degrees latitude by
2.5 degrees longitude. Other common atmospheric CH4 models, like TM5, have fewer vertical
levels and are therefore less well-suited to the applications in this study (e.g., [24]). We used
anthropogenic emissions from the EDGAR v4.2 inventory [25], biomass burning emissions from
the Global Fire Emissions Database (GFED v4) [26,27], and wetland fluxes from a model described
in Pickett-Heaps et al. (2011) [17]. GEOS-Chem transports these fluxes using GEOS-5 (for 2012) and
GEOS-FP (for 2013–2014) meteorology fields [28], simulating atmospheric CH4 mole fraction on a daily
time resolution. We initialized the GEOS-Chem runs starting on 1 January 2009, and ran GEOS-Chem
from that time until the date of the AirCore profiles. We used CarbonTracker-CH4 [29] as the initial
state for the model. CarbonTracker-CH4 is a model-data assimilation product described in detail in
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Bruhwiler et al. (2014) [24]. In summary, Bruhwiler et al. (2014) [24] model CH4 in the atmosphere
using the TM5 (Transport Model 5) and use global in situ observations to optimize the fluxes in the
model. The initial condition used for the GEOS-Chem simulations is the TM5 model output after the
CH4 fluxes have been optimized. Turner et al. (2015) [19] describe the treatment of hydroxide (OH)
and methane oxidation within GEOS-Chem.

We used CO2 and CH4 vertical profiles simulated using PCTM and GEOS-Chem models,
respectively, where AirCore-based vertical profiles are available (serving as true value surrogates for
this theoretical study). To create pseudo-airborne observations, we sampled sections of the AirCore
vertical profiles that correspond to typical airborne-sampled altitude ranges, or sampled a few points
to reproduce discrete flask-based observations.

2.2. Methods

We used vertical profiles simulated by both models to extrapolate the measured section
(i.e., the selected altitude range taken from AirCore vertical profile) to the bottom and top of the
atmosphere. The resulting synthetic vertical profiles are partially based on both direct measurements
(part of AirCore vertical profiles) and external auxiliary information (model simulations). The models
provide an estimate of the “external drift”, the term we use to denote the model of the mean (please
see Hengl et al. (2003) [30] for further clarifications of the notion of external drift). We used the spatial
autocorrelation of the residuals of the CO2 and CH4 mixing ratios between modeled and observed
vertical profiles for the fraction of the column where observations are available (i.e., where the AirCore
vertical profile was sampled), and parameterized it using height-dependent covariance functions in a
“moving window” setup (see [31] for a general introduction into the “moving window” approach).
“Residuals” are vertically resolved differences or mismatches between observed profiles (or discrete
flask samples) and modeled profiles. The variability of residuals was modeled in such a way that only
the top and bottom parts of the observed section of the atmospheric column that fall within a bin of
a predetermined thickness are used in the extrapolation (for both covariance parameter estimation
and for kriging residuals; see below). In the case of flask-based observations, the inability to model
variability (i.e., estimate covariance parameters) directly from data was substituted by the imputed
(assigned) average model-specific variability of the residuals. We minimized the observed variability
of the residuals with height by forcing those residuals to be zero at 27 km altitude (which corresponds
to standard barometric pressure of 2 hPa, which practically covers the entire column). The approach
is based on two assumptions: (1) the modeled vertical profile at near-zero pressure is accurate; and
(2) the variability of the residual above and below the observed fraction of the column is similar to
the variability observed at the top and bottom of the column, respectively. The representativeness of
the covariance inferred from the observed top section of the column to the remainder of the column
above still remains an open question, because it is reasonable to expect that the non-stationarity of the
covariance will be present above the top of the observed section of the column. The potential remedy
for this problem is sequential conditional simulations, starting from the highest observed elevation
of the vertical profile, simultaneously altering covariance parameters for each subsequent simulated
point to reflect the presumed altitude, changing the structure of the covariance of the residuals.

In an extreme case, one scenario would prevail: (1) a perfect biogeochemical atmospheric transport
model would represent true vertical profiles at any spatio-temporal location, and actual observations
would not be necessary; or (2) total column observations would be perfectly distributed, covering the
entire atmospheric column, and additional information from model simulation would not be necessary.
In both cases, only one information source would be sufficient. In reality, however, neither scenario is
currently achievable. The approach we present is meant to cover the gaps created by imperfections
of both atmospheric transport models and sampling techniques. We used model-derived vertical
profiles of the mixing ratios as auxiliary data to estimate the height-dependent mean value below and
above the simulated/observed section of the column, based on residual (regression) kriging method
(see [32–34]). In other words, the deterministic component of the field is provided by the modeled
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vertical profile. This setup is similar to the ones used in our recent studies where universal kriging and
kriging with external drift were applied [35,36].

