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Abstract: Weather Research and Forecasting model coupled with chemistry (WRF-Chem) was used
to simulate selected severe dust storm events over Egypt in terms of the aerosol optical depth (AOD).
Two severe events, which occurred on 22 January 2004 and 31 March 2013, are examined. The analysis
includes three dust emission schemes: Goddard Chemistry Aerosol Radiation and Transport (GOCART),
GOCART with Air Force Weather Agency (GOCART-AFWA), and GOCART with University of Cologne
(GOCART-UOC). Each scheme was tested by adjusting coefficients related to the dust flux. The AOD
and Single scattering albedo (SSA) from the model were compared against the same parameters derived
from the Moderate-resolution Imaging Spectroradiometer (MODIS). The grid spacing for both of the
data sets is 10 km. Results from the March 2013 event were also compared against point measurements
from an Aerosol Robotic Network (AERONET) station in Cairo. Using WRF with built-in coefficients,
all schemes resulted in underestimating AOD. After tuning the coefficients, it was possible to bring
the model results closer to the observations from satellite and AERONET. Each severe event required
a different tuning, depending on the origin and composition of the dust storm. Sensitivity analysis for
each case is performed to identify the scheme that best simulates the given events based on spatial
error distribution. A novel comparison of eigenvalue structures for images of both for AOD and
SSA from model and MODIS was used. After tuning, the adjusted coefficient GOCART scheme is
found to simulate AOD best across the country in both events. However, the results for the 2004 event
from GOCART-UOC were closest to MODIS AOD over Cairo (within 5% bias). On the other hand,
GOCART-AFWA produced nearest estimate of AOD for the 2013 event when compared to AERONET
measurements (within 7% bias). For both of the events, SSA from GOCART and GOCART-AFWA
schemes were found to be comparable to MODIS measurements with accuracy that was close to 98%.
The accuracy from GOCART-UOC was around 93%.

Keywords: WRF-chem; aerosol remote sensing; MODIS data; dust emission schemes; dust storm

1. Introduction

Sand and dust storms constitute a prime source of aerosols in the atmosphere. Driven mainly
by wind, they result from the erosion and transport of mineral sediments from the ground surface.
They are typically associated with arid and semi-arid areas, but they can occur anywhere where dry
unprotected sediments predominate the landscape [1,2]. Suspended sand and dust particles play
an important role in climate forcing by altering the radiative balance of the earth system [3]. Moreover,
dust particles serve as cloud nucleation [4] and they can also be a catalyst for reactive gas species [5],
producing what is known as secondary aerosols. Other than climatic influences, sand/dust storms have
negative impacts on air quality, human health, and therefore economy (particularly in transportation
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and agriculture domains), at both local and global scales. According to the report by [6], factors that
affect the intensity of the storm are grouped into three categories: climatic (e.g., wind speed, turbulence,
and air temperate and pressure), particle properties (e.g., type, size, and moisture contents), and land
cover and form (e.g., vegetation density, surface roughness, slope, and rainfall rate).

The use of climate modeling and remote sensing has advanced the forecasting and information
retrieval of dust events. One of the primary models used for this purpose is the Weather Research and
Forecasting coupled with a chemistry component module (WRF-Chem) [7]. This is an extension of the
WRF model coupled with chemistry. It simulates the emission, transport, and chemical transformation
of trace gases and aerosols simultaneously with meteorology [7]. The model is generally used to
investigate air quality at the regional scale. In this study, it is used to simulate severe events of dust
storm in terms of their aerosol optical depth (AOD), single scattering albedo (SSA), as well as dust
load of particulate matter PM2.5 and PM10.

A few studies were conducted using WRF-Chem to investigate dust storms. In [8], the authors
used it to simulate a typical pre-monsoon dust storm in northern India and found that it underestimated
AOD by up to 50% when compared to data available from the space-borne MODerate-resolution
Imaging Spectroradiometer (MODIS) instrument and the Aerosol Robotic Network (AERONET).
Using the same validation data, in [9] the authors showed that the model is able to reproduce the
horizontal field of the AOD and its temporal evolution during a dust outbreak over the central
Mediterranean. In [10], the authors used the same model to simulate dust emission and transport
around the Mediterranean by applying different coefficients to dust emission. The study showed that
this approach resulted in improving the bias of the results in general, though it failed to capture the
regional background AOD.

Satellite remote sensing has been used extensively to monitor atmospheric aerosols,
including sand/dust storms over the arid region of the Middle East. Few studies have addressed
aerosols over Egypt, in which MODIS was the prime sensor [11–14]. Of particular relevance to the
present study is the analysis of the chemical composition of bulk aerosols over 1.5 and 3 years in
two urban sites within Cairo, Egypt [15]. The study revealed the presence of very high levels of
mineral dust (over 100 µg/m3) in winter and spring, and more than 50 µg/m3 in summer and autumn.
There are also seasonal sources of particulates, such as the well-known series of natural dust storms,
called Khamsin, which occurs mainly in late winter and spring.

The motivation behind the current study is the underestimation of the AOD by the WRF-Chem
model [8,10] as compared to satellite measurements. This finding has been confirmed in the present
study. The objective is to improve the bias of the model in simulating the AOD of severe dust storms
over Egypt. The approach involves selecting each dust emission scheme employed in the model,
tuning the relevant coefficient, and applying it to each of the two selected severe dust storms over
Egypt. The storms, which were identified based on temporal analysis of AOD over Egypt from
MODIS [16], occurred on 22 January 2004 and 31 March 2013 with AOD > 0.7. Both events originate in
sand/dust storm blown from the western desert during the Khamsin storm season. Results are then
evaluated to find the best emission scheme in WRFChem with the best coefficients that reproduce the
measured AOD from MODIS and AERONET.

The three examined dust emission schemes are (1) the Goddard Chemistry Aerosol
Radiation and Transport (GOCART) [17]; (2) the GOCART with Air Force Weather Agency
(GOCART-AFWA) modification [18]; and, (3) the GOCART with University of Cologne
(GOCART-UOC) modifications [19]. Initially, each scheme resulted in the underestimation of the
AOD. Best tuning has been found to be different for the two examined events. The difference depends
on the key features of the storm. Using two different storm events has allowed for the evaluation of
the robustness of the tuning approach. The SSA along with and the amount of PM2.5 and PM10 for
each storm event were calculated and used in the assessment of the tuning.

