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Abstract: This study evaluated the performance of the Weather Research and Forecasting (WRF)
model version 3.7 for simulating a series of rainfall events in August 2014 over Japan and investigated
the impact of uncertainty in sea surface temperature (SST) on simulated rainfall in the record-high
precipitation period. WRF simulations for the heavy rainfall were conducted for six different
cases. The heavy rainfall events caused by typhoons and rain fronts were similarly accurately
reproduced by three cases: the TQW_5km case with grid nudging for air temperature, humidity,
and wind and with a horizontal resolution of 5 km; W_5km with wind nudging and 5-km resolution;
and W_2.5km with wind nudging and 2.5-km resolution. Because the nudging for air temperature
and humidity in TQW_5km suppresses the influence of SST change, and because W_2.5km requires
larger computational load, W_5km was selected as the baseline case for a sensitivity analysis of SST.
In the sensitivity analysis, SST around Japan was homogeneously changed by 1 K from the original
SST data. The analysis showed that the SST increase led to a larger amount of precipitation in the
study period in Japan, with the mean increase rate of precipitation being 13 ± 8% K−1. In addition,
99 percentile precipitation (100 mm d−1 in the baseline case) increased by 13% K−1 of SST warming.
These results also indicate that an uncertainty of approximately 13% in the simulated heavy rainfall
corresponds to an uncertainty of 1 K in SST data around Japan in the study period.
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1. Introduction

In recent years, climate change has occurred as a consequence of global warming. The climate
change results in severe precipitation events with more intense and more frequent rainfall, according to
the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report [1]. This is because
the saturation pressure of water vapor increases due to the air temperature rise under the global
warming, and the amount of water vapor supplied from the sea increases due to the rise in sea
surface temperature (SST). Based on the Clausius-Clapeyron (CC) relationship, the atmosphere
can hold more moisture in warmer air temperatures with a rate of about 6–7% K−1, and extreme
precipitation intensities can also increase by this rate because of global warming [2–5]. While daily
extreme precipitation intensities typically increase with a warming atmosphere by within the rate
expected from the CC relationship [6,7], changes in shorter duration precipitation extremes may
well exceed the rate [6]. In terms of SST, it is virtually certain that the upper ocean (0–700 m)
warmed from 1971 to 2010 [1], and SST around Japan will increase by about 0.6–2.1 K by 2100 [8].
According to the statistics over Japan for 1979 to 2013, annual maximum and 95 percentile precipitations
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have increased (2−4% per decade) with rising air temperature (0.29 K per decade) and SST
(0.21 K per decade) [9].

A number of numerical studies on extreme weather events causing severe precipitation have
been conducted [10–15]. Numerous previous studies have reported that global warming, including SST
warming, can lead to intensifications of tropical cyclones [16–20] and extreme precipitation events [21–24].
For analyses of climate change impacts, although projections by general circulation models have been
widely used [13–15,21,25], a number of recent studies have employed regional climate models with finer
horizontal resolutions (1–10 km) [11,12,18–20,22,24], which better represent geographical characteristics
and fine scale atmospheric dynamics. The Weather Research and Forecasting (WRF) model [26] has been
the most frequently used as a regional model.

SST influences atmospheric circulation and precipitation processes [27–29], and its warming may
increase heavy rainfall intensities. The impact of SST on precipitation in an actual weather event can be
estimated by comparing precipitations simulated with realistic and changed SST boundary conditions.
Several numerical studies focusing on actual weather events have investigated this impact with this
method: Pepler et al. [30] estimated that the impact of local SST change by 1–2 K on precipitation
was 8–12% on the east coast of Australia in rainfall events caused by local cyclones during 2007–2008;
Takahashi et al. [31] examined the impact of SST in the Japan Sea in a typical winter heavy-snowfall
season from December 2005 to February 2006, and reported that the calculated precipitation on the
Japan Sea side of Japan increased by 6–12% K−1; and Manda et al. [22] revealed that the rapid seasonal
SST rising in East China Sea caused torrential rainfall events over western Japan in early summer
of 2012 by the Baiu (Meiyu) monsoon front.