We modeled the covariance of the residuals separately for the top and bottom of the observed
column, and in each case used a window of ±500 m. For example, if observation is collected up to
9000 m, the variability at the top of the vertical profile is modeled using residuals in the 8500–9000 m
range. For flask-based observations, we used the assigned, model-specific variability as a proxy for the
model-data residual. To assess the uncertainty of the full vertical profile, the section of the vertical
profile below and above the observed section of the atmosphere were conditionally simulated using
the covariance parameters observed at the lowest sampled fraction of the vertical profile, and data that
fall within the 500 m window (see Appendix B for the detailed explanation of conditional simulations).
We assumed that variability of the residuals would decrease with altitude, and eventually reduce to
zero at the top of the atmosphere. We forced them to collapse with height by setting residuals to zero
at 27 km altitude (in other words, we assumed that models accurately represent zero-pressure mixing
ratios). The uncertainty of the total column estimates was assessed using the variance of an ensemble
of 200 conditional realizations of the total column (please see Appendix B for details about conditional
simulations). We calculated the uncertainty and bias of the full atmospheric vertical profile based on
partial observations by comparing the simulated vertical profiles to AirCore vertical profiles, used as
the absolute truth. To conclude, the non-stationarity of the mean and the variance of the synthetic
vertical profile were taken into account using the atmospheric transport model vertical profile to
provide the drift and the “moving window” approach, respectively.

2.2.1. Interpolation Method

Kriging represents a geostatistical interpolation method in which the interpolated value is
expressed as a linear combination of known/measured values, using a prescribed spatial covariance
that can come directly from the data, or can be derived using a model that simulates the dominant
factors affecting the underlying spatial covariance. The spatial covariance is usually estimated from
the data through a technique known as variogram analysis [33]. In this study, we estimated variogram
(covariance) parameters by fitting the selected theoretical variogram model into raw variogram
using ordinary least-squares. We decided to choose residual kriging (RK), because it addresses the
non-stationary mean (non-stationary mean, in general, implies the difference between the mean at
current and other spatio-temporal locations), and allows use of relatively simple covariance modeling
functions [32,37]. The advantage of RK is its ability to explicitly separate the interpretation of the
two interpolated components—stochastic and deterministic [38]. In this study the deterministic
component—altitude trend (drift)—was provided by the modeled vertical profiles.

Non-stationarity of the covariance was taken into account through the moving window approach,
as said earlier. Under the term “window” in this study, we assume a range of heights having (near)
stationary covariance. In combination with kriging with external drift, this approach fully addresses
the issues that stem from the non-stationarity of both mean and variance in the extrapolation of the top
section of the column, above the sampled range of altitudes. We recognize that by using the modeled
vertical profile to provide a drift, the synthetic vertical profile (obtained by superposing model and
residuals) is more sensitive to the variability in the residuals than their actual values (or model bias)
per se. Please see Appendix A for additional details.

2.2.2. Scenario 1: Partial Column Profiles Available

The first scenario represents a case where dense in situ observations (unlike discrete flask samples)
are taken semi-continuously up to a certain altitude, but do not cover the full atmospheric column.
This scenario represents a common case, when in situ observations are collected on board of airborne
platforms. We represented this scenario separately, assuming that the minimum altitude aircraft can fly
is 200 m above ground level (agl), which is consistent with flight rules above low-density population
centers. We simulated scenarios where observations covered a range of maximum altitudes (3000, 5500,
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6500, 7500, and 8500 m above mean sea level (amsl)). Given that ground elevation changes across sites
where AirCore vertical profiles were collected, each site had a different sampled range of altitudes,
from 200 m agl up to the actual maximum altitude. The covariance parameters inferred from the top
and bottom of the partial vertical profile were used to reconstruct the missing upper and lower section
of the vertical profile, respectively.

2.2.3. Scenario 2: Only Discrete Profiles Available

Apart from continuous in situ measurements, trace gas observations are often collected using air
samples, typically 6 to 12 flasks per vertical profile [9,39]. Automated flask sampling was proposed
as a low-cost, reliable method to greatly increase the density of measurements of multiple trace gas
mixing ratios in continental regions [13,40]. Bakwin et al. (2003) [13] concluded that having fewer
than 8–10 flask measurements could lead to significant column estimate bias for some common CO2

profile shapes. In Bakwin et al. (2003) [13], flask sampling was simulated within altitude range
0.25–4 km, and complete vertical profiles were obtained using simple linear extrapolation, while the
effect of instrument noise and small-scale ambient variability were simulated by adding random,
normally distributed (standard deviation = 0.2 ppm) noise to extrapolated data. CO2 mixing ratios
variability below 0.25 km agl was assumed to be small. The major challenge is that a small number
of flasks collected might be insufficient to infer the covariance structure over the range of sampled
altitudes. To address this potential limitation, we assigned model-specific average observed variability
of the residuals at 6500 m amsl (obtained through the analysis of covariance of the residuals in
all other simulated cases in this study, using continuous sampling vertical profiles, as in Scenario
1). The average model-specific covariance parameters of the residuals are not random, and can be
viewed as a model’s inherent property (i.e., accuracy), thus making them generalizable and portable.
We reconsidered conclusions from Bakwin et al. (2003) [13], through a comparison of a total column
estimate derived from simulated flask sampling over the 0–6500 m altitude range (a typical range of
altitudes for aircraft observation programs), and AirCore-derived XCO2 estimates. In this case we
calculated a synthetic vertical profile from flask observations, the average covariance structure of the
residuals, and the vertical profile used as the model of the mean. The results evaluate the potential
of using XCO2 estimates derived from flask observations to validate remote sensing satellite and
TCCON measurements. We simulated flask sampling by sampling every available AirCore vertical
profile at 1–12 equidistant altitudes within altitude range 0–6500 m agl, and then derive two products:
(1) average column value for 0–6500 m range; and (2) XCO2 value.

