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Abstract: Due to the high spatial and temporal variability of atmospheric water vapor associated with
the deficient methodologies used in its quantification and the imperfect physics parameterizations
incorporated in the models, there are significant uncertainties in characterizing the moisture field.
The process responsible for incorporating the information provided by observation into the numerical
weather prediction is denominated data assimilation. The best result in atmospheric moisture
depend on the correct choice of the moisture control variable. Normalized relative humidity and
pseudo-relative humidity are the variables usually used by the main weather prediction centers.
The objective of this study is to assess the sensibility of the Center for Weather Forecast and Climate
Studies to choose moisture control variable in the data assimilation scheme. Experiments using
these variables are carried out. The results show that the pseudo-relative humidity improves the
variables that depend on temperature values but damage the moisture field. The opposite results
show when the simulation used the normalized relative humidity. These experiments suggest that
the pseudo-relative humidity should be used in the cyclical process of data assimilation and the
normalized relative humidity should be used in non-cyclic process (e.g., nowcasting application in
high resolution).

Keywords: atmospheric water vapor; numerical weather prediction; variational data assimilation;
moisture control variable; pseudo-relative humidity; normalized relative humidity

1. Introduction

The atmospheric moisture field presents variation of high and low frequencies. These frequencies
depend directly on the heating of the terrestrial surface and indirectly on some variability patterns of
low frequency by teleconnection [1,2]. In addition, the space field presents variability associated with
wind, topography and surfaces types. Wind changes moisture by advectives or recycling processes.
Topography is responsible for large amount of water vapor moving windward of the mountain, and
small amount moving downwind. The plane and coastal surfaces present a larger storage of water
vapor than continental areas [3,4].

The numerical representation of the atmospheric moisture field involving these characteristics
still presents a challenge in modeling. Although the models of Numerical Weather Prediction (NWP)
are quite useful to spatially characterize the behavior of the atmospheric moisture, they are deficient
at physically representing all the involved processes. Due to temporal and spatial discretization
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applied in this model, several of these processes require a parameterization that has been developed
for simulations of the atmosphere. A portion of the imprecision of these simulations is from the
uncertainties contained in the observations [5,6].

Statistical combination of atmospheric moisture observations with the predicted fields using a
numerical model in a optimization methodology is denominated data assimilation. This strategy
can be the best solution to obtain a more realistic space representation of atmospheric moisture.
The observations are introduced in the cycles of numerical prediction to minimize the increase of
error during the model integration in a feedback process. This generates initial conditions that are
influenced by observation to better represent the physical reality, considering the deficiency of the used
model. This cyclical procedure is one of the most important characteristics of the data assimilation
process because it allows the concatenation of the contribution of the observations in different steps in
the process of integration of the model [7]. This minimizes the deficiency in the collected data and the
atmospheric modeling.

The efficiency of the data assimilation process in the moisture fields is directly related to the choice
of the atmospheric moisture control variable employed in the process of uncertainties minimization.
The moisture control variable is correlated with other variables, which promote modification by
moisture observation not only in the moisture field, but also in the fields of the correlated variable.
The suitable choice of this control variable permits us to minimize the contamination of the moisture
observation uncertainty to other variables measured and predicted with larger precision, e.g.,
temperature. Furthermore, the moisture control variable has an important impact on the total precipitable
water predicted by the model. This has implications for the quality of the precipitation forecast, which is
the most important NWP product for human activities.

Several previous studies have investigated the impact of a suitable choice of moisture control
variable in the data assimilation process [8–10]. Using a Physical-Space Statistical Analysis System (PSAS),
Dee et al. [9] observed the impact on the moisture initial conditions when different variables (such as
mixing ratio, specific moisture, logarithm of specific moisture, relative moisture and pseudo-relative
humidity) were chosen as moisture control variable of the atmospheric moisture fields.

Lorenc et al. [11] showed that the preservation of the relative humidity when humidity
observations are not available can be advantageous to global data assimilation system at the UK
Met Office, because the cloud parameterization in the model is directly associated with relative
humidity. However, if the model has cold bias in the stratosphere, the increase in the values of the
observed temperature causes spurious humidity accumulation, which is condensed in the stratosphere
by the model. To contain the increase this stratospheric humidity, it is possible to introduce an artificial
variable or to use pseudo-relative humidity as moisture control variable. Pseudo-relative humidity
is dependent on the background temperature and is consequently related to all of the processes of
correction of the model trajectory inside of the cycle of data assimilation [9].

