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Abstract: Tropical cyclone (TC) rainfall amounts are compared from 1950–2017 for Houston, Texas and
Miami, Florida to estimate the risk of TC rain in both cities. Following the wake of Hurricanes Harvey
and Irma in 2017, concern has risen over the future of raininess in these locations. Per-event rainfall
amounts are aggregated using tracks taken from HURDAT, time-of-rain gathered from National
Weather Service daily weather maps, and rainfall totals taken from airport monitoring stations.
Risk analysis tools include descriptive statistics, time series, and return frequencies for Houston and
Miami, and spatially interpolated surfaces for Hurricanes Harvey and Irma. The season duration
is longer in Miami than in Houston. The uppermost rainfall events in the distribution for Houston
show a significant increase through time, suggesting the most intense rainfall events are becoming
worse for Houston. The expected return frequency for a Harvey-like event (940 mm) in Houston is
every 230 years, on average, and the 90th percentile rain of 286 mm is expected once every 17 years
(11–29; 90% significance). The expected return frequency for an Irene-like event (261 mm—maximum
for location) in Miami is every 173 years, on average, and the 90th percentile rain of 167 mm is
expected once every 11 years (7–17; 90% significance). Results show a substantial difference between
Houston and Miami TC rainfall climatologies similar to the differences of Hurricanes Harvey and
Irma. Though emergency management must be tailored for each TC, management for inland TC
rainfall may be more applicable in Houston than in Miami.

Keywords: hurricane; daily weather maps; extreme value theory; gulf of Mexico; risk; harvey;
irma; 2017

1. Introduction

Hurricanes generate risk to the human environment in various ways. Some provide
unprecedented depths of storm surge (Hurricane Katrina, 2005), while others are most impressive
due to their violent winds (Hurricane Maria, 2017) [1–3] . Despite the risk, inland rainfall from TCs
is understudied [4,5]. High amounts of inland rainfall can lead to widespread catastrophe, as was
evidenced during Hurricane Harvey in Houston, Texas in 2017. Estimated damage costs total at
$125 million and measured rainfall exceeded 50 inches [6]. Understanding rainfall from a tropical
cyclone (TC) is difficult, because many TCs do not have homogenous rainfall at any given moment in
time or throughout their lifetime. A greater understanding of this difference in per-event TC rainfall
is needed.

The 2017 Atlantic hurricane season was the fifth-most active, costliest, and possibly third-deadliest
season since official record keeping began for the North Atlantic in 1851 [7–9]. Two of the three strongest
U.S. mainland hurricanes were Hurricane Harvey that made landfall near Houston, Texas on August
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26 (wind speeds ≥ 60 ms−1) and Hurricane Irma that made landfall near Miami, Florida on September
10 (≥80 ms−1). During emergency response, Miami-Dade county in Florida experienced a full scale
evacuation, a necessary effort due to expected severe winds from Irma, yet a similar evacuation was
not called for in Houston during Harvey due to a lack of early organization in the TC. Before rapid
intensification occurred, Houston’s mayor introduced concerns of 8.5 million people on the road
during Harvey, and a lack of evacuation resulted in over 1000 people being rescued overnight after
being trapped in their homes [10]. Recent studies show these rainfall impacts from TCs along coastlines
will be more severe as an uncertain, warmer future approaches [11–13].

As with all TC events, the characteristics of Hurricanes Harvey and Irma were different, and
each led to different effects in their respective cities. With respect to inland TC rainfall, most previous
studies concentrate on satellite, modeled, or time-specific rainfall amounts [14–17]. Here, the focus
for TC climatologies is based on per-event rainfall, similar to Knight and Davis [18]. Though
Hurricanes Harvey and Irma were intense based on wind speed, they produced vastly different
rainfall characteristics. Our study hypothesizes that the characteristics of Harvey and Irma, though
different, may be indicative of the TC climatologies for Houston and Miami, and these TC climatologies
may assist in future evacuation planning for each city.

To help minimize the TC rainfall research gap and, ideally, provide evidence for appropriate
resource allocation for flood control, the differences in TC rainfall risk between Houston and Miami
are considered. These cities are chosen as the main focal points due to the recent 2017 season and
the arrivals of Harvey and Irma. Risk is defined as the statistical probability of occurrence and the
interpreted results are applied to the individual cities. First, general seasonality of TC rainfall for
both of the locations is discussed, followed by an analysis on the changing nature of TC rainfall over
time. A return frequency analysis is applied to each location to estimate the expected type of TC rain
event over a given time period. Finally, as an attempt to describe the varying nature of TC rainfall
between Houston and Miami, Hurricanes Harvey and Irma, respectively, are used to showcase the
estimated distribution of rainfall throughout the cities using spatial interpolation. Results presented
below are supported by three main discussions: differences in ocean temperature, forward speed, and
TC organization.