Section 2 describes the modeling system framework and setup. Section 3 presents the satellite and
ground-based data. The study methodology is described in Section 4 and the results of AOD from the
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model with comparison with the satellite and ground-based observations are presented in Section 5.
Section 6 draws conclusions from the study.

2. Modeling System Framework and Setup

2.1. Model Framework

The Weather Research and Forecasting (WRF) model is a numerical weather prediction (NWP)
and atmospheric simulation system that is designed for both research and operational applications [20].
The WRF Software Framework (WSF) provides the infrastructure that accommodates: (1) physics
packages that interface with the solvers; (2) the dynamics solvers; (3) programs for initialization;
(4) WRF data assimilation module (WRFDA); and, (5) a coupled chemistry module (WRF-Chem),
which simulates, among other functions, the propagation of aerosols given the surface emission.
Two dynamic solvers are available in the WSF; the Advanced Research WRF (ARW) and the Non
hydrostatic Mesoscale Model (NMM). The main components of WRF that are used in this study are
(a) the WRF Preprocessing System (WPS); (b) the ARW solver (c); and, the WRF-Chem and Preprocessor
PREP_CHEM_SRC tool.

The WPS is used to design the domain experiment, prepare geographical information for WRF,
and convert meteorological data into the format that is accepted by WRF. The ARW is based on an Eulerian
solver for fully compressible non hydrostatic Equations [21]. Prognostic variables for this solver include
column mass of dry air (mu), three-dimensional (3D) velocity components, potential temperature,
and geopotential. Non-conserved variables such as temperature, pressure, and density are diagnosed
from the conserved prognostic variables. The output from WRF-Chem used in this study includes AOD,
SSA in addition to dust load (µg/m3), and particulate matter PM2.5 and PM10.

2.2. Model Setup

This study uses version 3.8 of the WRF-Chem to simulate meteorology and chemistry over the
domains of the two severe dust events. Figure 1 shows the domain of Egypt with four constructed
sub-domains D1, D2, D3, and D4, which will be used to verify the results from the model, as will
be explained later. The model domain (Egypt) is defined as Lambert Projection extends from
latitude 24◦ E to 36◦ E (120 grid points) and longitude from 21.5◦ N to 32.5◦ N (120 grid points).
The horizontal grid size is 10 × 10 km2 and the vertical grid size comprises 41 levels from surface to
10 hpa. Static geographical fields, such as terrain height, soil properties, vegetation fraction, land use,
and albedo were obtained from the website http://www2.mmm.ucar.edu/wrf/users/download/
get_sources_wps_geog.html. The data are interpolated and prepared to match the model’s grid by
using the geogrid program in the WRF preprocessing system (WPS). The initial and lateral boundary
conditions for the meteorological fields are obtained every 6 h at a spatial resolution of 1◦ × 1◦ from
Final Analysis (FNL) fields available from the National Center for Environmental Predictions (NCEP)
https://rda.ucar.edu/. They are also interpolated to the model domain by using the “ungrib” and
“metgrid” programs in the WRF preprocessing system (WPS).

Three alternative emission fields of trace gases and aerosols are prepared using
PREP_CHEM_SRC [22]. The first is the monthly average global coverage REanalysis of the
TROpospheric chemical composition (RETRO), available at spatial resolution of 0.5◦ × 0.5◦ [22].
The second is the Emission Database for Global Atmospheric Research (EDGAR), available at spatial
resolution of 1◦ × 1◦. It provides past and present global anthropogenic emissions of greenhouse gases
and air pollutants. The available species are N2O, CO2, CO, CH4, SO2, SF6, NOx (a generic term for
nitrogen oxides), and NMVOC (non-methane volatile organic compound). These gases contribute to
the formation of smog and acid rain, as well as tropospheric ozone. The emissions are based on the year
2000 and are not updated. The third dataset, which is available on a monthly basis, is from the Goddard
Chemistry Aerosol Radiation and Transport (GOCART) model and it includes aerosols, emissions of
organic carbon (OC), black carbon (BC), and SO2 at a spatial resolution of 1◦ × 1◦ [22]. In addition

http://www2.mmm.ucar.edu/wrf/users/download/get_sources_wps_geog.html
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to the geographical setup, three dust variables are included: erosion factor, sand fraction, and clay
fraction (the last two are expressed in soil texture). They are obtained from the same source of the
static geographic field (see above). The spatial distributions of these variables are shown in Figure 2.
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Figure 2. Spatial distribution of the erosion factor (a) and soil texture classification (b) over Egypt,
used as input to the model. The 16 categories of the soil are presented in Table 5. Location of AERONET
stations (C1, C2, C3 and C4) are indicated on the Figure 2a.

2.2.1. Physical Parameterizations

The basic physical schemes used to configure the model are included in Table 1. Although,
the Aerosol-aware Thompson scheme describes the microphysical behavior and has a capability to
produce the optical properties of aerosols [23], it was not used in this work within the WRF model
because the AOD output was severely underestimated. The dust emission is not included in the current
scheme (T. Eidhammer Pers. Comm.). The Rapid Radiative Transfer Model (RRTMG) for shortwave
and long-wave radiation is selected for the aerosol direct radiative effect [24]. The Unified Noah Land
surface scheme has been selected to represent the land surface interaction [25]. Yonsei University (YSU)
scheme is chosen to represent the Planetary Boundary Layer [26]. The MM5 Similarity Scheme was
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used to describe the surface layer physics [27] and the 3D ensemble scheme to represent the Cumulus
Parameterization [28].

Table 1. Configuration of physical parameterization in model (Weather Research and Forecasting
(WRF)) name list.