3. Results and Discussion

3.1. Covariance Model Selection and Local Parameter Inference

Figure 1 shows: (a) a semi-variogram of the residuals as a function of the vertical distance
and (b) its average variance as a function of elevation. From Figure 1, it follows that the modeled
profiles tend to better represent observed variability at higher altitudes, and show smaller model/data
mismatches. This indirectly supports one of the initial assumptions of our approach: to impose the
collapse of the residuals at the top of the atmosphere. The differences in variograms at the top and
bottom of the atmospheric profile confirm non-stationarity of the covariance, and emphasize the need
to implement a moving window approach. Variograms were separately modeled for each CO2 and
CH4 in situ sampling simulation.
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Figure 1. (a) Example variograms of the residuals at 200 and 8500 m altitude (window size ±500 m) for
CO2 (01/14/2012); (b) Height dependence of the average estimated variance for CO2 of the residuals
(window size ±500 m) for the entire dataset.

3.2. Simulation of the Full-Column (Synthetic) Profiles

3.2.1. Scenario 1: Partial Column Profiles Available

Figure 2 shows synthetic vertical profiles obtained following our approach.
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Figure 2. Sampled and reconstructed fraction of the CO2 column (24 October 2012) (a,b), and CH4

(17 September 2014) (d,e) showing ensemble conditional realization cloud based on the covariance
parameters inferred at the top of the sampled partial column. Modeled profiles for CO2 and CH4 are
given in (c,f), respectively. Red line extending from the top of the sampled fraction upward represents
the synthetic profile. Simulated sampled column altitude range was: (a) h < 3000 m and (b) h < 8500 m,
visible in the profiles as the altitude ranges where conditionally simulated ensembles are missing.

In Supporting Information , Tables S1 and S3, we show detailed results for each site for a total of
14 sites. Although PCTM profiles significantly overestimate XCO2, and GEOS-Chem underestimates
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XCH4 total column values compared to observed AirCore vertical profiles, our approach, by
design, removes this mismatch at sampled locations, which can be viewed as some sort of shifting.
Thus, our individual synthetic vertical profile is a closer match to the observed vertical profile. The
ability of the synthetic vertical profiles to match the observed vertical profiles will depend on the
accuracy of the modeled vertical profiles, and specifically on realistic representation of the vertical
variability. In the case of CH4 whose concentration drastically decreases in the stratosphere, the
accuracy of synthetic vertical CH4 profiles will depend on how accurately the model simulates a
tropopause height (this problem also affects CO2 to a lesser extent). Given this limitation, the altitude
range of observations required to equally constrain total column estimates are dependent on the factors
that affect accuracy in estimating tropopause height, e.g., latitude, location, and season. This weakness
should diminish as both Atmospheric Transport Model (ATM) accuracy and our approach co-evolve.

3.2.2. Scenario 2: Only Discrete Profiles Available

In the case of discrete (i.e., flask) vertical profiles, the covariance structure of the residuals cannot
be determined due to insufficient information from observations. Insufficient number of sampled
points, and the fact that samples are often nearly equi-spaced, prevent observing the dependence of
the semi-variance with distance, which is necessary for inferring the covariance structure. In this case,
we imposed average observed covariance parameters on the entire dataset, and reconstructed missing
fractions of the column using a few measurement points (flasks). Results are shown in Figure 3 and
Supporting Information Tables S2 and S4.
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Figure 3. Reconstructed full vertical CO2 (a,b) (15 August 2012) and CH4 (d,e) (15 January 2012)
profiles showing ensemble conditional realization cloud based on the imputed covariance parameters
(sill 0.41 ppm2 and 55 ppb2, range parameter 6000 m and 10,000 m, for CO2 and CH4, respectively).
Modeled profiles for CO2 and CH4 are given in (c,f), respectively. Red line represents the mean of
200 conditional realizations and the reconstructed full profile shape. The number of simulated flasks
shown was two for (a,c), and six for (c,d).
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3.3. Uncertainty Analysis and Potential Method Applicability

Proper uncertainty analysis assumes understanding the uncertainty that stems from both
deterministic and stochastic components of the synthetic vertical profiles, and then comparing the
synthetic and observed vertical profiles.