2. Materials and Methods

The study area for the following analyses is shown in Figure 1. Points are placed on the city centers
of Houston (29.76◦ N, 95.37◦ W) and Miami (25.79◦ N, 80.32◦ W). Houston is situated on the northwest
side of the Gulf of Mexico and is roughly 50 miles from the coast. According to the Census [19],
Houston has a population of over 2 million people. Miami is situated on the eastern side of Florida,
facing the Atlantic Ocean, with roughly 400,000 people directly on the coast.

2.1. Data

This study uses event-based analyses to calculate TC rainfall variability. Events were based on all
measured rainfall from a given TC. Therefore, first, TCs for each city were compiled, then the lifetime
of each TC was determined using Daily Weather Maps, and finally, rainfall totals from reliable weather
stations were summed for each event. The data collection and procedures for analysis are discussed in
the following subsections.
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Figure 1. Study Area with tropical cyclones (TCs) used in this study. Both locations are shown with
points. Houston, Texas is near the northwest Gulf of Mexico and Miami, Florida faces the Atlantic
Ocean. TCs are shaded based on their wind speed intensity at landfall: darker tracks indicate TCs with
higher wind speeds.

2.1.1. Tropical Cyclones

The National Hurricane Center provides an official record of U. S. -landfalling North Atlantic TCs
in their Hurricane Database (HURDAT2; [20]). HURDAT2 consists of the six-hourly TC location and
intensity data for 1851–present. Elsner and Jagger [21] provide a smoothing spline that interpolates, and
preserves, those six-hour geographic position data to one-hour intervals. The one-hour interpolated
tracks are considered the data source for identifying influencing TCs.

For this study, any TCs are included that may have produced rain for Houston or Miami.
Keim et al. [22] show that major hurricanes (wind speeds ≥ 50 ms−1) can have TC force winds
(≥18 ms−1) as far as 360 km wide. Recent studies also note the size of rain fields in landfalling
TCs. Matyas [23] shows that U.S. landfalling hurricanes had average rain field extent of 223 km, and
the average width of right and left sides for Gulf Coast landfalling hurricanes were 295 and 196 km,
respectively [24]. Additionally, rain field size increased after landfall [24,25]. For this study, all TCs
landfalling within 180 km of each city center are found using the computer program R to identify those
events from HURDAT2. Reliable and complete rainfall data sets extend to 1950, so for the purposes of
this study, all TCs influencing these cities from 1950–2017 are included. Note that HURDAT2 is not
updated through 2017. Hurricanes Harvey (Houston) and Irma (Miami) were added to the data sets
because rainfall data fromthose events are presently available as described below. Figure 1 shows the
tracks influencing both cities (n = 37 and n = 68 for Houston and Miami respectively). The tracks are
shaded to denote Saffir-Simpson scale wind speeds. The lightest tracks are those TCs with tropical
storm wind intensity (≥18 ms−1) and the darkest tracks indicate TCs with Category 5 wind intensity
(≥70 ms−1).
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2.1.2. Daily Weather Maps

Hurricanes often produce continuous rainfall for longer than 24-h periods. To ensure that each
rainfall event was truly from a hurricane, and to ensure that total rainfall from each hurricane was
included, landfall dates were verified with Daily Weather Maps (DWMs) from the National Weather
Service. The DWMs for Hurricane Claudette in 1979 is included as an example (Figure 2).

On Sunday, 22 July, a tropical low-pressure system forms in the Central Gulf of Mexico (Figure 2a).
By the following day, the storm has formed a center of circulation with wind speeds greater than
18 ms−1, has moved northwestward, and the storm is named “CLAUDETTE” (Figure 2b). During the
next three days, Hurricane Claudette hovers over Southeast Texas, and the DWMs indicate rainfall
occurring at 7:00 a.m. EST in Houston for each of those days (Figure 2c). Finally, on Saturday, 28 July,
the low pressure from Hurricane Claudette has weakened and moved to Northern Arkansas (Figure 2d).
After tracking the hurricane with DWMs, it is catalogued that Hurricane Claudette possibly produced
rain over six days (22–27 July). The final step references daily rainfall readings for the weather station
at Houston Hobby Airport for the indicated days. Rainfall was recorded for each day during that
period for a total of 292.86 mm (11.53 in).

a

c

b

d

Figure 2. Daily weather maps for Hurricane Claudette, 1979. (a) Sunday, 22 July, a low pressure zone
moves in from the Gulf of Mexico. (b) Storm officially named Claudette. (c) Rainfall occurs for next
three days. (d) The low pressure center leaves and stops bringing rain to Southeast Texas.