As mentioned above, SST has a large impact on precipitation, and therefore, reliable SST data are
required to accurately simulate heavy precipitation. SST data typically depend on observational or
reanalyzed SST datasets, and the accuracy of SST data are limited by atmospheric water vapor and
aerosols observed by satellite [32–34]. Previous studies [34–37] compared multiple SST dataset, and they
indicated that there were uncertainties that affected the atmospheric circulation. Additionally, Fu and
Wang [36] showed that tropical cyclone’s intensity depended on SST dataset. Therefore, it is essential
to evaluate the impact of uncertainty in SST on simulated heavy precipitation.

In this study, we focused on a series of heavy rainfall events over Japan in August 2014 [38],
when Typhoons Nakri and Halong attacked Japan, and rain fronts frequently passed over. The total
precipitation of the month was the largest on record for August in western Japan. During this
period, torrential rain and storms caused serious damage in Japan such as landslides, inundations,
floods, and other disasters. Typhoon Nakri occurred in the east of the Philippines on 29 July 2014,
and approached the Okinawa and Amami Islands from July 31 to August 1. The typhoon caused
heavy rain in Japan even after it turned into a tropical depression in the Yellow Sea on August 3.
Typhoon Halong, which occurred on the east of Guam on July 29, approached the Daito Islands on
August 7. It approached and passed through the Shikoku and Kinki regions in western Japan from
August 9 to 10, causing the highest peak precipitation in the series of events. In the last half of the month,
rain fronts stagnated near Japan and led to frequent occurrence of intense rainfall events. On August 20,
landslides occurred at Hiroshima city following an intense rain of more than 100 mm h−1. During these
events, warm and humid air was continuously supplied from south of Japan.

There are the following two purposes in this study: one is to evaluate the performance of WRF
for simulating the heavy rainfall events over Japan in August 2014, and the other is to investigate
the impact of uncertainty in SST on the WRF simulation of the recent record-high summertime
precipitation. This paper describes a set of numerical simulations of heavy rainfall and its sensitivity
to SST using WRF version 3.7. First, WRF simulations were conducted with six different settings, and
their performances for reproducing precipitation were evaluated. Then, a numerical experiment with
an optimal setting selected based on the performance evaluation and with changed SST data was
conducted in order to evaluate the impact of uncertainty in SST on simulated heavy precipitation.
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2. Methods

2.1. Common WRF Configurations

This study focused on the series of heavy rainfall events in August 2014. WRF simulations
were conducted from 1 July to 31 August 2014 with July as a spin-up period. Figure 1 shows
the WRF modeling domain on the Lambert conformal conic projection map, which has an area
of 2250 km × 2250 km and covers almost all of Japan. The vertical layers consisted of 40 sigma-pressure
coordinated layers from the surface to 100 hPa. Figure 1a also shows average SST in the study period,
which tended to be higher than that in August of 1981–2010 according to the Japan Meteorological
Agency (JMA) [39]. As shown in Figure 1b, there are 147 meteorological observatories for validation
of WRF simulation in the domain. The area of Japan was divided into eight regions consisting
of Hokkaido, Tohoku, Kanto, Chubu, Kinki, Chugoku, Shikoku, and Kyushu. The numbers of
observatories in these regions are 18, 17, 17, 26, 15, 14, 9, and 31, respectively.

Static geographical data, objective analysis data, and physical parameterizations used in this
study were similar to those used by Shimadera et al. [40]. Topography and land use were derived
from the 30-s resolution data of the United States Geological Survey and the 100-m resolution National
Land Numerical Information data of the Geospatial Information Authority of Japan, respectively.
Initial and boundary conditions in the atmosphere were derived from the mesoscale model grid
point value (MSM GPV) data produced by JMA [41]. Daily SST was derived from the high-resolution,
real-time, global sea surface temperature analysis data (RTG_SST_HR) by the U.S. National Centers
for Environmental Prediction (NCEP) [42] in order to conduct WRF simulations with time-varying
SST. Initial conditions of variables on the ground surface and in soil layers were derived from the final
operational global analysis (FNL) data by NCEP [43]. The MSM GPV data have spatial resolutions of
0.0625◦ (longitude) × 0.05◦ (latitude) for ground level data and 0.125◦ (longitude) × 0.1◦ (latitude)
for pressure level data and a temporal resolution of 3 h. The RTG_SST_HR data have a spatial
resolution of 0.0833◦ and a temporal resolution of 24 h. The FNL data have a spatial resolution
of 1◦ and a temporal resolution of 6 h. The physical parameterizations used in this study include
the Yonsei University scheme [44] for the planetary boundary layer parameterization, the WRF
single-moment 6-class microphysics scheme [45], the Noah land surface model [46], the rapid radiative
transfer model [47] for long wave radiation, and the Dudhia scheme [48] for the shortwave radiation.
Previous studies [40,49] showed that WRF accurately reproduced meteorological fields in Japan with
these physical parameterizations. However, because Shimadera et al. [40] also mentioned that there
were difficulties in simulating summertime precipitation accurately at a certain time and location,
this study evaluated the WRF results mainly by spatially integrated values. Further studies with
different physical parameterizations may enable the improvement of the model performance for
summertime precipitation.