Estimating the missing part of the vertical profile through conditional realizations was intended as
a way to assess the precision of the total column estimates. However, in this case the precision based on
ensemble conditional realizations is not a realistic representation of the true error statistics. The residual
kriging approach, by our study’s design, assumes that the relationship between corrected modeled
vertical profiles (model + residuals) at the sampled range of altitudes will hold for an unsampled
fraction of the column. This is wrong, as the ‘model + residuals’ is set to be equivalent to sampled
altitudes, while it is not true for the unsampled fraction of the column. Thus, the variance of XCO2

estimates derived from column profiles based on ensemble conditional realizations should be added to
the unknown variance stemming from the inability of the combined ‘model + residuals’ profile (which
provides the drift) to hold the same relationship to the true vertical profile at unsampled altitudes.
A realistic error analysis based on the comparison between total column values derived from synthetic
and AirCore vertical profiles is shown in Table 1.

Table 1. Error statistics for total column CO2 (XCO2) and CH4 (XCH4) based on simulated partial
profiles and flask sampling given as mean absolute error (MAE; ppm), standard deviation from the
true value (AirCore derived total column), and standard deviation in an “unbiased scenario” where the
XCO2 mean of synthetic profile and the true value are the same. The confidence interval was derived
from two-tailed t-statistics.

Greenhouse Gas Parameters
Partial Profiles (<m amsl) Number of Flasks, 0–6500 m

3000 5500 6500 7500 8500 1 2 6 12

CO2

MAE (ppm) 0.76 0.50 0.37 0.36 0.32 0.60 0.44 0.49 0.51
95% MAE confidence interval 0.41 0.25 0.17 0.16 0.12 0.34 0.20 0.18 0.25

σ (ppm) 0.93 0.66 0.50 0.48 0.44 0.69 0.54 0.69 0.66
Unbiased σ (ppm) 0.60 0.44 0.36 0.35 0.34 0.45 0.42 0.54 0.45

CH4

MAE (ppb) 7.72 7.67 8.6 11.23 9.85 8.84 10.51 7.47 8.00
95% MAE confidence interval 5.74 5.18 5.94 8.81 6.67 5.62 5.13 5.72 6.01

σ (ppb) 10.26 8.94 10.00 15.71 11.22 12.66 13.60 10.30 10.46
Unbiased σ (ppb) 10.02 9.04 10.37 15.36 11.63 9.81 8.96 9.99 10.48

At the time of study, the number of available AirCore observations globally was 14. Given the
relatively small sample number (14) and missing information about the true standard deviation in the
error population mean, we used a two-tailed t-statistics (not z-statistics) method to assess the uncertainty
bounds of error estimates, and determined that the minimum sample size required for the study was
eight. We rephrased the common question in t-statistics test and checked how far away the true error in
the mean has to be to still fall into 95% confidence interval for each of the examined scenarios (Table 1).

Error analysis revealed a few interesting properties of our approach. First, the method based on the
PCTM and GEOS-Chem models has its own bias, and tends to overestimate XCO2 by ~0.3 ppm. A bias
correction generally improves the error statistics. In Table 1, we show both unbiased (bias-corrected)
and uncorrected standard deviations of XCO2 values derived from the synthetic vertical profiles (bias
correction was done by shifting the mean, and given that errors are not normally distributed with
outliers, in a few cases the error was increased by shifting the mean).

3.4. Comparison with TCCON Retrievals

A comparison of direct measurements of the atmosphere and TCCON indicates a correction of
0.989 ± 0.002 is needed for XCO2, and 0.978 ± 0.004 for XCH4 [5], given as the ratio between aircraft
and TCCON-derived profiles (2σ). Apart from implying a need for a constant TCCON calibration to
maintain its accuracy at the desired level, the reported precision translates into ~0.8 ppm 2σ uncertainty
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for a baseline CO2 mixing ratio of 400 ppm, and 8 ppb for CH4, given 2000 ppb baseline mole fraction.
Geibel et al. (2012) [8] found that the average correction for TCCON XCH4 needed to match the aircraft
observations was −7 ppb. (Note: there can be residual bias in TCCON retrievals due to temporal
sparsity of calibrations, but we do not further analyze these biases here. For a detailed recent analysis
of TCCON uncertainty please see Inoue et al., 2016 [41]).

One of the goals of our study is to assess the minimum flight altitude required for the synthetic
profile derived for XCO2 to achieve uncertainty close to TCCON’s. Table 1 shows that one would
have to fly at least to 9000–9500 m using a non-bias-corrected method. However, this changes after
correcting for bias; that result shows that flights up to ~6000 m, in combination with our approach,
could yield an XCO2 total column estimate with error statistics comparable to TCCON. For XCH4,
both continuous and flask sampling in combination with profiles fail to match the reported uncertainty
of TCCON.

3.5. Conceptual Comparison to Classical Approach

One interesting feature of our approach (Table 1) is that the total column MAE obtained by
sampling continuously up to 3000 m is slightly larger than having a single flask sample at 3250 m.
This result may appear counterintuitive. In the classical approach, sampling a wider range of altitudes
(i.e., flying higher) necessarily means better constraining the total column estimate. This logic is
generally the case, but several complications can produce unexpected results, like the result described
above. In these cases, the location where flask samples are collected within the vertical profile can
be as important as the total number of flask samples. Furthermore, the accuracy of the atmospheric
model (i.e., auxiliary information) can be more important at some altitudes than others.