The correct choice of the moisture moisture control variable is very important. It is necessary
to consider the skill of the model, the availability of humidity observation systems and the data
assimilation method. Different centers use different atmospheric moisture control variables; the Center
for Weather Forecast and Climate Studies (CPTEC) from National Institute for Space Research (INPE)
uses the normalized relative humidity. However, the current data assimilation system (GSI, Gridpoint
Statistical Interpolation) permits us to explore the pseudo-relative humidity as moisture control
variable [9,12].

The objective of this work is to evaluate the sensitivity of the initial conditions and forecasts in the
basic state and atmospheric moisture fields as a function of the selected moisture control variable in the
data assimilation process. To do this, it is necessary to accomplish simulations in cyclical experiments
of assimilation using GSI coupled in the CPTEC/INPE model. In this case, the normalized relative
humidity and pseudo-relative humidity are used as moisture control variables in the data assimilation.

In Section 2, the methodology is presented. An emphasis is placed on the GSI and CPTEC/INPE
model, the experiment designer and the evaluation strategy employed here. We also prioritize a
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discussion about which moisture control variables are available in the process of data assimilation
implemented in GSI. In Section 3, the results are presented and described. In Section 4, the conclusions
and final comments are discussed.

2. Materials and Methods

The model used in this study was Brazilian Global Model from CPTEC/INPE, T299L64,
with a horizontal resolution of approximately 44 km near the equator. The equations are written
in spectral form and the equations of horizontal motion are transformed into vorticity and divergence
equations. The initial condition undergoes an initialization process using the normal modes of the
linearized model of a basic state at rest and considering temperature only as a vertical function [13].

The Brazilian Global Model uses the Simple Biosphere Model (SSiB) to represent the terrestrial
surface [14]. Dynamic processes and physical parameterizations involve the Kuo scheme for deep
convection [15], the Tiedtke for shallow convection, Mellhor and Yamada closure scheme for the vertical
diffusion in the planetary boundary layer, and the biharmonic-type diffusion for the horizontal diffusion.

The surface variables (soil surface temperature, soil moisture, surface albedo and snow thickness)
are introduced at the beginning of integration with the climatological values and adjusted throughout
the integration. More information about the configuration of the Brazilian Global Model can be found
in Cavalcanti et al. [16].

The Grid point Statistical Interpolation (GSI, [17]) system implemented at CPTEC/INPE uses
the previous 6-h forecast from Brazilian Global Model as background. Then, a new estimate of the
atmospheric state (analysis) is required every 6 h to initialize the Brazilian Global Model that covers
the 6-h data window centered on the analysis time. The analyses are used as the initial conditions for
subsequent forecasts and the cycle continues.

The GSI system is a three-dimensional (3-D) variational data assimilation (3DVAR) method.
The solution of 3D variational data assimilation is sought as the minimum of the following cost
function [17,18].

J(x) =
1
2

Jb(x) +
1
2

J0(x) =
1
2
(xb − x)T B−1(xb − x) +

1
2
[y0 − H(x)]T R−1[xb − H(x)]. (1)

where x is the state vector composed of the model variables at every grid point, xb is the background
state vector, y0 is the vector of observations, and H is the non-linear observation operator, which
provides a map from the gridded model variables to the observation locations. The J0 term contains R,
the observational error covariance matrix. The Jb term contains B, the background error covariance matrix.

By definition, exact values of R and B would require the knowledge of the true state of the
atmosphere at all times and everywhere on the model computational grid. However, the matrix is too
large to calculate explicitly and to store in present-day computer memories. As a result, the B matrix
needs to be modeled [19]. Therefore, we need to define the analysis control variable that will be
used to represent the stream function, velocity potential, temperature, surface pressure, ozone and
moisture, etc.

In this study, we used the same B matrix in both experiments; we only changed the analyzed
moisture. To do this, there are two choices from GSI (3DVAR) normalized relative moisture
(Equation (2)) and pseudo-relative humidity (Equation (3)).

normalized − RH =
r

rs(T, P)
. (2)

where r is the mixing ratio and rs is the mixing ratio of a volume of air that is saturated with water
vapor, which are affected by temperature T and pressure P.

pseudo − RH =
r

rb
s (Tb, P)

. (3)
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where r is the mixing ratio and rb
s is the mixing ratio of a volume of air that is saturated with water

vapor from background, which are affected by temperature from background Tb and atmospheric
pressure P.