Atmosphere 2018, 9, 84 4 of 16

Atmosphere 2018, 3, x FOR PEER REVIEW  3 of 15 

 

2. Methods 

2.1. Common WRF Configurations 

This study focused on the series of heavy rainfall events in August 2014. WRF simulations were 
conducted from 1 July to 31 August 2014 with July as a spin-up period. Figure 1 shows the WRF 
modeling domain on the Lambert conformal conic projection map, which has an area of 2250 km × 
2250 km and covers almost all of Japan. The vertical layers consisted of 40 sigma-pressure 
coordinated layers from the surface to 100 hPa. Figure 1a also shows average SST in the study period, 
which tended to be higher than that in August of 1981–2010 according to the Japan Meteorological 
Agency (JMA) [39]. As shown in Figure 1b, there are 147 meteorological observatories for validation 
of WRF simulation in the domain. The area of Japan was divided into eight regions consisting of 
Hokkaido, Tohoku, Kanto, Chubu, Kinki, Chugoku, Shikoku, and Kyushu. The numbers of 
observatories in these regions are 18, 17, 17, 26, 15, 14, 9, and 31, respectively.  

Static geographical data, objective analysis data, and physical parameterizations used in this study 
were similar to those used by Shimadera et al. [40]. Topography and land use were derived from the 
30-s resolution data of the United States Geological Survey and the 100-m resolution National Land 
Numerical Information data of the Geospatial Information Authority of Japan, respectively. Initial and 
boundary conditions in the atmosphere were derived from the mesoscale model grid point value (MSM 
GPV) data produced by JMA [41]. Daily SST was derived from the high-resolution, real-time, global sea 
surface temperature analysis data (RTG_SST_HR) by the U.S. National Centers for Environmental 
Prediction (NCEP) [42] in order to conduct WRF simulations with time-varying SST. Initial conditions 
of variables on the ground surface and in soil layers were derived from the final operational global 
analysis (FNL) data by NCEP [43]. The MSM GPV data have spatial resolutions of 0.0625° (longitude) 
× 0.05° (latitude) for ground level data and 0.125° (longitude) × 0.1° (latitude) for pressure level data and 
a temporal resolution of 3 h. The RTG_SST_HR data have a spatial resolution of 0.0833° and a temporal 
resolution of 24 h. The FNL data have a spatial resolution of 1° and a temporal resolution of 6 h. The 
physical parameterizations used in this study include the Yonsei University scheme [44] for the 
planetary boundary layer parameterization, the WRF single-moment 6-class microphysics scheme [45], 
the Noah land surface model [46], the rapid radiative transfer model [47] for long wave radiation, and 
the Dudhia scheme [48] for the shortwave radiation. Previous studies [40,49] showed that WRF 
accurately reproduced meteorological fields in Japan with these physical parameterizations. However, 
because Shimadera et al. [40] also mentioned that there were difficulties in simulating summertime 
precipitation accurately at a certain time and location, this study evaluated the WRF results mainly by 
spatially integrated values. Further studies with different physical parameterizations may enable the 
improvement of the model performance for summertime precipitation. 

(a)
 

(b) 

Figure 1. Modeling domains showing (a) topography of land areas and average SST (sea surface 
temperature) of August 2014; (b) locations of meteorological observatories and division of regions for 
analyses of precipitation. 

Hgt[m]
3000

1500

1000

700

500

300

100

SST[deg C]
30.5

29.0

27.0

24.0

21.0

18.0

14.0

Figure 1. Modeling domains showing (a) topography of land areas and average SST (sea surface
temperature) of August 2014; (b) locations of meteorological observatories and division of regions for
analyses of precipitation.

2.2. Selection of Optimal WRF Setting

In order to determine an optimal setting for examining the sensitivity of heavy precipitation to
SST, WRF simulations were conducted for six cases summarized in Table 1. The six cases with the
common configurations described in Section 2.1 have differences in configurations of the grid nudging,
the horizontal grid resolution, and the cumulus parameterization.