Figure 4 displays the results of a thought experiment and is one illustrative example of this
challenge. In this thought experiment, we assume a specific true vertical profile of CO2 (Figure 4a).
We also assume that the modeled vertical profile nearly perfectly reflects the variability of the observed
vertical profile, except between ~10–16 km altitude. Furthermore, in our thought experiment, the model
has a positive offset ~2 ppm at lower altitudes (Figure 4b). We also assume two cases having a
continuous sampling up to 10 km (Figure 4c), and 14 km (Figure 4d).

We constructed a full XCO2 column using these synthetic vertical profiles, and observed several
interesting features. In the first case, the atmospheric model (i.e., auxiliary information) affects the
shape of the synthetic vertical profile at altitudes where the atmospheric model exhibits deviations
from the truth, but not significantly above that range of altitudes. However, in the case of simulated
sampling up to 14 km, the deviations of the model negatively affect the synthetic vertical profile at
the entire range of altitudes above the observed fraction. In the latter case, the retrieved total column
estimate is less accurate that in the first case, although the sampling covers a wider range of altitudes.
This result shows that, in our approach, a large sampling domain is important, but the accuracy of
the synthetic vertical profiles is also dependent on how well the atmospheric model reproduces the
observed vertical profile at the highest observed altitude. Atmospheric models generally tend to
be more accurate at higher altitudes where mixing ratios are less heterogeneous and inaccuracies in
estimated surface fluxes have less of an effect. In this specific thought experiment, the subtle interplay
between inaccurate representations of the variability by the atmospheric transport model and the
absolute accuracy of the model results in having high altitude discrete observations which do not
correct or nudge the atmospheric model in a way that improves accuracy across the entire column.
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4. Conclusions

In this paper, we present an alternative approach to estimating XCO2 using partial column
observations and external sources of information. We demonstrate and evaluate the method by
creating synthetic vertical profiles at several sites where AirCore observations are available, which we
used as true vertical profiles. We assess the reliability of the error statistics based on the analysis of
ensemble conditional simulations and true differences between synthetic and AirCore vertical profiles,
and conclude that the spread in conditional realizations and corresponding total column estimates
cannot be used to realistically represent the true error statistics.

The statistics based on the comparison to AirCore vertical profiles show that a level of precision
comparable to that of TCCON can be achieved by using a non-biased version of our approach and
flights up to ~6000 m amsl (for ground elevations <~1500 m like at the AirCore sites) using PCTM
modeled derived vertical profiles. We show that by combining the modeled vertical profile, the
model-specific assigned variability, and in situ observations, the number of equidistant flasks could be
reduced to as low as two in the 0–6500 m amsl range, while still retaining the ability to estimate total
column values at a level of accuracy comparable to those achieved using continuous airborne-based
observations. The findings of this study is in contradiction to the conclusion from [13], which shows
having less than 8–10 flask samples leads to a degradation of the information content for some common
CO2 vertical profiles.

Note that the limited number of available AirCore observations reduced the number of CO2

vertical profiles examined in this paper. Derived error statistics for the overall performance of the
two models might have been affected by the non-representativeness of the performance of models at
14 sites where AirCore vertical profiles are available. Unfortunately, using models of aircraft vertical
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profiles as AirCore surrogates in this study is ruled out, as model-to-model differences exceed the
model-to-truth differences and will likely affect the error statistics when aircraft vertical profiles exhibit
non-negligible effects of the superposition of horizontal and vertical variability [36].

While we used the PCTM and GEOS-Chem chemical transport models (CTMs) in this study,
our conceptual approach goes beyond selection of any particular source of external information: it
tries to establish a new paradigm in creating synthetic vertical profiles based on limited information
from samples and auxiliary information. In fact, as global knowledge and observational coverage
increase, and thus the reliability of auxiliary information, the resulting synthetic vertical profile will
continually become closer to the true value.

A few factors can adversely affect the reliability of this extrapolation method. In this study,
we sampled AirCore vertical profiles in a manner consistent with continuous or discrete observations
of the partial column. Therefore, the accuracy of the sampled vertical profile was as accurate as the
AirCore vertical profiles themselves. In fact, AirCore vertical profiles were imposed as a truth for
the purpose of this study. In practice, observations are collected from airborne platforms, which may
capture partial vertical profiles, or from use of flasks, which has an intrinsic uncertainty that has to be
accounted for.