Thus, if the atmospheric moisture control variable is the normalized RH, temperature or moisture
observations can affect both the analyzed temperature and specific moisture during the cycle process.
For example, in the absence of moisture observations, a single temperature observation is enough to
change the temperature field from analysis to the background. Thus, because the mixing ratio depends
on temperature, the mixing ratio of the analysis will be different to the mixing ratio of the background
but the normalized RH from background stays the same [9].

If the atmospheric moisture control variable is the pseudo-RH, the background pseudo-RH and
relative humidity fields are identical. However, the observed pseudo-RH is not equal to the observed
relative humidity. More information can be found in Dee et al. [9].

The normalized RH and pseudo-RH only differ with respect to temperature, because the
normalized RH depends on temperature observations while the pseudo-RH depends on temperature
forecast. Therefore, the choice between normalized RH and pseudo-RH depends on three tools:
the numeric model, observations, and data assimilation. The normalized RH depends mainly on
whether the temperature measurements are of good quality and the pseudo-RH depends mainly on
whether the numerical model is skilled at forecasting temperature.

To achieve the objectives of this work, two experiments were carried out in the period
1–31 August 2014, in which pseudo-RH and normalized RH were used as variables controlling
atmospheric moisture in the CPTEC/INPE data assimilation system. The normalized RH experiment
was considered as a control experiment because it is the variable that is used operationally by the
CPTEC/INPE data assimilation system.

To evaluate the sensitivity of numerical weather prediction to choice the atmospheric moisture
variable control, the values of the mean field, Mean Square Error, anomaly coefficient and bias in
the state variable and moisture fields were used. The analyses were carried out in the fields of
initial conditions and forecasts generated by Brazilian Global Model Data Assimilation System for the
domains Global, Southern Hemisphere, Northern Hemisphere, South America and Equator. The mean
field values of the initial conditions were obtained through the means of the initial conditions of 00:00,
06:00, 12:00 and 18:00 UTC from 1 to 31 August 2014. The reference values for RMS when calculating
the forecast fields provided us with the initial conditions.

3. Results and Discussion

The sensibility of initial conditions for selecting moisture control variables in the assimilation
was verified through the initial conditions of the mean fields of zonal wind at 200 hPa (U200 hPa),
500 hPa geopotential height (Z500 hPa), mean sea level pressure (MSLP), and precipitable water (PW).
The mean fields were obtained to the experiments that utilized pseudo-RH, normalized RH and the
difference between pseudo-RH and normalized RH in August (Figure 1).

Greater differences were noted between normalized RH (NRH) and pseudo-RH (PRH)
experiments in the Antarctic and region of the polar jet stream in the Southern Hemisphere when
compared with the U200 hPa, Z500 hPa and MSLP fields (Figure 1, right side). For the experiment
utilizing PRH (Figure 1, left side), the U200 hPa varied from 0 to 15 m/s, the Z500 hPa was 4700 m,
and MSLP was between 600 hPa and 700 hPa at the Antarctic. In the region of polar jet stream in the
Southern Hemisphere, U200 hPa ranged from 15 to 35 m/s, the Z500 hPa was 5450 m, and MSLP was
950 hPa. The U200 hPa results is consistent with the findings of a previous study [20], which identified
a zonal mean climatology wind of 10 m/s in 200 hPa at latitude of 80◦ S (Antarctic’s latitude) and a
wind between 20 and 30 m/s at the region of polar jet stream.
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Figure 1. Mean fields of the initial conditions of zonal wind at 200 hPa (U200 hPa), 500 hPa geopotential
height (Z500 hPa), mean sea level pressure (MSLP), and water precipitable (PW) compared with
experiments that utilized pseudo-RH (PRH) and normalized RH (NRH) in August.

The experiment using NRH (Figure 1, center) achieved incoherent results with an average behavior
of the atmosphere on the Antarctic and region of the polar jet stream in the Southern Hemisphere.
This control experiment (NRH) showed similar rates to those presented in Cavalcanti et al. [16].
The performance of Brazilian Global Model from CPTEC/INPE (without the coupling between GSI)
was compared with a reanalysis of National Center for Atmospheric Research (NCAR-NCEP) by
Cavalcanti et al. [16] and revealed that the mean of U200 hPa is overestimated in 30◦ S and 60◦ S,
achieving values between 30 and 40 m/s. These results are higher than rates obtained by reanalyzing
NCEP-NCAR, i.e., between 25 and 35 m/s in austral winter (June, July and August).