Physical Scheme Option Number Name List VARIABLE Model

Microphysics 28 mp_physics Aerosol aware Thompson
Long-wave radiation 4 ra_lw_physics RRTMG
Short wave radiation 4 ra_sw_physics RRTMG

Land surface 2 sf_surface_physics Unified Noah Land surface
PBL model 1 bl_pbl_physics Yonsei University (YSU)

Surface Layer 1 sf_sfclay_physics MM5 similarity
Cumulus Parameterization 5 Cu_Phyiscs Grell 3D Ensemble Scheme

2.2.2. Chemistry Module

The WRF-Chem has multiple schemes to simulate aerosol and chemistry emission. We used
the GOCART coupled with Regional Atmospheric Chemistry Mechanism-Kinetic Preprocessor
(RACM-KPP) scheme. It predicts the mass of organic carbon (OC1, OC2) and black carbon (BC1, BC2)
aerosols. In addition to the primary species (PM2.5 and PM10), GOCART comes also with simple
sulfur gas phase chemistry, including dimethyl sulfide (DMS) and sulfur dioxide (SO2). The selected
configurations for chemistry options entail enabling the following option: dry deposition of gas
species and aerosols, sea salt and dimethyl sulfate (DMS) emissions from sea surface, gas and aerosol
chemistry, and vertical turbulence mixing. Aerosol optical properties are calculated based on exact
volume approximation.

2.2.3. Dust Parameterization

According to [18], a dust scheme is considered to be accurate if it can be used to predict the
threshold friction velocity that is required to initiate soil particle motion and the horizontal and vertical
dust fluxes. As mentioned before, three working dust schemes are implemented in the WRF-Chem
model. The first one is GOCART scheme [17], referred to here as DS1. It calculates the dust emission
flux using the following Equation

FP =

{
C1 S Sp U2

10m (U10m − Ut) if U10m > Ut

0 otherwise
(1)

where FP (kg·m−2·s−1) represents the emission of saltation flux for particle size bin p, C1 is an empirical
constant (kg·m−5·s2), S is the source function representing the fraction of alluvium available for wind
erosion, Sp is the fraction of each size class of dust in the emission, U10m. (m·s−1) is the 10 m level
horizontal component of wind speed, and Ut is the threshold velocity (m·s−1) above which dust
emission is triggered. It is a function of particle size, air density, and surface moisture. The value of
C1 was proposed initially as 1 × 10−9 kg·m−5·s2 [17], but it is suggested to be highly tunable. It was
defined in the WRF source code as 0.8 × 10−9 kg·m−5·s2. In this study, C1 was selected to be the
tunable parameters.

The second dust scheme is GOCART-AFWA, which is described in detail in [18], referred to here
as DS2. It uses the following Equation for horizontal (saltation) flux, Qk(D),

Qk(D) = C2
ρa

g
U3
∗

(
1 +

U∗t

U∗

)
(1 − U2

∗t(D)

U2∗
) (2)

where D is the particle diameter [29], ρa is the air density, U∗ is the wind speed, and U∗t is the
threshold velocity (m·s−1). The coefficient C2 was set to 2.1 in the original scheme [30] following the
experimental results of [29]. However, in later modeling studies [31,32], C2 was set to 1 on the basis of
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extensive wind tunnel measurements performed for contrasted artificial soil size distributions (this is
the value in source code of WRF). In this study, C2 was used as tunable parameters

The third scheme is GOCART-UOC, referred to here as DS3. It uses the same Equation (2) and
follows the scheme implementation, as described by author in [19]. The coefficient C2 is set to 2.3 in
the WRF-Chem. It is also made tunable in the present study. Both the second and third schemes use
the same Equation for the calculation of the threshold friction velocity [18];

U∗t(D, λ, w) =
U∗ts(D)

R
H (3)

where U∗ts(D) is the threshold friction velocity over smooth surface and D is the nominal diameter
of soil particles, R is the drag partition correction that accounts for the presence of non-erodible
elements (rocks, pebble, vegetation, etc.) in natural land surfaces, and H is the moisture correction.
The differences between the second and the third schemes are in the way of how the parameters in
Equation (3) are calculated [18].

For each dust scheme, the model was run using each one of the five PM size rge with effective
radii, as shown in Table 2. The PM2.5 load (fine particles <2.5 µm) is calculated from runs using bins 1,
2, and 3, and the PM10 load (coarse particles between 2.5 and 10 µm) is calculated from runs using bins
4 and 5. It should be noted that while the dust scheme tuning pursued in this study has been limited to
adjusting the coefficients as mentioned above, other possibilities for tuning are available. These include
modifying values of the threshold of surface wind, friction velocity, or surface roughness [33]. The three
dust schemes uses the erodibility factor, but the GOCART and AFWA use it as scaling factor for the
dust emission, while UOC (the third dust scheme) use it to constrain the potential emission regions.

Table 2. Weather Research and Forecasting model coupled with chemistry (WRF-Chem) dust size bin.

Type Range (µm) Effective Radii

Bin1 0–1.0 0.73
Bin2 1.0–1.8 1.4
Bin3 1.8–3.0 2.4
Bin4 3.0–6.0 4.5
Bin5 6.0–10.0 8.0

3. Satellite and Ground-Based Observations

Data from NASA’s MODIS onboard Aqua satellite are used to identify the dates of severe
sand/dust storm events over Egypt (with AOD >0.7 from the MODIS 550 nm channel). Two dates
were identified: 22 January 2004 and 31 March 2013. The dates are confirmed after checking with the
weather data from the Egyptian Meteorological Authority (EMA). Model simulation of each event
was performed.

3.1. MODIS Data

MODIS AOD data from Collection 6 aerosol products, level 2 with 10 × 10 m2 spatial resolution,
were downloaded for the 12-year period from 2003 to 2014. (http://ladsweb.nascom.nasa.gov/data/
search.html). Details on the development of the aerosol retrieval algorithm are presented in [34]. All the
passes over Egypt from the same day are combined in order to have as wide daily coverage as possible.
Data were later gridded and the grid information is used in the model. It should be noted, however,
that combining different passes from different times of the day may introduce errors in representing
the spatial distribution for the storm. This became more apparent in the data of 2013 event.