We envision that further improvements in the quality of the modeled vertical profiles,
either through better understanding of the physico-chemical processes that affect their shapes,
or simply by assimilating more observations, will push these threshold altitudes down to ranges
reachable even by commercially available small unmanned aerial vehicles (UAVs) (3000–4000 m)
(e.g., https://www.microdrones.com/en/products/md4-3000/). Besides the maximum altitude,
the biggest limitations for current UAVs are their limited payload (a few kg) and flight endurance
(30 min). We provide evidence that a few flask samples collected at optimal altitudes can yield accurate
XCO2 estimates, which, in combination with further development of small UAVs instrumented with
lightweight flask sampling systems, could open possibilities of getting XCO2 estimates at low cost,
while achieving accuracy comparable to expensive, labor intensive TCCON-based XCO2.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/9/7/247/s1,
Table S1: Estimated total column (XCO2) values (ppm) derived from AirCore, model-only (PCTM + CarbonTracker
(CT)) and synthetic vertical profiles calculated using our approach based on partial, Table S2: Estimated total
column (XCO2) values (ppm) derived from AirCore vertical profiles, different number of simulated flask samples
taken at 0–6500 m amsl altitude range, and model-only (PCTM + CarbonTracker (CT)), Table S3: Estimated total
column (XCH4) values (ppm) derived from AirCore vertical profiles, modelonly (GEOS-Chem) and synthetic
vertical profiles, calculated using our approach based on partial column measurements, Table S4: Estimated total
column (XCH4) values (ppm) derived from AirCore vertical profiles, different number of simulated flask samples
taken at 0–6500 m amsl altitude range, and model-only (GEOS-Chem) column measurements.
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Appendix A

Residual (Regression) Kriging

The modeling procedure followed several steps. First, we calculate a raw variogram of the
residuals based on the observations falling within the predefined window:

https://www.microdrones.com/en/products/md4-3000/
http://www.mdpi.com/2073-4433/9/7/247/s1
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γ(h) =
1
2
[
y(xi)− y

(
xj
)]2 (A1)

where γ is the raw variogram value for a given pair of residuals y(xi) and y(xj), and h is the vertical
distance between the locations (xi and xj) of these residuals.

Second, the theoretical variogram is fitted to the raw variogram using non-linear least squares.
We chose an exponential variogram function with a nugget effect, based upon visual inspection
of variograms:

γ(h) =

{
0, f or h = 0

σ2
(

1 − exp
(
− h

l

))
+ σ2

nug, f or h > 0
(A2)

where σ2 and l are the variance and correlation length of the quantity being mapped, and σ2
nug is the

nugget variance, typically representative of measurement errors and very close to zero in this study.
Under the second-order stationarity assumption, covariance and semi-variogram can be regarded

as equivalent statistical tools, as there is a simple relation between them:

γ(h) = C(0) − C(h) (A3)

where h is the distance between points, and C(0) is “sill” (semivariogram value at infinite distance).
The typical semi-variogram of the residuals at the top and bottom fractions of the sampled portion

of the column is shown in Figure 1.
The variogram parameters can be used to define a corresponding local spatial covariance structure

(q). For the variogram function in Equation (A2), this becomes:

q(h) = σ2 exp
(
−h

l

)
(A4)

Third, the linear system of equations that is solved to obtain the N weights λ assigned to the
residuals within a predefined window:[

Q + R 1
1T 0

][
λ

−ν

]
=

[
q0
1

]
(A5)

where Q is an N × N covariance matrix among the N residuals with individual entries as defined in
Equation (A3), R is an N × N diagonal measurement and retrieval error covariance matrix among the
N residuals, 1 is an N × 1 unity vector, T denotes the vector transpose operation, and q0 is an N × 1
vector of the spatial covariances between the estimation locations and the N locations of residuals.

The system in Equation (A5) is solved for λ and the Lagrange multiplier ν. These parameters
are then used to define the estimate (
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All calculations were conducted in a Euclidean coordinate system, while AirCore and modeled

profile coordinates were given in Lat/Long/Alt format based on WGS84 spheroid earth model [42].
The coordinates were converted into the Universal Transverse Mercator coordinate system to allow
computations of distances and angles using Euclidean geometry over short distances [43].
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Appendix B

Conditional Simulations

Conditional realizations (also known as spatially-consistent Monte Carlo simulations) of CH4 and
CO2 variability were generated for every test case, extending from the highest sampled altitude to
1 hPa. They represent equally probable realizations of a spatial random function. Each realization
honors both observed values at measurement locations and imposed reduction in the variability of the
model/measurement mismatch with altitude. Conditional simulations could be viewed as being based
on both the data and the model, and consistent with observed values and with the degree of variability
expected of the true (unknown) distribution of the model/data mismatch. Individually, the conditional
realizations provide an accurate representation of the degree of variability in the unknown “true” field,
while the average across conditional realizations asymptotically approaches the kriging estimate as
the number of realizations tends to infinity. The ensemble of conditional realizations represents the
uncertainty in the estimated profile that stems from the stochastic component of the synthetic profile.
Conditional realizations differ from kriging, which provides point-wise “best estimates,” but kriging
estimates are spatially smoother than reality.