2.1.3. Rainfall

The Southern Regional Climate Center housed at Louisiana State University provides climate
data through its new, open-access CLIMDAT portal (climdata.srcc.lsu.edu). More than 40 stations are
available within a 20-mile radius of the city centers of Houston and Miami. The closest and oldest
reliable weather station for Houston is Hobby Airport, approximately 10 miles from the city center
(1930–2018; 29.76◦ N, 95.37◦ W). Similarly, Miami’s oldest and most central weather station is its
International Airport (1940–2018; 25.79◦ N, 80.32◦ W), also less than 10 miles from city center. Miami
Beach is an older, closer weather station in Miami, but it did not record precipitation for Irma in 2017.
Other stations are also available from each city, but they are farther from city center, contain more
missing values, and do not significantly differ in values from the stations described above. Rainfall
for each event was summed based on the inferences taken from the DWMs. For example, rainfall at

climdata.srcc.lsu.edu
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Houston’s Hobby Airport for Hurricane Claudette was summed for 22–27 July (7.62 + 5.33 + 5.84 +
123.95 + 139.95 + 10.17 = 292.86 mm). This process was completed for each event.

Choosing the TCs, analyzing the daily weather maps, and aggregating the daily rainfall was
completed for both of the cities. The final resulting data include 37 events for Houston and 68 events
for Miami. Both data tables can be seen below in Tables 1 and 2. The start day and end day for each TC
correspond to the first time it was defined as a TC by the National Hurricane Center until it was no
longer designated as a TC. Occasionally, the final day occurred in the subsequent month (e.g., Table 1,
Hurricane Allison, 1989).

Table 1. Tropical cyclone data used for Houston, Texas. Included are the storm name, year, month,
start day (sDay), end day (eDay), and accumulated rainfall in mm.

Name Year Month sDay eDay Rain (mm)

BARBARA 1954 7 27 30 92.20
AUDREY 1957 6 24 29 17.53
BERTHA 1957 8 8 11 7.87
DEBRA 1959 7 22 27 205.23
CARLA 1961 9 3 16 182.12
CINDY 1963 9 16 20 25.40
ABBY 1964 8 5 8 19.56

FELICE 1970 9 12 17 67.06
EDITH 1971 9 5 18 10.92
FERN 1971 9 3 13 102.62

UNNAMED 1971 7 7 8 5.08
DELIA 1973 9 1 7 196.09

UNNAMED 1973 9 6 12 27.94
UNNAMED 1977 6 13 14 74.17

DEBRA 1978 8 26 29 2.29
ELENA 1979 8 30 2 53.34

CLAUDETTE 1979 7 15 29 292.86
DANIELLE 1980 9 4 7 119.89
UNNAMED 1980 7 17 21 25.91
UNNAMED 1981 6 3 5 144.02

CHRIS 1982 9 9 12 22.10
BONNIE 1986 6 23 28 4.06

UNNAMED 1987 8 9 17 0.00
ALLISON 1989 6 24 1 322.33

CHANTAL 1989 7 30 3 219.96
JERRY 1989 10 12 16 3.56
DEAN 1995 7 28 2 11.94

ALLISON 2001 6 5 19 532.89
FAY 2002 9 5 11 50.80

CLAUDETTE 2003 7 7 17 28.45
GRACE 2003 8 30 2 82.55

RITA 2005 9 18 26 25.91
HUMBERTO 2007 9 12 14 0.00
EDOUARD 2008 8 3 6 64.01

IKE 2008 9 1 15 276.86
BILL 2015 6 16 21 50.29

HARVEY 2017 8 23 1 940.05
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Table 2. Tropical cyclone data used for Miami, Florida. Included are the storm name, year, month, start
day (sDay), end day (eDay), and accumulated rainfall in mm.

Name Year Month sDay eDay Rain (mm)

KING 1950 10 13 20 54.10
HOW 1951 9 29 11 91.44

UNNAMED 1952 2 2 5 34.29
UNNAMED 1953 8 29 1 95.00
UNNAMED 1953 10 3 8 75.69
UNNAMED 1953 7 11 16 29.46
UNNAMED 1954 6 18 25 37.85
UNNAMED 1956 10 14 19 51.56
UNNAMED 1958 5 25 29 261.62