Since MODIS data are used as truth data in the present study, information about their accuracy
is warranted. In [35], the authors concluded the accuracy to be around ±(0.05 + 0.15 τ) over land
and ±(0.03 + 0.05 τ) over ocean, where τ is the actual AOD. Comparison of MODIS-derived AOD
versus AERONET data over Cairo for the period 2000–2008 was also performed in [11]. The study

http://ladsweb.nascom.nasa.gov/data/search.html
http://ladsweb.nascom.nasa.gov/data/search.html
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concluded agreement between the two sensors in winter when AOD is low and the aerosols feature
mainly local emission from traffic, industry, etc. Conversely, MODIS overestimated the AOD by up
to 30% in the spring when concentration of mineral dust (non-local particles that originate from the
eastern desert) increased.

3.2. AERONET Data

The Aerosol Robotic Network (AERONET) is a ground-based remote sensing network distributed
over more than 1000 sites worldwide. Each station uses sunphotometer and sky-scanner radiometers
to measure aerosol optical properties [8].

The four AERONET sites in Egypt are included in Table 3. Data are available from NASA’s
website https://aeronet.gsfc.nasa.gov/. The level 2 AOD (at 550 nm) and SSA data at (675 nm) used
in this study were obtained from EMA-2 location for comparison against model data of the event
of 31 March 2013. No data were available for the 22 January 2004. AOD data. It worth noting that
comparison of AOD from AERONET against MODIS at 550 nm, averaged from all of the samples
within 20 km radius centered on Cairo’s center, showed almost exact agreement.

Table 3. Aerosol Robotic Network (AERONET) sites in Egypt.

Index Site Name Location Operation Period

C1 Cairo university 30.026 N, 31.207 E October 2004 to April 2005
C2 Cairo_EMA 30.808 N, 31.290 E April 2005 to February 2007
C3 Cairo_EMA_2 30.808 N, 31.290 E April 2010 to until now
C4 El_Farafra 27.026 N, 27.027 E March 2014 to until now

4. Methodology

Fifteen simulations were performed for each one of the two dust events. For each event, the three
dust schemes were tested using five runs with different values of tuned coefficients. Table 4 includes
the values of the tunable coefficients for each scheme and each event. Note the different ranges of the
tested coefficients for the two events.

Table 4. Values of tunable coefficients used in the simulation of each one of the three dust schemes for
each storm event.

Dust Storm Event GOCART Scheme (DS1) GOCART-AFWA Scheme (DS2) GOCART-UOC Scheme (DS3)
January 2004 {2, 1.7, 1.5, 1.2, 0.8} {2, 1.7, 1.5, 1.2, 1} {6, 5, 4,3, 2.3}
March 2013 {10, 8, 6, 4, 3} {10, 8, 6, 4, 3} {11, 10, 8, 6, 5}

Two methods were implemented to evaluate the performance of each dust scheme. The first
is calculating the percentage difference between the model and MODIS for each aerosol parameter
(AOD and SSA), according to the following Equation (for AOD),

Di f fAOD =

[
AODMODIS − AODModel

AODMODIS

]
∗ 100 (4)

where AODMODIS and AODModel are the AOD from MODIS and the model, respectively. Mapping the
error is used to assess the model behavior in different areas.

The second is a novel approach that has been adopted to compare satellite image against flooded
contour maps resulting from the simulation. The two sets are represented as matrices. The method
involves computing the eigenvalue structures of each. Perfect resemblance is obtained if the two
eigenvalue structures coincide. The degree of similarity of the two images (matrices) is judged by the
length of the matching eigenvalues. A less restrictive indicator is obtained by comparing the root mean
square value of the difference of the two sets of the eigenvalues. For non-square images, the singular
value decomposition (SVD) method should be used to compute the eigenvalue structures.

https://aeronet.gsfc.nasa.gov/
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The following three parameters from the model output are used to examine the intensity of the
dust plume; the dust load, the density of PM2.5, and of PM10. The term “Coeff” in the following refers
to the value of the tuning parameter in the dust emission scheme. WRF-Chem produces aerosol optical
properties in 300, 400, 600, and 999 nm wavelength, while AOD from AERONET and satellite data are
available at 550 nm. The AOD from the model results at any wavelength λ (nm) was calculated using
the Ångström exponent α, as follows

AOD(λ) = AOD(400) ∗ ( λ

400
)

α

(5)

The Ångström exponent was obtained using the AOD from WRF at 400 and 600. Hence,

α =
ln ( AOD(400)

AOD(600) )

ln ( 600
400 )

(6)

Since SSA from MODIS is available at 675 nm, the SSA from the model at 675 nm was derived by
interpolation between the available two values at 400 and 999 nm.

5. Results and Discussion

This section addresses the two case studies of severe events in separate subsections. The spatial
distributions of erosion factor and soil texture classification are presented in Figure 2. The soil texture
is categorized into 16 categories that are based on the soil composition and of sand, silt and clay [36,37].
Table 5 includes the composition of each soil type. Sand is defined as particles with radius between
0.063 and 2.0 mm, while silt is between 0.002 mm and 0.063 mm and particles that are below 0.002 mm
radius are categorized as clay [38]. The dust schemes DS1 and DS2 use the erosion factor to control the
dust emission (as scaling factor), which is based on the topography and soil contents [17]. The dust
emission in DS3 is calculated only when the erosion factor is non-zero. This constraint is presented in [10].

Table 5. Soil texture composition for each category in terms of sand, silt, and clay.

Category Soil Type Name % Sand % Silt % Clay

1 Sand 92 5 3
2 Loamy sand 82 12 6
3 sandy loam 58 32 10
4 silt loam 17 70 13
5 silt 10 85 5
6 Loam 43 39 18
7 Sandy clay loam 58 15 27
8 Silty clay loam 10 56 34
9 Clay loam 32 34 34

10 Sandy clay 52 6 42
11 Silty clay 6 47 47
12 Clay 22 20 58
13 Organic material 0 0 0
14 Water 0 0 0
15 Bedrock 0 0 0
16 other 0 0 0

As mentioned before, the four subdomains D1, D2, D3, and D4 (Figure 1) are used to support
the interpretation and validation of the model’s results. For the dust events of January 2004 and
March 2013, the average of dust load is calculated over D1 and D2, respectively, while the average
of AOD was validated over the same domains using MODIS results. Over Qattara Depression (D3),
the soil texture types shown in the map of Figure 2 are in agreement with the surface conditions
mentioned in [39]. Using the Total Ozone Mapping Spectrometer (TOMS) data to identify the source of
atmospheric soil dust, the southwestern end of the Qattara Depression (22◦–23◦ N, 15◦–17◦ E) was
defined as an active region of dust source [40]. Later in this section, it will be shown that there is
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correlation between the high erosion areas, the dust emissions and the AOD (both are output from
the model). The domain 4 was constructed to validate the optical properties output from the model.
The boundaries of all sub-domains are included in Table 6.