Regarding the nudging, we compared the following three cases: TQW_5km with the nudging for
potential temperature, mixing ratio and horizontal wind components, no_5km without the nudging,
and W_5km with the nudging for horizontal wind components. The nudging may improve a long-term
simulation in a large domain. However, since the nudging suppresses the influence of SST change,
it is preferable not to apply the nudging, especially for air temperature and humidity that are strongly
influenced by SST, in the sensitivity experiment. Therefore, the setting with the minimum nudging
should be selected as an optimal setting after confirming its good reproducibility. The nudging for
potential temperature, mixing ratio, and horizontal wind components was applied with nudging
coefficients of 1.0 × 10−4 s−1, 1.0 × 10−5 s−1, and 1.0 × 10−4 s−1, respectively, in the entire simulation
domain and period with the MSM GPV data.

W_2.5km, W_5km, and W_10km cases were conducted to evaluate the impact of the horizontal
resolution on the model performance. These resolutions and the numbers of grid cells are 2.5, 5, 10 km,
and 900 × 900, 450 × 450 and 225 × 225, respectively. A simulation with finer spatial resolution
requires larger computational cost because of larger number of grid cells and shorter integration time
step. Therefore, an optimal setting should reproduce meteorological fields accurately with as coarse
resolution as possible. Additionally, in W_10km_cu case, the cumulus parameterization of Kain [50]
was applied in order to investigate whether we should apply the cumulus scheme for representing
sub-grid scale clouds in the case with relatively coarse resolution.

The results of the WRF simulation were compared with ground-level observation data of daily air
temperature, humidity, wind speed, and precipitation derived from monthly datasets by JMA [51].
The model performance was evaluated using the Pearson’s correlation coefficient (r), the mean bias
error (MBE), the mean absolute error (MAE), the root mean square error (RMSE), and the index of
agreement (IA). IA is defined by

IA = 1 − ∑N
i=1(Mi − Oi)

2

∑N
i=1

(∣∣Mi − O
∣∣+ ∣∣Oi − O

∣∣)2 (1)
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in which Mi and Oi are simulated and observed value at a certain observation point and a time
i, M and O are mean values of simulated and observed values at all the observation points and
times, respectively, and N is the number of samples. IA was proposed by Willmott [52] and varies
between 0 and 1. IA = 1 indicates a perfect match between observed and simulated variables.
Emery et al. [53] set benchmarks with statistical measures for the performance of meteorological models:
MBE ≤ ±0.5 ◦C, MAE ≤ 2 ◦C, and IA ≥ 0.8 for air temperature; MBE ≤ ±1 g kg−1, MAE ≤ 2 g kg−1,
and IA ≥ 0.6 for specific humidity; MBE ≤ ±0.5 m s−1, RMSE ≤ 2 m s−1, and IA ≥ 0.6 for wind
speed. There are many previous studies that use these benchmarks around the world, for example,
Europe (Cartelle et al. [54]), China (Fu et al. [55]), and also Japan (Shimadera et al. [40,49]).

2.3. Sensitivity Analysis on SST

A numerical experiment was conducted in order to estimate the sensitivity of precipitation to SST
in the heavy rainfall in August 2014. An optimal WRF setting determined through comparisons of
the six cases described in Section 2.2 was used as the baseline case of the sensitivity analysis. In the
sensitivity analysis, WRF simulations were performed for SST+1 and SST−1 cases, in which SST
over the entire domain was homogeneously added and subtracted by 1 K from the original SST data,
respectively, like a previous study [31]. Note that feedbacks from the atmosphere to the sea surface,
such as SST decrease due to enhanced evaporation by strengthened wind, were not considered in this
study, because the WRF simulations were conducted with external SST data.

Table 1. Condition settings of WRF simulations to determine the optimal setting for SST
sensitivity analysis.

Case Nudging Resolution Cumulus

TQW_5km TQW 5 km Off
no_5km Off 5 km Off
W_5km W 5 km Off

W_2.5km W 2.5 km Off
W_10km W 10 km Off

W_10km_cu W 10 km On

Note: T, Q, and W in the Nudging column indicate that the grid nudging for potential temperature, water vapor
mixing ratio, and horizontal wind components is turned on, respectively.