JUDITH 1959 10 14 22 74.68
FLORENCE 1960 9 17 26 188.72

DONNA 1960 8 29 14 214.12
ALMA 1962 8 26 2 16.76
CLEO 1964 8 20 5 176.28

ISBELL 1964 10 8 17 43.18
BETSY 1965 8 27 13 152.91
INEZ 1966 9 21 11 80.77

DOLLY 1968 8 10 17 42.93
BRENDA 1968 6 17 26 110.24
GERDA 1969 9 6 10 20.07
JENNY 1969 10 1 6 27.43

UNNAMED 1969 6 7 9 8.89
FELICE 1970 9 12 17 94.23
GRETA 1970 9 26 5 14.22

UNNAMED 1971 8 28 1 7.62
BETH 1971 8 10 17 3.30

DAWN 1972 9 5 14 0.00
UNNAMED 1974 10 4 9 35.05

DOTTIE 1976 8 18 21 77.98
UNNAMED 1976 6 11 12 25.65
UNNAMED 1976 6 7 9 1.27

DAVID 1979 8 25 8 35.81
UNNAMED 1979 6 11 16 58.42
UNNAMED 1981 7 2 4 21.59

DENNIS 1981 8 7 22 182.12
ISIDORE 1984 9 25 1 33.78

UNNAMED 1984 11 23 28 48.01
UNNAMED 1984 10 25 28 13.97

BOB 1985 7 21 26 85.85
FLOYD 1987 10 9 14 76.20

UNNAMED 1987 5 24 1 6.86
UNNAMED 1988 5 31 2 3.30

CHRIS 1988 8 21 30 36.07
ANA 1991 6 29 5 49.53

FABIAN 1991 10 15 17 20.07
ANDREW 1992 8 16 28 60.96
GORDON 1994 11 8 21 145.29

JERRY 1995 8 22 28 108.46
ERIN 1995 7 31 6 11.43

MITCH 1998 10 22 9 149.61
IRENE 1999 10 12 19 261.62

HARVEY 1999 9 19 22 45.47
IVAN 2004 9 2 24 27.94

FRANCES 2004 8 25 10 128.02
JEANNE 2004 9 13 29 35.31

KATRINA 2005 8 23 31 143.26
WILMA 2005 10 15 26 19.30

OPHELIA 2005 9 6 23 20.32
TAMMY 2005 10 5 7 32.26

ERNESTO 2006 8 24 4 25.40
FAY 2008 8 15 28 157.23

BONNIE 2010 7 22 25 40.64
NICOLE 2010 9 28 30 148.08
DORIAN 2013 7 22 4 29.97

ANA 2015 5 6 12 9.65
MATTHEW 2016 9 28 10 30.23

JULIA 2016 9 13 21 0.00
IRMA 2017 8 30 12 176.78
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2.2. Risk Calculation

2.2.1. Time Series

To assess whether per event rainfall rates are increasing throughout the period of record (68 years),
a time series analysis was conducted on each of the cities’ rainfall distributions. First, distributions
were checked using the Shapiro-Wilks Test for Normality. An ordinary least-squares regression was
initially used to establish a relationship between the independent variable, year, and the dependent
variable, rainfall. A Yeo-Johnson transformation was used to transform the variables [26] when the
residuals of the model were not normally distributed. Finally, a quantile regression was used to assess
the upper-most rainfall events in the distribution [27]. Quantile regression is an extension of linear
regression applied to quantiles of the dependent variable. A quantile is a point taken from the inverse
cumulative distribution function so that the 0.9 quantile is the value such that 90% of the values are
less than the value [28].

2.2.2. Extreme Value Return Periods

Extreme value theory (EVT) is a branch of statistics concerning models and analytical tools to
understand the most rare event, as opposed to the typical or average event. It is similar to the central
limit theorem by considering the limiting distributions of independent variables independent and
identically distributed. A complete discussion of EVT is provided in Coles [29]. EVT allows the
user to estimate return frequencies outside the known distribution of data. There are a variety of
distributions falling under EVT, including the weibull, the frechet, and the gumbel. The distributions
can be combined into the generalized extreme value (GEV) distribution. A GEV distribution fits the
set of values consisting of a block maxima approach, that is, one peak event per year. Alternatively,
EVT distributions can be used to create a two-parameter generalized Pareto distribution (GPD),
allowing the user to keep all values exceeding a certain threshold. The threshold choice is a compromise
between retaining enough TC rainfall amounts to estimate the distribution parameters with sufficient
precision, but not too many that the rainfall distributions fail to be described by a GPD.

The following theorem discusses the GPD. Let X1, X2, . . . , Xn be a sequence of independent
random variables with a common distribution function F and let

Mn = max{X1, . . . , Xn}. (1)

Denote an arbitrary term in the Xi sequence by X, and suppose that F satisfies, so that for large n,
Pr{Mn ≤ x} ≈ G(x), the standard GEV equation applies for some µ, σ > 0, and ξ. Then, for a large
enough threshold, u, the distribution function of (X− u), conditional on X > u, is approximately

H(y) = 1−
(

1 +
ξy
σ̃

)−1
ξ

(2)

defined on {y : y > 0 and
(

1 + ξy
σ̃

)
> 0}, where σ̃ = σ + ξ(u − µ) and µ, σ, and ξ are the GEV

parameters. Taking into account also the crossing rate of the threshold u gives a three-parameter model
equivalent to the three-parameter GEV model [30]. Inference based on this GPD approach is generally
superior because it relies on more data [30].