We generated an ensemble of 200 conditional simulations for each test case (each available AirCore
profile). Each realization (sci, m × 1) was calculated as (see [44] for additional details):

sci = Λ(z − zui) + sui (A8)

where Λ is the m × n matrix of weights defined in Equation (A4), z (n × 1) are the observations, and zui

(n × 1) and sui (m × 1) are unconditional realizations at measurement (n) and estimation (m) locations,
respectively, obtained from: [

zui
sui

]
= CTu (A9)

where u is an (n + m) × 1 vector of normally distributed random values with zero mean and unit
variance (a new vector u is generated for each realization), and C is the (n + m) × (n + m) matrix
resulting from the Cholesky decomposition of the covariance matrix:[

Q + R 1
1T 0

]
= CCT (A10)

The vector components of the matrix Λ used in Equation (A8) (λ), and Lagrange multipliers
are obtained by solving the system of linear equations shown in Equation (A5) (see examples of the
generated conditional realizations in Figure 2).
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Notholt, J.; Palm, M.; et al. Calibration of column-averaged CH4 over European TCCON FTS sites with
airborne in-situ measurements. Atmos. Chem. Phys. 2012, 12, 8763–8775. [CrossRef]

9. Biraud, S.C.; Torn, M.S.; Smith, J.R.; Sweeney, C.; Riley, W.J.; Tans, P.P. A multi-year record of airborne CO2

observations in the US Southern Great Plains. Atmos. Meas. Tech. 2013, 6, 751–763. [CrossRef]
10. Inoue, M.; Morino, I.; Uchino, O.; Miyamoto, Y.; Saeki, T.; Yoshida, Y.; Yokota, T.; Sweeney, C.; Tans, P.P.;

Biraud, S.C.; et al. Validation of XCH4 derived from SWIR spectra of GOSAT TANSO-FTS with aircraft
measurement data. Atmos. Meas. Tech. 2014, 7, 2987–3005. [CrossRef]

11. O’Dell, C.W.; Connor, B.; Bösch, H.; O’Brien, D.; Frankenberg, C.; Castano, R.; Christi, M.; Eldering, D.;
Fisher, B.; Gunson, M.; et al. The ACOS CO2 retrieval algorithm—Part 1: Description and validation against
synthetic observations. Atmos. Meas. Tech. 2012, 5, 99–121. [CrossRef]

12. Foucher, P.Y.; Chedin, A.; Armante, R.; Boone, C.; Crevoisier, C.; Bernath, P. Carbon dioxide
atmospheric vertical profiles retrieved from space observation using ACE-FTS solar occultation instrument.
Atmos. Chem. Phys. 2011, 11, 2455–2470. [CrossRef]

13. Bakwin, P.S.; Tans, P.P.; Stephens, B.B.; Wofsy, S.C.; Gerbig, C.; Grainger, A. Strategies for measurement of
atmospheric column means of carbon dioxide from aircraft using discrete sampling. J. Geophys. Res. 2003,
108, 4514. [CrossRef]

14. Karion, A.; Sweeney, C.; Tans, P.; Newberger, T. AirCore: An Innovative Atmospheric Sampling System.
J. Atmos. Ocean. Tech. 2010, 27, 1839–1853. [CrossRef]

15. Membrive, O.; Crevoisier, C.; Sweeney, C.; Danis, F.; Hertzog, A.; Engel, A.; Bönisch, H.; Picon, L. AirCore-HR:
A high-resolution column sampling to enhance the vertical description of CH4 and CO2. Atmos. Meas. Tech.
2017, 10, 2163–2181. [CrossRef]

16. Kawa, S.R.; Erickson, D.J.; Pawson, S.; Zhu, Z. Global CO2 transport simulations using meteorological data
from the NASA data assimilation system. J. Geophys. Res. 2004, 109. [CrossRef]

17. Pickett-Heaps, C.A.; Jacob, D.J.; Wecht, K.J.; Kort, E.A.; Wofsy, S.C.; Diskin, G.S.; Worthy, D.E.J.; Kaplan, J.O.;
Bey, I.; Drevet, J. Magnitude and seasonality ofwetland methane emissions from the Hudson Bay Lowlands
(Canada). Atmos. Chem. Phys. 2011, 11, 3773–3779. [CrossRef]

18. Wecht, K.J.; Jacob, D.J.; Wofsy, S.C.; Kort, E.A.; Worden, J.R.; Kulawik, S.S.; Henze, D.K.; Kopacz, M.;
Payne, V.H. Validation of TES methane with HIPPO aircraft observations: Implications for inverse modeling
of methane sources. Atmos. Chem. Phys. 2012, 12, 1823–1832. [CrossRef]

19. Turner, A.J.; Jacob, D.J.; Wecht, K.J.; Maasakkers, J.D.; Lundgren, E.; Andrews, A.E.; Biraud, S.C.; Boesch, H.;
Bowman, K.W.; Deutscher, N.M.; et al. Estimating global and North American methane emissions with high
spatial resolution using GOSAT satellite data. Atmos. Chem. Phys. 2015, 15, 7049–7069. [CrossRef]

20. Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.;
Takacs, L.; Kim, G.K.; et al. MERRA: NASA’s modern-era retrospective analysis for research and applications.
J. Clim. 2011, 24, 3624–3648. [CrossRef]