Table 6. Selected domains with their boundries in core of dust blume (D1 & D2), Qattara Depression
(D3), and south west of Egypt (D4).

Upper (N) Lower (S) Left (W) Right (E)

D1 30.3◦ 26.3◦ 27◦ 31◦

D2 31◦ 27.1◦ 24.8◦ 29.4◦

D3 30.1◦ 28.35◦ 26.1◦ 29.02◦

D4 24.5◦ 22◦ 34◦ 31◦

5.1. Analysis of the Dust Storm Event of January 2004

The analysis approach involves investigating the intensity of dust load and PM types from using
a different tuning coefficient. The impact of these coefficients on optical properties is also established
in terms of simulating the AOD. Different error analysis is used.

5.1.1. Dust Load and Particulate Matter

Spatial distribution of dust load from the model using the three dust schemes with different
coefficients is shown in Figure 3. The maps are generated after applying a filter to exclude the areas
that are not covered by MODIS AOD data. It can be seen that, by increasing the tuning coefficient
for every dust scheme, more dust emission is produced at the core of the dust plume (in this case D1
as shown Figure 1). The average dust load within the D1 domain is included in Table 7. It is seen
that DS1 produces the highest dust load and the Coeff. 2 generates the highest values within DS1
(1.77 × 106 µg/m2). On the other hand, DS3 generates low dust load with Coeff. 2.3 generating the
lowest value (4.62 × 104 µg/m3).

Table 7. Average dust load in (µg/m2) over domain D1 for dust storm January 2004.

Scheme Coeff Average Dust Load (µg/m2)

DS1

2.0 1.77 × 106

1.7 1.53 × 106

1.5 1.36 × 106

1.2 1.11 × 106

0.8 7.54 × 105

DS2

2.0 7.84 × 105

1.7 6.79 × 105

1.5 6.07 × 105

1.2 4.95 × 105

1.0 4.19 × 105

DS3

6.0 1.01 × 105

5.0 8.83 × 104

4.0 7.44 × 104

3.0 6.08 × 104

2.3 4.62 × 104

The spatial distribution of PM10 and PM2.5 for the setup that generates the highest dust load
scheme (DS1 with Coeff. 2.0) is investigated in Figure 4. Both PM10 and PM2.5 maps confirm their high
values within the domain D1, and particularly D3, with significantly higher value of PM10. The average
PM10 and PM2.5 within the D1 domain are 1.10 × 104 and 2.22 × 103 µg/m3, respectively. Recall that
D3 is associated with high erosion scale factor (Figure 2), which means that the core of the dust storm
of January 2003 features locally emitted dust.
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Figure 3. Spatial distribution of dust load over Egypt (µg/m2) for the dust storm event of January 2004.
The three columns represent the three dust schemes (DS) and each row includes output from using the given
coefficient. White areas are pixels not covered by Moderate-resolution Imaging Spectroradiometer Aerosol
Optical Depth (MODIS AOD) data.
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Figure 4. Spatial distribution of the PM10 (a) and PM2.5 (b) during the dust storm of January 2004
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5.1.2. Aerosol Optical Properties

The investigation of the optical properties includes AOD and SSA from both MODIS and the
fifteen-model simulation at hour 11:00 am (local time), as shown at Figure 5. MODIS identifies the core
of the dust storm in the western desert and its peripherals in the surrounding areas. For all schemes,
increasing the tuning coefficient leads to increase in AOD distribution within the core of the storm
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(D1 in Figure 1). The DS1 with Coeff 2.0 produces the closest average AOD (2.13 versus 2.29 from the
scheme and MODIS, respectively). It is interesting to note the bigger difference between the MODIS
and the same scheme when averaged over the entire country (0.81 versus 1.59, respectively). Note that
the severe event of January 2004 covers mainly part of the western desert only.

Figure 5. Spatial distribution of AOD over Egypt from MODIS (top middle) and the fifteen simulations
from the model at 11:00 am (local time) for the dust event of January 2004. The color bar applies to all
panels. The missing pixels in MODIS data (white areas) are excluded in the model data.
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Figure 6 shows AOD from MODIS versus all fifteen model simulations, averaged over Egypt
and the domain D1. The Model’s performance over D1 is better than the entire country. Both DS1
and DS2 produce closer results to MODIS estimates than DS3. Results are always better when higher
coefficients are used. Although DS3 highly underestimates AOD over Egypt, it produces reasonable
agreement with MODIS over the effective area of the severe event. Further increase of the tuning
coefficient (beyond 6.0) is expected produce better agreement.

MODIS was able to capture a relatively high AOD in the south west corner of Egypt within
the domain D4 where none of the three emission model schemes was able to reproduce. However,
the schemes did not produce high dust emission in this area (can be verified in Figure 2). This domain
features a mountain that is covered by carboniferous rock. The failure of the schemes is because the
dust source affecting this area is not included in the current setup domain; i.e., a boundary condition
issue. The source is the Bodele Depression, which is located at southern edge of the Sahara Desert
in north central Africa south of Chad (16◦ N–18◦ N) and (15◦ E–19◦ E). Impact of the modifying the
boundary conditions by including other dust source will be shown in a future study.

The Comparison of SSA between MODIS and the model gives almost the same spatial distribution
over the entire of Egypt, with SSA from MODIS was 0.952 and from the model using either DS1 or DS2
was 0.92. Nevertheless, SSA from using DS3 was around 0.8.
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Figure 6. Average AOD from MODIS vs. all fifteen model simulation over (a) Egypt (b) Domain D1.