The functionality available in Elsner and Jagger [21] was used to estimate the return frequencies
for TC rainfall in Houston and Miami. It is similar to the approaches offered in Malmstadt et al. [28],
Trepanier [31], and Trepanier and Scheitlin [32]. Confidence intervals are provided using a bootstrap
approach. The set of rainfall amounts are randomly sampled with replacement to create a bootstrap
replicate. The model was run with this replicate and a new estimate of the return period was found.
This procedure was run 1000 times and the upper and lower quantiles corresponding to specified
probabilities are found.



Atmosphere 2018, 9, 170 8 of 19

2.2.3. Interpolated Surfaces

Hurricane rainfall was reliably recorded for Harvey in Houston at 18 stations, and at 12 stations
in Miami for Irma. Using spatial interpolation, rainfall was estimated for Harvey across the counties of
Houston and for Irma across Miami-Dade county. Kriging is used to estimate rainfall (z) at a given
location. It is based on a weighted average of the z values over the entire domain where the weights
are proportional to the spatial correlation Elsner and Jagger [21]. The estimates minimize the variance
between the observed and interpolated values.

The spatial autocorrelation between the rainfall observation points is modeled first with a sample
variogram. The sample variogram γ̂(h) is given as

γ̂(h) =
1

2N(h)

N(h)

∑
i,j

(zi − zj)
2 (3)

where N(h) is the number of distinct pairs of observation sites a lag distance h apart, and zi and
zj are the rainfall totals at gauge sites i and j. The model assumes the rainfall field is stationary.
The relationship between rainfall at two locations depends only on the relative positions of the sites
and not on where the sites are located (i.e., refers to distance and orientation) [21]. The variogram
provides a graphic showing the semivariance as a function of lag distance. From the sample variogram,
the zero-lag semivariance, or nugget (co), the partial sill (c), and the range (r) for the model are gathered.
The equation defining the model curve over the set of lag distances h is

γ̂(h) = c
(

1− exp
(
− h2

r2

))
+ co (4)

A model is then fit to the sample variogram. This variogram model is a mathematical relationship
defining the semivariance as a function of lag distance. There are many model choices. For Houston,
a Gaussian function is used as it fits the distribution of rain in Harvey best. For Miami, a Bessel
function model is provided as well as a periodicity model. As noted in the results, rainfall in Irma is
far more variable throughout Miami than Harvey in Houston. This is showcased in the interpolated
surfaces of Miami.

3. Results

3.1. Comparing the Historical Record

There are 37 events included for Houston and 68 for Miami. Histograms for TC rainfall can be
seen for Houston in Figure 3 and Miami in Figure 4. In both figures, events occurring in the last
decade (post 2007) are shown in red to provide an indicator of temporal change. In both locations, the
most recent events (i.e., within the last decade) do not always have the most intense rainfall amounts.
This idea is further assessed in the following subsection. Both locations show non normal distributions
with extremely long right tails indicating extreme distributions. In Houston, the majority of the events
have rainfall below 250 mm, with an average of 116.43 mm. The peak occurred in Harvey in 2017 with
a recorded 940.05 mm of rain. The lowest measurable rainfall occurred in Hurricane Debra in 1978
(2.29 mm). In Miami, the majority of the TCs produced rain less than 100 mm, with an average of
68.03 mm. The peak occurred in 1999 with the landfalling of Hurricane Irene (261.62 mm). The lowest
measurable rainfall was 0.13 mm from an unnamed event in 1988. Histograms for the number of
hours for each TC’s rainfall duration are also included in Figures 5 and 6 for Houston and Miami,
respectively. Most storms for both locations last fewer than 4 days, but the duration for TCs in Houston
are nearly twice as long as those in Miami. From these numbers alone, it is easy to see the rainfall risk
in Houston is higher than that of Miami.
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Figure 3. Histogram for tropical cyclone rainfall for Houston, Texas. Red bars indicate events post 2007.
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Figure 4. Histogram for tropical cyclone rainfall for Miami, Florida. Red bars indicate events post 2007.

The duration that a TC remains over a location may affect the amount of rainfall in an area.
Figures 5 and 6 show histograms for the number of hours that each TC produced rain for Houston
and Miami, respectively. The majority of TCs at each location produce rainfall for fewer than 4 days
at each location with a mean of and the largest number of TCs producing rain for no more than 48 h.
However, the longest TCs in Houston last nearly twice as long as those in Miami.
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Figure 5. Histogram for tropical cyclone rainfall duration for Houston, Texas.
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Figure 6. Histogram for tropical cyclone rainfall duration for Miami, Florida.