Cavalcanti et al. [16] observed the Southern Hemisphere at subtropical latitudes. They showed
that the wavenumber 1 observed in the reanalysis of NCEP-NCAR is reproduced in the Brazilian Global
Model model from CPTEC/INPE, but there are some differences in the intensity and position of zonal
anomaly centers. The anomalous centers at mid- and high latitudes are weaker in the model than in
the reanalysis, representing the weaker amplitude of the stationary wave in the model. Here, the PRH
experiment was intenser than the NRH experiment in Z500 hPa.

The MSLP was underestimated in the Antarctic in the austral winter when evaluated with the
reanalysis of NCEP-NCAR [16]. Furthermore, the PRH experiment reached higher rates in comparison
with the experiment using NRH (Figure 1), i.e., PRH adjusts the bias identified in the NRH experiment.
The data assimilation using the results obtained in the NRH experiment could not solve all the issues
pointed out by Cavalcanti et al. [16]. This is because the temperature observations on the Antarctic
and region of the polar jet stream were not good enough to improve the fields. Nevertheless, the PRH
experiment produced better results for these regions because they depend on the temperature forecast.

Cavalcanti et al. [16] identified that the Brazilian Global Model presented a negative bias
for temperatures between 1000 and 800 hPa in latitudes between 75◦ S and 90◦ S, as well as in
levels over 700 hPa in latitudes around 60◦ S. An accurate result may be obtained if an appropriate
monitoring system is installed on these locations. Nevertheless, Sapucci et al. [21] demonstrated



Atmosphere 2018, 9, 123 6 of 12

that AIRS-TPW was the only sensor to provide observations of air temperature on 15 June 2009.
Therefore, the tools available in this study present a negative bias for air temperatures and a lack of
observations. Dee et al. [9] showed that the pseudo-relative humidity predicts relative humidity fairly
well, depending on the accuracy of the background temperature estimates.

The precipitable water field produced the highest difference between the experiments. The highest
variations were detected in several regions, such as the Kalahari Desert, the Northeast, Center and
Northwest of South America, the Indian Ocean, West and East Pacific Oceans. The NRH experiment
showed rates between 10 and 15 mm in the Kalahari Desert of Africa, while the PUR experiment
showed rates between 15 and 20 mm (Figure 1). Howarth [22] found that this desert has one of
the driest territories in the South Hemisphere. Therefore, the NRH experiment is consistent with
Howarth [22]. This is because the experiment utilizing NRH indicated that the descending vertical
movement in 500 hPA is slightly higher in the desert and more intensive over the southwest coast of
Africa when contrasted with the experiment using PRH (Figure 2).

Figure 2. The mean fields of the initial condition of divergence fields in 200 hPa, vertical movement in
500 hPa, and humidity flow divergence in 925 hPa during the experiments that utilized PRH and NRH
in August.

In the tropics of the Indian Ocean, and the West and East Pacific Oceans, a divergence of mass,
an ascendant vertical movement in 500 hPa, and humidity convergence flow was observed (Figure 2).
Altogether, these environmental variables make a proper analysis of rainfall. The PRH experiment
showed minor intense values of these variables (Figure 2). Howarth [22] identified values of 50 mm of
rainfall at tropics of the Indian Ocean and East Pacific Ocean, while the West Pacific was drier than the
East Pacific. Howarth [22] results were consistent with the RH experiment.

South America reached higher values of precipitable water on at northwest and center (Figure 1).
Rao et al. [1] measured the rainfall in South America and found a higher volume at the Brazilian
Northwest in July. The bigger difference between both experiments is over the center of South America
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because the humidity convergence at lower levels is stronger in the PRH experiment than in the
NRH experiment.

In a statistical analysis, differences in the root mean square (RMS) among the experiments have
been evaluated. These experiments utilized the PRH and NRH variables in the forecasting of 24, 72,
and 120 h to zonal wind fields at 250 hPa (U250 hPa), geopotential heights at 500 hPa (Z500 hPa),
mean sea level pressure (MSLP), and precipitable water (PW) (Figure 3). Then, positive values mean
a greater difference between the 24, 72 and 120 h of forecast and the initial conditions to the PRH
experiment, and negative values show a greater difference between the 24, 72 and 120 h of forecast
and the initial conditions to the NRH experiment.

Figure 3. Differences in the root mean square (RMS) between PRH and NRH experiments for 24,
72, and 120 h of forecast. Fields: zonal wind of 250 hPa (U250 hPa), geopotential heights of 500 hPa
(Z500 hPa), mean sea level pressure (MSLP), and precipitable water (PW).