3. Results and Discussion

3.1. Reproducibility of the Heavy Rainfall

Table 2 summarizes statistical values for the WRF performance at the meteorological observatories
in August 2014. The statistical comparisons indicated that simulated air temperature, specific humidity,
and wind speed were all in good agreement with observed values. For air temperature and specific
humidity, the model satisfied all the Emery’s benchmarks in all the six settings with high correlations
between the observed and simulated values. For wind speed, the model tended to overestimate, but
met the benchmarks for RMSE and IA in all simulations. For precipitation, the values of r and IA
were not as high as those for the other three weather elements because of the difficulty in simulating
precipitation at a specific location and/or time. However, there were relatively clear differences in the
model performances. Among the six simulation cases, TQW_5km, W_5km, and W_2.5km cases better
agreed with the observations according to r and IA.

Figure 2 shows time series comparisons of the observed and simulated daily precipitations
averaged for all the meteorological observatories with corresponding r values. As mentioned in
chapter 1, precipitation was predominantly caused by Typhoons Nakri and Halong in the first half of
the study period (1–15 August), and by rain fronts in the last half (16–31 August). The peak precipitation
from August 9–10 was associated with Typhoon Halong that approached and passed through the
Shikoku and Kinki regions in the period. While WRF tended to underestimate this peak precipitation,
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the model approximately simulated the spatially averaged temporal variation patterns. Figure 3 shows
mean daily precipitation averaged for the meteorological observatories in each of the eight regions
(Figure 1b) for the first and last halves of August 2014. During the first half of the period characterized
by the two typhoons, precipitation varied significantly by region, with especially large values in the
Shikoku and Kinki regions as a result of Typhoon Halong. Although WRF tended to underestimate
the amount of precipitation in the Shikoku and Kinki regions with large values, the amount was
the largest in the Shikoku region followed by the Kinki, Kyushu, and Chugoku regions both in the
observation and simulation, indicating that the model accurately captured the spatial variation pattern.
Meanwhile, during the last half characterized by rain fronts, there was indistinct spatial variation
in the temporal mean precipitation. WRF accurately reproduced the amount of precipitation in the
period, except for the overestimation in W_10km_cu case.

The following paragraphs describe comparisons to determine each optimal setting for the
sensitivity analysis of SST in terms of the grid nudging, the horizontal resolution, and the
cumulus scheme.

First, according to a comparison of TQW_5km, W_5km, and no_5km cases in terms of the
nudging, no_5km case showed the worst performance for simulating the heavy rainfall in August 2014,
with the largest underestimation of precipitation, the lowest IA for daily precipitation (Table 2), and the
least accurate temporal variation of daily precipitation (Figure 2a). In contrast, the performances
of TQW_5km and W_5km cases were equivalently accurate. Since it is desirable to minimize the
application of the nudging in SST change experiment, the optimal setting is the nudging only for
horizontal wind components.

When comparing W_2.5km, W_5km, and W_10km in terms of the horizontal resolution, although
the three cases similarly accurately captured the spatially averaged temporal variation of daily
precipitation (Figure 2b), W_10km case showed slightly worse performance compared to W_2.5km and
W_5km cases, with lower IA for daily precipitation (Table 2). Meanwhile, the performances of W_2.5km
and W_5km cases were almost equivalent to each other. Therefore, the horizontal resolution of 5 km
with a smaller computational load was selected as the optimal setting for the sensitivity analysis.

Concerning the cumulus parameterization, the reproducibility of precipitation in W_10km_cu
case was inferior to that in W_10km case, with lower IA (Table 2) and almost consistent overestimations
(Figures 2b and 3) in W_10km_cu case. Therefore, the application of the cumulus scheme of Kain [50]
is not acceptable in this study.

Table 2. Statistical evaluation of WRF performance for simulating daily meteorological variables at
meteorological observatories in August 2014.