The season for North Atlantic hurricanes runs from 1 June through 30 November. The seasonality
varies depending on location. Figures 7 and 8 showcase the monthly distributions of TC rainfall for
Houston and Miami, respectively. The season is longer in Miami, with events occurring as early as
February (note, this is prior to the official season start date) and as late as November. The February
event was an unnamed event from 1952. The bulk of the Miami season begins in May with a peak
in August, followed by September and October. The season dramatically slows down after October.
In comparison, Houston has a much shorter TC season. The events begin in June and peak in September.
After September, TC rainfall activity essentially diminishes. The risk of rainfall intensity seems to be
higher in Houston, but the duration of risk is longer in Miami.
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Figure 7. Monthly distribution for tropical cyclone (TC) rainfall in Houston, Texas showcasing the
seasonality of TC rainfall.
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Figure 8. Monthly distribution for tropical cyclone (TC) rainfall in Miami, Florida showcasing the
seasonality of TC rainfall.

3.2. Changes Through Time

Research suggests changes in TC behavior may occur in a future climate due to warming
temperatures from increased anthropogenic greenhouse gases [33,34]. In order to assess whether
TC rainfall amounts are increasing or decreasing through time, a linear regression was used to model
the relationship between year and rainfall at both locations. The initial linear models proved to be
inadequate by violating assumptions of normality. After a Yeo-Johnson transformation to the variables,
the relationships were successfully modeled and neither Houston or Miami show a significant trend
in accumulated rainfall through time. Studies show the most extreme TC behavior is changing [35],
so quantile regression was used to model the highest accumulated rainfall totals. Although only four
events exist above 90th percentile of the rainfall data in Houston (283 mm), the confidence bounds
of the model do not overlap zero, indicating positive, statistical significance. It is important to note
this result is not robust with a sample size this small. However, it is interesting to discuss that the
four events, Claudette in 1979, Allisons in 1989 and 2001, and Harvey in 2017 have all progressively
increased through time. This suggests that the major events, when they do happen, produce more
rainfall today than at the earliest part of the record. This is consistent with studies suggesting an
increase in rain rates in present climatic conditions [33]. For Miami, a different relationship emerges
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from the model. A negative, insignificant relationship exists at all quantiles. Figure 9a shows the time
series for Houston and Figure 9b shows the time series for Miami. Black lines are the modeled ordinary
least squares relationships, and red lines are the modeled 90th percentile relationships.
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Figure 9. Time series plots with year on the x-axis and accumulated rainfall amounts on the y-axis.
Black lines indicate the ordinary least squares regression model and red lines are the models at the 90th
percentile. (a) Houston, Texas. (b) Miami, Florida.

3.3. TC Return Frequency

Empirically, Houston receives rainfall from a TC every other year or so, with the number of TC
rain events over the number of years in the record is roughly 0.57. Over the 67 year record, Houston
experienced 37 events. In comparison, Miami receives one roughly every year, having 68 events over
the 67 year period, an annual probability of 1.01. Both cities are modeled with thresholds set at the
60th percentile (Houston, 77.5 mm) and the 50th percentile (Miami, 43.1 mm). The threshold choice is
a compromise between having enough rain events and having the distribution still be described by a
GPD. These threshold choices are an adequate compromise. Using the EVT approach described above,
the estimated return frequencies for the peak events in both locations were modeled using the GPD.
Confidence bounds are provided using a bootstrapping procedure.

The model for Houston is shown in Figure 10. Annually, there is an 18.6% chance that rainfall
from a TC in Houston will exceed the threshold of 77.5 mm. The curve shows two points, one for
the 90th percentile of the rain distribution (286 mm) and one for Harvey at 940 mm. The confidence
intervals about those points are shown with a red line. The model is far more successful modeling the
90th percentile than it is at modeling Harvey. Harvey’s rainfall amount is a major outlier for Houston,
and its estimated return frequency is once every 230 years (90th CI: 96–Infinity). When modeling the
90th percentile, the expected return frequency for 286 mm of rain is once every 17 years, on average
(11–29 years). The more reasonable confidence interval suggests a more robust model at this level.

The model for Miami is shown in Figure 11. Annually, there is an 38.5% chance that rainfall
from a TC in Miami will exceed the threshold of 43.1 mm. The curve shows two points, one for
the 90th percentile of the rain distribution (166.75 mm) and one for Hurricane Irene at 261.62 mm.
The confidence intervals about those points are shown with a red line. Again, the model is far more
successful modeling the 90th percentile than it is at modeling Hurricane Irene. The estimated return
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frequency for Hurricane Irene rainfall is once every 173 years (90th CI: 73–Infinity). When modeling the
90th percentile, the expected return frequency for 166.75 mm of rain is once every 11 years, on average
(7–17 years). Note the x-axes on Figures 8 and 9 are not the same, indicating the greater intensity risk
in Houston.
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Figure 10. Tropical cyclone rainfall return frequency for Houston, Texas. Return level in mm is shown
on the x-axis, return period in years is shown on the y-axis. Annual probability is also included.
Red lines about the points indicate confidence bounds at the 90th percentile. Points indicate the 90th
percentile rainfall amount and Harvey in 2017.
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Figure 11. Tropical cyclone rainfall return frequency for Miami, Florida. Return level in mm is shown
on the x-axis, return period in years is shown on the y-axis. Annual probability is also included.
Red lines about the points indicate confidence bounds at the 90th percentile. Points indicate the 90th
percentile rainfall amount and Hurricane Irene in 1999.
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3.4. Harvey and Irma