5.1.3. Results Validation

The event of January 2004 was validated only against MODIS data since AERONET data were
not available. Two approaches to quantify the error are presented. In the first, the spatial distribution
of the percentage error (MODIS minus Model AOD) is calculated while using Equation (4). Results are
shown in Figure 7. In general, DS3 underestimates AOD almost everywhere, regardless of the
tuning coefficient and less sensitive to sand/clay cover and the erosion factor, as shown in the
maps in Figure 2. DS1 also underestimates MODIS AOD though it starts to match the satellite
estimates when the tuning coefficient is set to 1.5. By increasing the tuning coefficient beyond 1.7,
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DS1 starts to overestimate the AOD. Careful examination of the percentage error within the D1 domain
using DS1 with tuning coefficient 1.5 reveals a diverse of overestimation and underestimation of
the model. It is not a coincident that the soil texture map (Figure 2) also shows diversity in the
same domain. The overestimation of the model (by almost 50%) corresponds to the clay loam cover.
The underestimation corresponds to areas that are covered by loam.Atmosphere 2018, 9, x FOR PEER REVIEW  13 of 23 
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Figure 7. The distribution of spatial error in (%) between MODIS (as reference) and the Model AOD
using fifteen simulations for the January 2004 dust storm (panel arrangement is the same as shown in
Figure 2).

The second validation approach involves comparing eigenvalue structures of the spatial
distribution of modeled AOD image and the AOD image from MODIS. This has been applied for each
emission scheme and the selected tuning coefficients. The degree of resemblance between the two
images is assessed by comparing the highest subset of eigenvalues. The scheme that gives the closest
values to the MODIS values (presumed to be the validation data) is the best. The same is repeated
for SSA.
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Quantitative assessment of the “closeness” of the model’s eigenvalues to MODIS is estimated
using the roots mean square error (RMSE).

RMSE =

√√√√( 1
n

) n

∑
j=1

eigen values X each scheme – eigen Values X MODIS (7)

where X will be either AOD or SSA.
The eigenvalues for AOD and SSA are plotted in Figure 8. According to the inset in Figure 8a,

the first dominant eigenvalue of DS1 with Coeff. 1.7 matches those of MODIS, while the eigenvalue
that was computed using tuning Coeff.2.0 produced a higher eigenvalue corresponding to the higher
AOD from MODIS image as seen in Figure 5. Except for the first few image eigenvalues, all other
eigenvalues, which play a secondary role in the comparison, underestimates those from MODIS.

On the other hand, eigenvalues of SSA for each member of three dust schemes are shown to
cluster, as in Figure 8b. In general, the difference between the values from the model and MODIS are
larger for SSA than AOD. Unlike the AOD case, the DS3 has the closest values to MODIS in terms of
SSA estimation. The eigenvalue structures showed low sensitivity to the variation of coefficients for
each dust scheme

Figure 8. Eigen values for (a) AOD (top) and (b) single scattering albedo (SSA) (bottom) distributions
from MODIS and Model’s results using all the dust schemes for the dust event of January 2004.

Table 8 includes the RMSE values for AOD and SSA from using each dust scheme for all of
the selected tuning coefficients. For the case of AOD, DS1 with coeff. 2.0 has lowest RMSE (0.206),
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while DS3 with coeff. 2.3 has highest RMSE (0.550). On the other hand, for SSA, the scheme DS3 with
coeff. 6.0 produced lowest RMSE (0.542) and scheme DS2 with coeff. 1.0 has highest RMSE (0.585).
Judging the best dust scheme cannot be based on RMSE of the eigenvalue of optical properties only.
The difference between the spatial average of the properties from the model and satellite estimates
over selected domains also contribute to the evaluation. This identifies the performance of the model
in relation to the surface cover and the emission of different dust types.

Table 8. Roots mean square error (RMSE) for AOD and SSA of eigenvalues between all the model
simulations and MODIS for dust storm January 2004.

Scheme RMSE AOD Eigenvalues RMSE SSA Eigen Values

DS1 Coeff 2.0 0.206097 0.575826
DS1 Coeff 1.7 0.213703 0.575952
DS1 Coeff 1.5 0.238308 0.57599
DS1 Coeff 1.2 0.290285 0.576174
DS1 Coeff 0.8 0.386937 0.576487
DS2 Coeff 2.0 0.254319 0.583857
DS2 Coeff 1.7 0.291054 0.584063
DS2 Coeff 1.5 0.32093 0.584154
DS2 Coeff 1.2 0.368645 0.584405
DS2 Coeff 1.0 0.40493 0.584651
DS3 Coeff 6.0 0.480568 0.541646
DS3 Coeff 5.0 0.495943 0.542941
DS3 Coeff 4.0 0.512923 0.544668
DS3 Coeff 3.0 0.531039 0.546865
DS3 Coeff 2.3 0.550296 0.550011

5.2. Analysis of Dust Storm Event of March 2013

Unlike the previous case study of January 2004 where the dust storm was triggered by
southwesterly wind (i.e., the origin was from the core of the western desert), this case study
(31 March 2013) has its dust that originated from the north part of the desert, carried by northwesterly
wind. The same analysis approach is used in this case study.

5.2.1. Dust Load and Particulate Matter

Spatial distributions of dust load for six selected model’s configurations with different tuning
coefficient are shown in Figure 9. In terms of the spatial distributions of dust load, all of the schemes
have the capability to capture higher dust load within the domain D2 (core of the dust plume shown in
Figure 1), yet with different intensity. Similar to case study 1, DS3 has the lowest capability to produce
the dust load, while DS1 produces the highest dust load, but with a tuning coefficient 10 (very different
than the coefficient 1.5 revealed in case study 1). Average dust load from all different schemes for each
coefficient are shown in Table 9. Increasing the Tuning coefficient leads to increase of average dust
loads. The highest dust load from using DS1 with coefficient 10 generates a value 1.50 × 106 µg/m2,
while the lowest average dust load was emitted by scheme DS3 with coefficient 5.0 (6.56 × 104 µg/m2).
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Table 9. Average dust load in (µg/m2) over domain D2 for dust storm March 2013.