21. Peters, W.; Jacobson, A.R.; Sweeney, C.; Andrews, A.E.; Conway, T.J.; Masarie, K.; Miller, J.B.;
Bruhwiler, L.M.P.; Petron, G.; Hirsch, A.I.; et al. An atmospheric perspective on North American carbon
dioxide exchange: CarbonTracker. Proc. Natl. Acad. Sci. USA 2007, 104, 18925–18930. [CrossRef] [PubMed]

http://dx.doi.org/10.5194/acp-13-9771-2013
http://dx.doi.org/10.1098/rsta.2010.0240
http://www.ncbi.nlm.nih.gov/pubmed/21502178
http://dx.doi.org/10.5194/acp-11-10765-2011
http://dx.doi.org/10.5194/amt-3-947-2010
http://dx.doi.org/10.5194/acp-12-8763-2012
http://dx.doi.org/10.5194/amt-6-751-2013
http://dx.doi.org/10.5194/amt-7-2987-2014
http://dx.doi.org/10.5194/amt-5-99-2012
http://dx.doi.org/10.5194/acp-11-2455-2011
http://dx.doi.org/10.1029/2002JD003306
http://dx.doi.org/10.1175/2010JTECHA1448.1
http://dx.doi.org/10.5194/amt-10-2163-2017
http://dx.doi.org/10.1029/2004JD004554
http://dx.doi.org/10.5194/acp-11-3773-2011
http://dx.doi.org/10.5194/acp-12-1823-2012
http://dx.doi.org/10.5194/acp-15-7049-2015
http://dx.doi.org/10.1175/JCLI-D-11-00015.1
http://dx.doi.org/10.1073/pnas.0708986104
http://www.ncbi.nlm.nih.gov/pubmed/18045791


Atmosphere 2018, 9, 247 16 of 17

22. CarbonTracker CT2017. Available online: https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/
(accessed on 22 June 2018).

23. Wecht, K.J.; Jacob, D.J.; Frankenberg, C.; Jiang, Z.; Blake, D.R. Mapping of North American methane
emissions with high spatial resolution by inversion of SCIAMACHY satellite data. J. Geophys. Res. Atmos.
2014, 119, 7741–7756. [CrossRef]

24. Bruhwiler, L.; Dlugokencky, E.; Masarie, K.; Ishizawa, M.; Andrews, A.; Miller, J.; Sweeney, C.; Tans, P.;
Worthy, D. CarbonTracker-CH4: An assimilation system for estimating emissions of atmospheric methane.
Atmos. Chem. Phys. 2014, 14, 8269–8293.

25. Trends in Global CO2 Emissions: 2015 Report. Available online: http://edgar.jrc.ec.europa.eu/news_docs/
jrc-2015-trends-in-global-co2-emissions-2015-report-98184.pdf (accessed on 22 June 2018).

26. Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Mu, M.; Kasibhatla, P.S.; Morton, D.C.;
DeFries, R.S.; Jin, Y.; van Leeuwen, T.T. Global fire emissions and the contribution of deforestation, savanna,
forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 2010, 10, 11707–11735. [CrossRef]

27. Akagi, S.K.; Yokelson, R.J.; Wiedinmyer, C.; Alvarado, M.J.; Reid, J.S.; Karl, T.; Crounse, J.D.; Wennberg, P.O.
Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys.
2011, 11, 4039–4072. [CrossRef]

28. File Specification for GEOS-5 FP. GMAO Office Note No. 4 (Version1.0). 2013. Available online:
http://acmg.seas.harvard.edu/geos/wiki_docs/geos5/GEOS_5_FP_File_Specification_ON4v1_0.pdf
(accessed on 22 June 2018).

29. CarbonTracker-CH4. Available online: https://www.esrl.noaa.gov/gmd/ccgg/carbontracker-ch4/
(accessed on 22 June 2018).

30. Hengl, T.; Geuvelink, G.B.M.; Stein, A. Comparison of Kriging with External Drift and Regression-Kriging.
Technical Note, ITC. 2003. Available online: https://webapps.itc.utwente.nl/librarywww/papers_2003/
misca/hengl_comparison.pdf (accessed on 22 June 2018).

31. Haas, T.C. Lognormal and moving window methods of estimating acid deposition. J. Am. Stat. Assoc. 1990,
85, 950–963. [CrossRef]

32. Laiti, L.; Zardi, D.; de Franceschi, M.; Rampanelli, G. Residual Kriging analysis of airborne measurements:
Application to the mapping of Atmospheric Boundary-Layer thermal structures in a mountain valley.
Atmos. Sci. Lett. 2013, 14, 79–85. [CrossRef]

33. Chiles, J.-P.; Delfiner, P. Geostatistics, 2nd ed.; Wiley: Hoboken, NJ, USA, 2012.
34. Holdaway, M.R. Spatial modeling and interpolation of monthly temperature using kriging. Clim. Res. 1996,

6, 215–225. [CrossRef]
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