These results show that Brazilian Global Model tends to approximate the forecasts of 24, 72 and
120 h of the initial conditions in the fields of the basic state when PRH is used as a moisture control
variable. There are subtle differences between the forecast and initial conditions in 30◦ S–90◦ S to
MSLP and U250 hPa. These differences increase to Z500 hPa.

However, in the region of the polar jet stream in the Southern Hemisphere and in the Antarctic,
greater differences are found for all variables of the basic state during the NRH experiment.

Figure 1 shows that the initial conditions of the fields of the basic state (U250 hPa, Z500 hPa,
and MSLP) were more sensitive to experiment with PRH and Figure 3 shows smaller RMS values in
the forecasts of 24, 72 and 120 h over 30◦ S and 90◦ S region in this experiment. On the other hand,
although the water precipitable fields were more sensitive over Kalahari Desert, South America and
tropics, the Indian Ocean, and the West and East Pacific Oceans in the PRH experiment, Figure 3
shows larger RMS values for the forecasts of 24, 72 and 120 h in these areas. This result indicates
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that Brazilian Global Model present deficiency in the suitable characterization of the humidity fields
forecast considering the analyzed fields obtained when PRH is used as moisture control variable.

The sensibility of the initial conditions (Figure 1) and of the forecasts (Figure 3) in the choice
of the moisture control variable is different over several parts of the globe. This difference is not
constant along the evaluated period. To assess the temporal behavior of this difference, Figure 4
shows the temporal series of the anomaly correlation coefficient and RMS values of the forecast for
48 h with the height geopotential at 500 hPa as a function of the integration time for each experiment
in the global domains, Southern Hemisphere, Equator and Northern Hemisphere in the analyzed
period. This variable was chosen because it represents the basic state and has a relevant influence
on the weather forecast in the extratropical areas, indicating the approach of frontal systems and
high-pressure centers.
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Figure 4. Temporal series of the anomaly correlation coefficient and RMS values of the 48-h forecast of
the height geopotential at 500 hPa as a function of the integration time for PRH and NRH experiments
in the global domains, Southern Hemisphere, Equator and Northern Hemisphere. The correlations
present a statistical significance of 99.95%

Figure 3 shows that there was little difference between the forecast and initial condition in the
Southern Hemisphere during the PRH experiment and in the Equator during the NRH experiment.
In Figure 4, we can see the same behavior. The RMS value is lower for the PRH experiment than the
NRH experiment associated with the Southern Hemisphere. The RMS value is equal between the PRH
and NRH experiments over the Equator.
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These results align with the analysis of Figure 1, which showed that the PRH experiment is
closer of the observed values in the reanalysis of NCEP-NCAR. On the other hand, the anomaly
correlation values were degraded in the PRH experiment in Equatorial region, particularly after
20 days. In physical terms, the uncertainty is expected to be large where the atmosphere has a high
capacity for water vapor, i.e., at low levels and high temperatures [9].

Figure 5 presents a summary of RMS, bias and anomaly correlation coefficient values among
the initial conditions of 00:00, 06:00, 12:00 and 18:00 UTC and the forecasts of 24, 48, 72, 96 and
120 h of all the prognostic variables of the Brazilian Global Model. The variables are: zonal and
meridional wind component (V and U); the geopotential height (Z) at 250, 500 and 850 hPa; water
precipitable; specific humidity (q) at 500, 850 and 925 hPa; pressure at the mean sea level pressure
(MSLP); air temperature (T); and virtual temperature (Tv) at 500, 850 and 925 hPa. The black triangles
indicate that the PRH experiment was better than the NRH experiment and the inverted white triangle
represents the opposite. The triangle sizes indicate the statistical significance of the metrics, small is
less significant and the larger represents the opposite. The ash squares show that the values between
the initial conditions and the forecasts are not statistically significant.

Figure 5. In this study we show the summary impact of RMS, bias and anomaly correlation coefficient
values between PRH and NRH experiments and the global domain in all variables. The black triangles
indicate that the PRH experiment was better than the NRH experiment and a white triangle represents
the opposite. The triangle sizes indicate statistical significance of the metrics (small is less significant,
and vice versa). The ash squares show that the values between the initial conditions and the forecasts
are not statistically significant.