Scheme Coeff. Average Dust Load (µg/m2)

DS1 10 1.50 × 106

8.0 1.21 × 106

6.0 9.07 × 105

4.0 6.07 × 105

3.0 4.56 × 105

DS2 10.0 4.62 × 105

8.0 3.75 × 105

6.0 2.87 × 105

4.0 1.95 × 105

3.0 1.90 × 105

DS3 11.0 1.31 × 105

10.0 1.20 × 105

8.0 9.89 × 104

6.0 7.69 × 104

5.0 6.56 × 104
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Figure 9. The Spatial distribution of dust load over Egypt using six selected DS and tuning coefficients
for dust storm at 31 March 2013.

The composition of dust load for scheme DS1 with Coeff. 10 in terms of PM10 and PM2.5 is shown
in Figure 10. DS1 Is selected because it has lowest root mean square error, as shown later in Section 5.2.3.
Similar to the previous case study, PM10 has higher intensity than PM2.5. The average of PM10 inside
domain D2 is 2.07 × 104 µg·m3, while PM2.5 has average value than 4.190 × 103 µg·m3. This event has
higher dust load than the previous case study. Moreover, since the PM10 load is higher in this case
than the previous case, the tuning coefficient that is needed to reproduce the AOD (presented later) is
higher than the previous case of January 2013.
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Figure 10. Spatial distribution of the PM10 (a) and PM2.5 (b) during the dust storm of 31 March 2013
from DS1 with coeff. 10.0. Domains D2 (the core of the dust storm) is marked. The color bar represents
the particle density (µg/m3) multiplied by 104.

5.2.2. Aerosol Optical Properties

The spatial distribution of aerosol optical depth (AOD) from the three selected schemes with
selected coefficients was compared to AOD from MODIS at hour 11:00 am local time. Results are
shown at Figure 11. AOD from MODIS shows high values at the North West corner of Egypt. This is
the core of the dust plume of the Mach 2013 event. The source of this storm is located in the Eastern
Libyan Desert, which is defined in the global source of dust [40]. This area extends from the eastern
Libyan into western Egypt. The dust source in this area is active for most of the year [40]. MODIS data
shows that AOD reaches 3.5 over a large bulk area through domain D2. From the top left panel of the
model’s results in Figure 11, it can be seen that the model can reproduce values close to those that were
obtained from MODIS only in the north part of domain D2, which is covered by clay loam. It produces
much lower values in the southern part of D2, which is mainly covered by loamy sand (see Figure 2
and Table 5).
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Table 10 includes the average AOD over D2 from using all of the tested dust schemes and
coefficients. Increasing the tuning coefficients in any dust scheme leads to a noticeable increase in
AOD. The average AOD from MODIS over the bulk of the domain D2 is 2.41, while the average from
DS1 with coefficient 10 is 1.71 and from DS3 with coefficient 11.0 is 1.51. It should be noted, however,
that the spatial distribution of AOD from DS3 is far from that of MODIS. This implies that, if a higher
coefficient is used (>11.0), it may simulate the AOD within the dust storm area better. Nevertheless,
it is almost sure that further increase of the coefficient will not provide accurate simulation of AOD
outside the area of the dust storm. It seems that adjusting the coefficient in any dust scheme may not
lead to acceptable spatial distribution of AOD under various soil texture. Recall that the approach of
this study has been designed to address the evaluation of WRF-Chem. in response to dust emission
only, not other chemical of other aerosol emissions. Modifying the boundary conditions by including
other dust sources outside Egypt in this case study may have impact the spatial distibution of AOD.

Table 10. Average AOD over domain D2 from using all the schemes with all coefficients, in addition to
MODIS AOD at 550 nm wavelength the dust storm of Mrach 2013.

Scheme Average AOD

DS1 Coeff. 10 1.7135
DS1 Coeff. 8.0 1.3768
DS1 Coeff. 6.0 1.0372
DS1 Coeff. 4.0 0.6965
DS1 Coeff. 3.0 0.525
DS2 Coeff. 10.0 1.2764
DS2 Coeff. 8.0 1.0391
DS2 Coeff. 6.0 0.796
DS2 Coeff. 4.0 0.5435
DS2 Coeff. 3.0 0.4136
DS3 Coeff. 11.0 1.5121
DS3 Coeff. 10.0 1.0564
DS3 Coeff. 8.0 0.8604
DS3 Coeff. 6.0 0.6581
DS3 Coeff. 5.0 0.5545

MODIS 2.4105

5.2.3. Results Validation

Maps of the spatial distribution of the percentage error of AOD (MODIS minus Model) for the same
selected six configurations is shown in Figure 12. Similar to the first case study (Figure 7), the model
underestimates AOD in most areas. Increasing the tuning coefficient reduce the error. It is apparent that
DS1 with tuning coefficient 10 produces closer AOD to MODIS though a sharp contrast between the
model’s underestimation and overestimation is visible within D2 (the dust event area in Figure 2).

Results from the eigenvalue structure method of validation (Section 5.1.3) are shown in Figure 13
for AOD. For the first eigenvalue from using DS1 and DS2 with the higher coefficient produce higher
values than MODIS. This confirms the superiority of these two schemes. Except for the first few
eigenvalues, all the other eigenvalues, which play a secondary role in the comparison, underestimates
those from MODIS. The RMSE of difference of eigenvalues between the model and MODIS results,
for AOD and SSA parameters, are given in Table 11. For AOD, the minimum value is found when
using DS1 with coefficient 8 (0.197), while DS3 with coefficient 5 has the highest RMSE with (0.587).
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selected emission scheme and tuning coefficient for the event of March 2013.

Figure 13. Eigenvalues for (a) AOD (top) and (b) SSA (bottom) distributions from MODIS and Model’s
results using all dust schemes for the dust event of March 2013.