The final section of analysis provides interpolated rainfall surfaces of Hurricanes Harvey and
Irma in Houston and Miami, respectively. It is to give an indication of the areas of the city hardest hit
by rainfall amounts. The hope is individuals may look to these maps for comparison purposes when
another storm approaches the shores. The background shapefiles for the counties surrounding Houston
and Miami-Dade county are taken from the respective city government geographic information system
portals available online.

Figure 12 shows the area surrounding Houston and the estimated rainfall based on 18 stations
recorded rainfall during the event. The highest rainfall amounts occurred just to the southeast of
Houston, with estimated measurements exceeding 1000 mm of rain. The northern parts of the city had
slightly less rainfall, however totals still exceed 500 mm. The massive inundation of the greater area
of Houston resulted in unprecedented losses for the state. The difference in distribution across the
city led to different experiences, and, thus, presented a different risk to the individual. This is further
explored in the discussion.

Accumulated Rainfall (mm)

500 600 700 800 900 1000 1100 1200 1300

Figure 12. Interpolated rainfall map for Houston, Texas during Hurricane Harvey 2017.

Figure 13 shows the two different models for the Miami area and the estimated rainfall based
on 12 stations recorded rainfall during Irma. Figure 13a shows the Bessel model with a more linear
representation, whereas Figure 13b shows the Periodic model which is obviously represented by the
fluctuation in low and high precipitation amounts in Miami. Based on the data from Irma in Miami,
the Periodic model seems to actually represent the distribution well. The meaning of these models is
discussed in the following section in relation to the risk in Houston.
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Figure 13. Interpolated rainfall map for Miami, Florida during Hurricane Irma 2017. (a) Kriging model
with Bessel variogram. (b) Kriging model with Periodic variogram.

4. Discussion

The approach here is to use event-based TC rainfall data, and as such, the number of events
occurring at each location is important. During the same time interval, Miami received more TCs than
Houston, likely due to its longer season of TCs. Miami’s positioning in the Atlantic basin leaves it open
for TC landfall at almost any approach angle, whereas, TCs for Houston almost always come from the
southeast [36]. The seasonality of TCs for Houston is also shorter than Miami, and the peak of the TC
rainfall season is earlier in Miami when sea surface temperatures (SSTs) are lower. However, according
to this study, the increased number of events and length of season for Miami does not increase its risk
to TC rainfall. In fact, accumulated rainfall totals from TCs are nearly 50 percent greater in Houston
than in Miami. The results of this study show that some characteristics of Hurricanes Harvey and
Irma are also present in the full TC rainfall climatologies. We present some mechanisms to explain
why these characteristics differ between the two sites, and we suggest that future research focus on the
derth of knowledge within TC rainfall climatologies.

4.1. Possible Physical Mechanisms

This study suggests that TCs in the western Gulf of Mexico produce substantially different rainfall
patterns than those in the eastern Gulf of Mexico. Based on limited previous research on TC rainfall,
three mechanisms are suggested that may cause differences in TC rainfall pattern: (1) SSTs, (2) forward
speed, and (3) TC organization.

Increased SSTs allow for Miami to have a longer season, but higher SSTs may cause a confounding
effect on those TCs impacting Miami [37]. Rainfall from TCs in Houston averaged nearly 50 mm
of rain more than in Miami. Miami is nearly surrounded on three sides by warm SSTs, whereas
Houston only has one coastline. We suggest that similarly to previous storm surge research, differing
coastline geomorphologies may impact the amount of rainfall on inland locations [38]. TC quadrants
occurring over land typically have smaller rain fields and produce less rainfall [39]. Rainfall from
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Miami TCs may serendipitously occur over water instead of over land as a result of increased SSTs
and available moisture.