Figure 5 indicates the gain in the variable temperature dependence for the PRH experiment.
This is represented as zonal and meridional wind components, geopotential height, the mean sea level
pressure, the air temperature and virtual temperature. The basic state fields presented an anomaly
correlation with statistical significance from 48 h of the forecast. The NRH experiment improved
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the humidity fields compared with PRH experiment, which presented smaller RMS values for water
precipitation and specific humidity in all evaluated levels. The values of the anomaly correlation showed
statistical significance from 48 h just in the field of the water precipitable. The bias values indicate that
the NRH experiment generated a better forecast for the humidity fields. In this case, the forecast was
systematically closer to the initial condition, and the results are better for larger model integration times.

In a synthesis of those results, the PRH should be a choice for moisture control variable when
the model state needs to be maintained at a stable state during the assimilation cycle. However, this
option punishes the forecast quality of the atmospheric humidity fields. On the other hand, when
the data assimilation system is used to generate more appropriate humidity fields, the best choice is
NRH. However, in that case, the basic state in the model is punished. In non-cyclical applications of
the data assimilation and those that require high-quality precipitation forecasts, the NRH variable is
the best option.

The previous results showed that the forecast fields generated by the model are distinct among
different areas of the globe. This can be expressed as a function of the choice of the humidity variable
control in the data assimilation system at CPTEC/INPE. To assess these results, a sensibility analysis
of the forecast fields in different domains was carried out on differences of anomaly correlation
coefficients obtained for PRH and NRH experiments.

Figure 6 shows the results as a function of the model integration time for the zonal wind
component at 250 hPa, 500 hPa geopotential height, mean sea level pressure and water precipitable for
the domains global, Southern Hemisphere, Northern Hemisphere, Equator region and South America.
Note that positive difference indicates that the PRH experiment generated larger values of the anomaly
correlation than the NRH experiment, and vice versa.
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Figure 6. Differences in the anomaly correlation as a function of the model integration time for the zonal
wind component at 250 hPa, 500 hPa geopotential height, mean sea level pressure and water precipitable
for global domains, Southern Hemisphere, Northern Hemisphere, Equator region and South America.

In Figure 5, the PRH experiment presented better results than NRH experiment for the
temperature-dependent variable of the global domain. Figure 6 shows that domains such as the
Southern Hemisphere and South America also presented superior values of anomaly correlation in
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the PRH experiment compared with the NRH experiment with the temperature-dependent variable
(U250 hPa, Z500 hPa and MSLP).

The NRH experiment shows superior values of anomaly correlation over the Equator than the
PRH experiment in PW, U250 hPa, Z500 hPa and MSLP. The biggest anomaly correlation for the
NRH experiment was the Z500 hPa field at the Equator. In Figure 4, the NRH experiment showed
larger anomaly correlation after 20 August. The precipitable water was also a field with high anomaly
correlation for the NRH experiment at the Equator. These results show that the choice of the NRH is
the best option to use as a moisture control variable in the assimilation of data over the Tropical region.

4. Summary and Conclusions

The performance of the initial conditions and forecasts for the moisture and basic state variables
was evaluated by sensitivity tests with the normalized-RH and the pseudo-RH as control moisture
variables in the Brazilian Global Model Data Assimilation System. The sensitivity of numerical
weather prediction when choosing the atmospheric moisture control variable should consider three
aspects: numeric model, observations, and data assimilation. For the Brazilian Global Model Data
Assimilation System, these three aspects show that the fields of forecasts and initial condition of the
basic state improve in the pseudo-RH experiment, mainly between 30◦ S and 90◦ S, but damage the
atmospheric moisture field. The normalized-RH experiment improves the fields of forecasts and
initial condition of the moisture, mainly in the regions across the Equator, but damages the field of
the basic state in the initial condition and forecasts. These patterns can be explained because the
fields of forecasts and initial condition of the basic state are benefited by balancing the mixing ratio
and temperature from the background to pseudo-RH experiment. However, the pseudo-RH harmed
the atmospheric moisture field because it is too different to the observed relative humidity. In the
Equator, the fields of forecasts and initial condition of the moisture are improved because of the
temperature observations. However, the basic state is harmed because of the direct relation between
mixing ratio and temperature observations. Therefore, we suggest that the pseudo-RH variable is used
in a cyclic data assimilation system, as it substantially improves the physics of the Brazilian Global
Model. Moreover, the normalized-RH variable should be assimilated in the non-cyclic system because
it will not propagate the errors generated in the basic state and it will help to improve the predicted
precipitation. This study is the first performed for the Brazilian Global Model Data Assimilation System
and the reported results call attention to choice of moisture control variable in data assimilation process.
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