Case N Mean r MBE MAE RMSE IA

Temperature (◦C) (◦C) (◦C) (◦C)

Obs. 4555 25.2
TQW_5km 25.4 0.938 0.16 0.87 1.09 0.967

no_5km 25.4 0.899 0.16 1.08 1.40 0.947
W_5km 25.3 0.915 0.07 0.99 1.27 0.956

W_2.5km 25.7 0.930 0.47 0.96 1.24 0.958
W_10km 24.8 0.893 −0.39 1.19 1.51 0.940

W_10km_cu 24.9 0.882 −0.33 1.26 1.57 0.935

Humidity (g kg−1) (g kg−1) (g kg−1) (g kg−1)

Obs. 4552 17.0
TQW_5km 16.3 0.945 −0.66 0.93 1.14 0.957

no_5km 16.1 0.913 −0.86 1.15 1.44 0.932
W_5km 16.4 0.936 −0.52 0.90 1.12 0.958

W_2.5km 16.3 0.937 −0.66 0.95 1.18 0.953
W_10km 16.7 0.932 −0.31 0.86 1.08 0.961

W_10km_cu 16.5 0.932 −0.42 0.89 1.11 0.959
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Table 2. Cont.

Case N Mean r MBE MAE RMSE IA

Wind Speed (m s−1) (m s−1) (m s−1) (m s−1)

Obs. 4555 3.0
TQW_5km 3.6 0.818 0.60 0.96 1.41 0.872

no_5km 3.9 0.781 0.90 1.18 1.68 0.827
W_5km 3.6 0.819 0.61 0.97 1.41 0.871

W_2.5km 3.5 0.831 0.53 0.89 1.28 0.887
W_10km 3.7 0.781 0.72 1.10 1.61 0.839

W_10km_cu 3.7 0.778 0.71 1.11 1.62 0.837

Precipitation (mm d−1) (mm d−1) (mm d−1) (mm d−1)

Obs. 4531 10.0
TQW_5km 9.1 0.605 −0.93 8.36 20.14 0.750

no_5km 7.7 0.453 −2.33 9.87 23.35 0.637
W_5km 9.2 0.630 −0.75 8.49 19.92 0.775

W_2.5km 9.4 0.628 −0.64 8.38 19.89 0.773
W_10km 9.2 0.559 −0.85 9.12 21.93 0.726

W_10km_cu 13.0 0.533 3.04 11.68 22.73 0.709

Note: N, r, MBE, MAE, RMSE, and IA denote sample number, the Pearson’s correlation coefficient, the Mean Bias
Error, the Mean Absolute Error, the Root Mean Square Error, and the Index of Agreement, respectively. The bold
italic value indicates the best agreement with the observations for each statistical indicator.
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Figure 3. Mean daily precipitations averaged for the meteorological observatories in each region during
(a) 1 to 15 and (b) 16 to 31 August 2014 for the observation and six WRF settings.

From these results, we decided to conduct the SST change experiment under the optimal setting
with the nudging only for horizontal wind components, as well as the horizontal resolution of 5 km
and without the cumulus scheme, namely W_5km case. The horizontal resolution of around 5 km
has been widely used in previous studies [11,18,24,31,56]. The W_5km case captured the amount
of precipitation in the extreme heavy rainfall due to typhoons in the Shikoku region being the best
among all cases except for W_10km_cu case (Figure 3a), which clearly overestimated the amount of
precipitation during the last half of the month (Figures 2b and 3b).

Spatial distribution of simulated precipitation in W_5km case was compared with that of
observed precipitation obtained from the Radar/Raingauge-Analyzed Precipitation data by JMA [57].
The Radar/Raingauge-Analyzed Precipitation data has a spatial resolution of 1 km and a temporal
resolution of 30 minutes, and covers areas within a few hundred kilometers from the coastal lines
of Japan. Figure 4 shows spatial distributions of the observed and simulated monthly precipitations
in August 2014. Although W_5km case slightly underestimated the largest amount of monthly
precipitation in the Shikoku region caused by Typhoons Nakri and Halong, it approximately
reproduced the spatial variation pattern over the land area in Japan. Figure 5 illustrates spatial
distributions of observed and simulated hourly precipitations at 09:00 JST on 2 August 2014 for
Typhoon Nakri, on 9 August for Typhoon Halong and on 22 August for a rain front associated with an
extratropical cyclone. Table 3 shows observed and simulated minimum surface pressures and their
positions of Typhoon Nakri and Halong at these times. The W_5km case roughly captured distribution
patterns of precipitation in the heavy rainfall events. It also captured their intensities and tracks
of cyclones.
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Figure 5. Spatial distributions of hourly precipitation obtained from Radar/Raingauge-Analyzed
Precipitation data at 09:00 JST on (a) 2 August 2014, (b) 9 August 2014, (c) 22 August 2014, and of
hourly precipitation and wind fields obtained from W_5km case at 09:00 JST on (d) 2 August 2014,
(e) 9 August 2014, and (f) 22 August 2014. The Radar/Raingauge-Analyzed Precipitation data covers
areas within a few hundred kilometers from the coastal lines of Japan.