Similar to the first case study, the eigenvalues for the SSA are also shown to be cluster.
The eigenvalue structures show low sensitivity to the variation of coefficients for each dust scheme.
For the first eigenvalue, all of the schemes overestimate the value with respect to MODIS. After that,
all the eigenevalues are lower than those from MODIS. The difference between the values from the
model and MODIS are larger for SSA than AOD. Unexpectedly, DS3 has the closest values to MODIS
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in terms of SSA estimation. Table 11 shows that all RMSE are above 0.55 with max RMSE around
0.633 for scheme DS1.

Table 11. RMSE for AOD and SSA of eigen values between all model simulations and MODIS for dust
storm March 2013.

Scheme RMSE AOD Eigen Values RMSE SSA Eigen Values

DS 1 Coeff 10 0.243746 0.632762
DS 1 Coeff 8.0 0.19663 0.633088
DS 1 Coeff 6.0 0.254537 0.633551
DS 1 Coeff 4.0 0.372464 0.634322
DS 1 Coeff 3.0 0.439912 0.634935
DS 2 Coeff 10 0.276502 0.640653
DS 2 Coeff 8.0 0.193523 0.641138
DS 2 Coeff 6.0 0.212372 0.641789
DS 2 Coeff 4.0 0.327641 0.642795
DS 2 Coeff 3.0 0.402051 0.643578
DS 3 Coeff 11 0.519369 0.591345
DS 3 Coeff 10 0.53047 0.592293
DS 3 Coeff 8.0 0.552759 0.594754
DS 3 Coeff 6.0 0.575328 0.598174
DS 3 Coeff 5.0 0.586879 0.600431

AERONET data from the station in Cairo was available for the dust event of March 2013.
AOD from MODIS, AERONET, and the model with the tested dust schemes with the selected
tuning coefficients are presented on Figure 14. MODIS and the model’s results are averaged over
50 × 50 km around Cairo. It is shown that MODIS underestimates the AOD over Cairo during this
event (considering that AERONET provides the closest to the truth). Both DS1 and DS2 with coefficient
4 have the best capability to capture the AOD over Cairo.
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Figure 14. Average AOD over Cairo from MODIS, AERONET and the WRF-Chem model with all
different dust schemes and tuning coefficient. from during dust event of 31 March 2013.

6. Conclusions and Future Work

The WRF-chem model has been used to simulate two severe dust storms over Egypt occurred
on 22 January 2004 and 31 March 2013. The first dust storm blew from south west of Egypt and
was amplified due to an internal dust source that was located at Qattara Depression, which contains
high clay and Sand Fractions. The storm reached its highest intensity over the Qattara Depression.
This Depression works as a catalyst for the dust storms. The second dust storm came from North West
of Egypt and passes over Qattara Depression. The model grid used in the study was 10 km in order to
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match the spatial grid spacing of MODIS level 2 aerosol products. Admittedly, this does not provide
details of the spatial distribution of the dust aerosol. Nevertheless, it satisfies the purpose of the study
in identifying the best dust scheme with the best coefficients that simulate the dust event in terms of
matching the two products of AOD and SSA from the model against MODIS estimates. Once this is
established, models run at finer grid resolution to capture details will be possible.

The present study confirms the conclusions from previous studies that WRF-chem underestimates
AOD during severe dust storm when using any of the three dust schemes: GOCART, GOCART-AFWA,
and GOCART-UOC. In an attempt to improve the models’ performance, the study applied the model
using each dust scheme with a selected set of tuning coefficients in vertical dust flux Equations.
Increasing the tuning coefficient will increase the dust emission and that leads to improve the AOD
prediction. Tuning these coefficients has no physical basis and is valid for deterministic model setup.
The selection for the coefficients was not based on any physical criterion. Different tuning coefficients
set were required for each case study, depending on the origin and the composition of the dust storm.

Performance of WRF-Chem model was validated against MODIS data in terms of two optical
aerosol parameters: AOD and SSA. AERONET data was available for validation only for the second
dust storm event in March 2013. It was shown that the schemes DS1 and DS2 with coefficient value
4.0 have the nearest values to the AOD from the AERONET station in Cairo. However, the spatial
distribution of AOD from MODIS was considered to be the target criterion for assessing the tuning.
This is the best that can be done in absence of ground observation.

In order to compare between different dust schemes with different tuning coefficient,
the comparison between the structure of the eigenvalues of the model and the MODIS distribution
images are used. This was applied to the AOD and SSA parameters. RMSE for these eigenvalues were
investigated. GOCART dust scheme gives the better performance for simulating the AOD over Egypt
for both dust event cases in terms of the spatial distribution and the average of AOD.

In the January 2004 case study, the average AOD from MODIS at the core of the dust storm was
2.29, while GOCART with coefficient 2.0 was the closest scheme with 2.13. On the other hand, for the
case study of March 2013, the average AOD from MODIS was 2.4 at the core of the dust plume while
GOCART with coefficient 10 produced the closest average of AOD, which was 1.71.

As a result, the GOCART scheme with coefficient 2.0 gave the lowest RMSE (0. 206) for the case
of January and with coefficient 8.0 the lowest RMSE (0.192) for the second dust case at 2013. The dust
schemes GOCART-AFWA and GOCART-UOC always provide underestimation for all the current
tuning set and they need more increase for the tuning coefficients.

Dust emission depends on the soil texture. Therefore, for the same domain, different values for
the tuning coefficients should be implemented based on the soil texture. Otherwise, the application
may lead to overestimating AOD over the areas with high clay fraction, such as in parts of the Qattara
Depression. It may also underestimate AOD in other areas that may contain much sand.

It is shown that the spatial geographic domain setup should have impact on the current simulation.
The current setup simulation in this study includes only one source of dust emissions (from Qattara
Depression). Other sources were not included, such as the one in Libya’s eastern desert and the Bodele
Depression at Chad. Both sources have impact on the dust storm pattern over Egypt. So, the spatial
domain should be extended to include both sources. Different tuning methods could be implemented
to tune the dust schemes include modifying values of the threshold of surface wind, friction velocity,
or surface roughness. Data assimilation methods should modify the surface wind, which has direct
impact if the tuning coefficient method was used to tune the model. Detailed and empirical soil map
for Egypt also will impact the results as well.
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