Coastline geomorphology may also play a role in the forward speed of TCs. Previous models for
TC rainfall note the importance of forward speed in rainfall, but few studies discuss its importance
with respect to rainfall amounts [40,41]. Slower moving TCs are shown to produce more rain in
a given area [42], and typically, TCs move more quickly at lower latitudes [43]. However, for this
study, the majority of TCs impacting Houston moved at slower speeds than those impacting Miami,
ultimately causing a longer duration of rainfall for most TCs in Houston. We suggest that the largest
land mass surrounding Houston provides increased friction to TCs, and TC forward speed must slow
down. As a result, the same amount of rainfall occurs over a shorter distance, thus producing more
rainfall for a local area. Additionally, a TC path that recurves sharply may have a larger impact on
a smaller spatial area. Figure 1 shows that storms do recurve more sharply in Houston than in Miami.
Future research should further analyze the climatology of TC forward speed and shape of TC storm
track in the Atlantic hurricane basin.

Finally, TCs in the western Gulf of Mexico often fragment and disperse more so than TCs in the
eastern Gulf of Mexico [44]. Though this study alone cannot corroborate TC shape-rainfall relationship,
these results suggest that a TC rainfall dichotomy exists between the eastern and western Gulf of
Mexico. We suggest that future research concentrate on TC compactness with event-based TC rainfall
data to support the following hypothesis: though an organized TC may be more intense in terms of
wind or storm surge, an unorganized TC may bring more local rainfall to site-specific areas as rain
bands split off from the center and form their own localized convection.

4.2. TC Return Frequency

Previous studies show that the most intense TCs are becoming more intense with time [33,45].
This study corroborates observations in the literature with respect to the most intense rainfall for
Houston, TX. Extreme TC rainfall for Houston comes in the form of slow-moving, less organized TCs.
These TCs often produce large amounts of rainfall over a singular, local area, and, likely as a result
of increasing global SSTs, the localized rain fields have become more intense. However, Miami does
not show a similar pattern. The increasing intensity of Miami TCs is not being manifested in rainfall
amounts like it is in Houston.

TCs falling within the 90th percentile for rainfall are successfully modeled by this study. However,
the largest rainfall-producing TC events, such as Harvey, are often difficult to predict. Although Harvey
is a major outlier, TCs in Houston usually produce more rainfall than those in Miami. The return period
for 90th percentile rainfall in Houston is longer than Miami, but Houston’s 90th percentile rainfall
amount is more than 100 mm greater than Miami’s. The higher probability for a greater magnitude
rainfall event in Houston should provide evidence for appropriate resource allocation. Inland flooding
protection resources will likely have a greater effect on saving lives and infrastructure in Houston than
in Miami, all else being equal.

4.3. Hurricanes Harvey and Irma

The 2017 TCs impacting Houston and Miami were indicative of their climatologies described
previously. As an example, we have chosen Hurricanes Harvey and Irma to show this comparison
(Figures 10 and 11). Harvey had a distinct bias of rainfall to the southeast of the city center. TC rainfall
interacted with storm surge and high wind speeds to flood the largest oil refinery in the United States
in Beaumont, TX in the area of greatest rainfall. Harvey’s forward speed slowed to less than 2 mph
at times, and its northeast quadrant was centered over Southeast Houston, where it could gather
moisture from the warm Gulf of Mexico for a long period of time. The intense amount and longer
duration of rainfall from Harvey contrast that of Irma and these similarities also exist in the TC rainfall
climatologies at each landfall location.
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Contrast these results to Irma, another strong TC that stayed organized, traveled quickly,
and produced modest rainfall for Miami. Figure 13 shows two interpolations for Irma rainfall in
Miami, and neither interpolation showed strong agreement to any distinct rainfall pattern. The periodic
variogram (Figure 13b) actually produced an interpolation most similar to empirical values from Miami.
We suggest that the Periodic variogram works well because the rainfall from Irma was comparatively
consistent over its path, and it may represent the multiple rain bands common in a more organized
TC. Lastly, note the differences in scale between the two events: the highest rainfall values for Irma in
Miami are half that of even the lowest values for Harvey in Houston.

5. Conclusions

This paper was written as an attempt to quantify the differences in per-event TC rainfall risk
between Houston, Texas and Miami, Florida. The purpose is two-fold. First, the paper aims to expand
the literature on the geographic differences in hurricane risk. As numerical models are being built and
forecasts being interpreted, the geographic variability of the results needs to be considered. Not all
locations experience the same type of risk. The relative risk of an event becomes increasingly important
to understand. The procedures described here are an attempt at showcasing this geographic variability
and could be considered useful for similar types of comparisons. Second, the results implicate Houston
has a greater risk of more extreme rainfall than Miami.

It is likely Miami would not experience rainfall amounts rivaling Hurricane Harvey in Houston.
Miami experiences more events, but they are not as extreme as those experienced by Houston.
This means Houston’s large population of 2 million people is arguably more at risk for extreme
TC rainfall events than the population of Miami. This suggests funding for mitigation efforts regarding
inland floodwaters should be focused more on Southeast Texas than on the eastern shores of Florida.
The greater risk and greater population of Houston provide a location where mitigation and protection
efforts could be increased and the lives and money saved could be exponential.
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