Table 3. Observed and simulated minimum surface pressures and their positions of typhoons
at 09:00 JST on 2 and 9 August 2014.

Indicator 2 August 2014 09:00 JST 9 August 2014 09:00 JST

Obs. [38] W_5km Obs. [38] W_5km
Minimum surface pressure 980 hPa 978 hPa 955 hPa 955 hPa

Latitude of the center 31.9◦ N 32.4◦ N 30.4◦ N 30.3◦ N
Longitude of the center 124.9◦ E 124.9◦ E 132.3◦ E 132.1◦ E
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3.2. Sensitivity of Precipitation to SST

The sensitivity of the heavy rainfall in August 2014 to SST was analyzed by comparing W_5km
as the baseline case with SST+1 and SST−1 cases, in which SST was homogeneously added and
subtracted by 1 K from the original SST data, respectively. As the comprehensive results of the SST
change the experiment, Table 4 shows monthly precipitation, monthly mean 2-m air temperature,
and latent and sensible heat fluxes averaged over the land area of Japan, the sea area, and the entire
area in the modeling domain. The results indicate that SST warming contributed to the increase in
precipitation on the whole. SST warming increased the latent heat flux from the sea surface, namely the
supply of water vapor to the atmosphere, which resulted in a larger amount of precipitable water.
Meanwhile, SST warming also increased the sensible heat flux from the sea surface and increased the
air temperature. Since the saturation pressure of water vapor increases with increasing air temperature,
higher air temperature can prevent cloud formations. Although SST warming has both positive
and negative impacts on the amount of precipitation, it is concluded that precipitation typically
increases with SST warming within the range of SST in this study. The mean increase amount (rate)
of precipitation by SST warming was 46 ± 30 mm month−1 K−1 (13 ± 8% K−1) over the land area
of Japan. This result indicates that a 1 K uncertainty in SST corresponds to an approximately 13%
uncertainty in the simulated heavy precipitation. Takahashi et al. [31] estimated that the impact of SST
on winter precipitation on the Japan Sea side of Japan was by 6−12% K−1. Pepler et al. [30] estimated
that the impact of local SST change by 1–2 K on rainfall was 8−12% on the east coast of Australia.
The sensitivity of the heavy rainfall in August 2014 in Japan to SST estimated in this study was similar
to those in the previous studies focusing on different meteorological conditions. In the SST change
cases, the changes of air temperature from the baseline case were smaller than those of SST, because
the lateral boundary conditions were the same as those of the baseline case. In addition, because air
temperature near the sea surface was affected by SST, the atmosphere in SST+1 (SST−1) case was
more unstable (stable) than that in the baseline case, which probably contributed to an enhancement
(attenuation) of convection and an increase (decrease) of precipitation. As a result, the increase rate
of precipitation to SST warming was higher than 7% K−1 due to atmospheric warming based on the
CC relationship.

The SST sensitivity was also analyzed in terms of temporal and spatial variations. Figure 6 shows
a time series comparison of daily precipitations averaged for all the meteorological observatories in
the different SST cases. Figure 7 shows mean daily precipitation averaged for the meteorological
observatories in each of the eight regions (Figure 1b) for the first half of August 2014 associated with
the two typhoons and the last half associated with rain fronts. Figure 8 illustrates spatial distributions
of daily precipitation difference from the baseline case in the SST change cases for the two periods.
The increase in precipitation with warming SST was remarkable over southern to western Japan
including the Kinki and Shikoku regions where there was a large amount of precipitation associated
with Typhoons Nakri and Halong (Figures 4b and 5d,e) during the first half of August 2014. By contrast,
there were smaller changes in the amount of precipitation related to rain fronts during the last half of
the month. As a result, the mean increase amounts of precipitation by SST warming were 2.2 ± 1.4 and
0.9 ± 1.2 mm d−1 K−1 over the land area of Japan in the first and last halves, respectively. The large
difference between the two periods was probably due to the difference in the total precipitation
(larger in the first half and smaller in the last), because the difference in the corresponding increase
rates (15 ± 9 and 10 ± 13% K−1 for the first and last halves, respectively) was less clear. Although the
amount of precipitation generally increased with warming SST, negative impacts of SST change on
precipitation were also widely distributed (Figure 8). For example, in the Chubu region, the amount of
precipitation in SST−1 case was larger than that in the baseline case for the two periods (Figure 7).
These results reflect the non-linear relationship between SST and precipitation.

Figure 9 shows frequency distribution of daily precipitation at the meteorological observatories in
August 2014 in SST−1, the baseline, and SST+1 cases. The frequencies of precipitation with an intensity
of more than 1 mm d−1 were 47, 50, and 52% in SST−1, the baseline, and SST+1 cases, respectively.
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Among the three cases, the daily precipitation more than 20 mm was the most frequent in SST+1
case. These results indicate that SST warming contributed to increases in both precipitation duration
and intensity. As a result, 99 percentile value of daily precipitation (100 mm d−1 in the baseline case)
increased by 13% K−1 along with increasing SST.

The sensitivity analysis showed that the mean change of simulated precipitation caused by SST
change in the heavy rainfall over Japan in August 2014 was approximately 13% K−1. This result
indicates that an uncertainty of approximately 13% in the simulated heavy rainfall corresponds to an
uncertainty of 1 K in SST data around Japan in the study period.

Table 4. Monthly precipitation, 2-m air temperature, and heat fluxes averaged over land area of Japan,
sea area, and entire area in the modeling domain in different SST conditions.

Area SST−1 Baseline SST+1

Precipitation (mm month−1)

Japan 335 364 425
Sea 154 188 266

Domain 163 194 263

2-m air temperature (◦C)

Japan 22.3 22.3 22.5
Sea 25.5 25.7 26.4

Domain 24.7 24.9 25.5

Upward latent heat flux (W m−2)

Japan 85 83 84
Sea 77 100 133

Domain 79 98 125

Upward sensible heat flux (W m−2)

Japan 37 36 34
Sea −1 6 10

Domain 8 13 16
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4. Conclusions

This study was conducted to evaluate the WRF performance for simulating the heavy rainfall
events over Japan in August 2014, and to investigate the impact of uncertainty in SST on simulated
precipitation fields in the period. First, WRF simulations were conducted with six different settings,
and their performances for reproducing precipitation were evaluated. Then, a numerical experiment
with an optimal setting selected based on the performance evaluation and with changed SST data was
conducted for examining the sensitivity of simulated heavy precipitation to SST.

The six settings for the WRF simulations had different configurations of the grid nudging
(with the nudging for air temperature, humidity, and horizontal wind components, without the
nudging or with the wind nudging), the horizontal grid resolution (2.5, 5 or 10 km), and the cumulus
parameterization (applied to the case with the wind nudging and 10-km resolution). Among the six
settings, the following three similarly accurately reproduced the heavy rainfall: TQW_5km with the
air temperature, humidity and wind nudging, and 5-km resolution; W_5km with the wind nudging
and 5-km resolution; and W_2.5km with the wind nudging and 2.5-km resolution. Among these three
settings, W_5km was decided as the optimal setting for the SST sensitivity study, because the nudging
for air temperature and humidity in TQW_5km suppresses the influence of SST change, and W_2.5km
requires larger computational load. In the first half of August 2014 characterized by Typhoons Nakri
and Halong, although precipitation peaks tended to be underestimated, spatial and temporal variation
patterns of precipitation were accurately captured in the W_5km case. Meanwhile, in the last half
characterized by rain fronts, the amount of precipitation was accurately reproduced in W_5km case.

In the sensitivity analysis, SST was uniformly added and subtracted by 1 K. Although there were
both positive and negative responses of precipitation to SST changes depending on time and region,
precipitation generally increased with warming SST because of the increasing water supply to the
atmosphere. As a result, the mean increase amounts (rates) in precipitation over the land area of Japan
by SST warming were 46 ± 30 mm month−1 K−1 (13 ± 8% K−1), 2.2 ± 1.4 mm d−1 K−1 (15 ± 9 % K−1),
and 0.9 ± 1.2 mm d−1 K−1 (10 ± 13% K−1) in the month and the first and last halves of the month,
respectively. In addition, the increase rate of the 99 percentile value of daily precipitation (100 mm d−1

in the baseline case) by SST warming was 13% K−1. These results are interpreted as an uncertainty of
approximately 13% in the simulated heavy rainfall over Japan in August 2014 that is associated with
an uncertainty of 1 K in SST data around Japan during that period.
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