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Abstract: Mercury is one of the most toxic metals and has global importance due to the
biomagnification and bioaccumulation of organomercury via the aquatic food web. The physical
and chemical transformations of various mercury species in the atmosphere strongly influence
their composition, phase, transport characteristics and deposition rate to the ground. Modeling
efforts to evaluate the mercury cycling in the environment require an accurate understanding of
atmospheric mercury chemistry. We focus this article on recent studies (since 2015) on improving
our understanding of the atmospheric chemistry of mercury. We discuss recent advances in
(i) determining the dominant atmospheric oxidant of elemental mercury (Hg0); (ii) understanding
the oxidation reactions of Hg0 by halogen atoms and by nitrate radical (NO3); (iii) the aqueous
reduction of oxidized mercury compounds (HgII); and (iv) the heterogeneous reactions of Hg on
atmospherically-relevant surfaces. The need for future research to improve understanding of the fate
and transformation of mercury in the atmosphere is also discussed.

Keywords: mercury; atmospheric chemistry; recent progress; future research needs

1. Introduction

Mercury (Hg) is one of the most toxic metals present globally in the environment [1]. Due
to the rather long lifetime of atmospheric mercury, once mercury compounds are released into the
atmosphere, they can be transported around the globe. As such, they not only have local impacts but
also regional and global implications [2,3].

Hg is a Group IIB transition metal with an atomic number of 80 and a closed shell electronic
configuration (5d10 6s2). Elemental mercury (Hg0) is the only liquid metal at room temperature and
pressure. Mercury has been widely used in electrochemistry, in optical spectroscopy, in liquid mirror
telescopes and also in medicine. However, tragic outbreaks of mercury-induced diseases have occurred
in many areas of the world over the years, particularly in Japan and Iraq [4]. Mercury toxicity depends
on its chemical species, with methylmercury being highly toxic. Humans and wildlife are exposed
to mercury mainly through fish consumption. Exposure to mercury can damage the human nervous
system, cause cardiovascular diseases in adults, impede cognitive development in children, as well as
affect the reproduction of fish, mammals and birds ([5] and references therein).

Atmospheric deposition has been identified as a significant pathway for Hg transport into the
aquatic and soil environment. It has been estimated that 5500–8900 tons of mercury are emitted per
year into the atmosphere, with three major natural, anthropogenic and re-emitted sources [2]. Natural
sources of Hg emission include volcanoes, soils, forests, natural waters, and the largest anthropogenic
source of Hg emission is coal burning in coal fueled power plants [6]. Previously-deposited mercury can
be re-emitted to the atmosphere through a series of physical, chemical and biological transformations
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in the environment [7,8]. Large uncertainties remain in existing emission inventories, particularly for
natural and re-emission sources [9].

Figure 1a illustrates a simplified picture of mercury transformations in the environment,
particularly on various environmental surfaces, and Figure 1b focuses on the atmospheric chemistry
of mercury. In the atmospheric environment, mercury presents predominantly in oxidation states
of 0 and +2 [10]. Atmospheric mercury exists in the gas phase, in atmospheric droplets, or in the
particulate phase. Mercury speciation significantly affects the rates of dry and wet deposition and
subsequently, the atmospheric lifetimes of different Hg species [11]. For example, gaseous elemental
mercury (Hg0) has been estimated to have an atmospheric lifetime of about one year [4,12], which
render sit subject to long-range transportation across the globe. However, atmospheric oxidation
of Hg0 to HgBr2 will make mercury more subject to deposition, due to the low solubility of Hg0

and high solubility of HgBr2 in atmospheric droplets. The deposition of oxidized mercury can make
Hg potentially become available to biota [4]. Field studies have demonstrated the fast oxidation of
Hg0 to HgII in the Arctic and Antarctic regions after polar sunrise, a phenomenon known as Arctic
mercury depletion events (AMDEs). The explanation of this fascinating phenomenon will rely on
fully understanding the redox reactions of atmospheric Hg [13]. On the other hand, atmospheric
Hg models are essential tools for interpreting field observations and evaluating pollution control
policies [10]. The further advancement of atmospheric Hg modeling depends on accurate kinetic data
on the oxidation and reduction reactions of various mercury species in the atmosphere. However,
many important processes involved in the transformation and deposition of atmospheric Hg are yet to
be identified or quantified [14]. Global modeling studies also suggest that large uncertainties exist in
our current knowledge of the global cycling of mercury [15].

The chemistry of atmospheric mercury was previously reviewed in detail by Lin and
Pehkonen [16], Ariya et al. [17], Subir et al. [18], Lin et al. [14] and Ariya et al. [4]. Several excellent
contributions have been made to our understanding in this area since 2015. The objective of this article
is to discuss the current understanding of atmospheric mercury chemistry, with more focus on recent
laboratory, theoretical, field and model studies since 2015 on the interconverting reactions between
Hg0 and HgII. Finally, future research is recommended in order to further advance our knowledge of
the dynamic transformations of atmospheric mercury.
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Figure 1. (a) Mercury transformations in the environment; (b) Atmospheric chemistry of mercury.
Adapted and modified from [3]. The question mark (?) indicates some major knowledge gaps in Hg
cycling in the environment.

2. Chemical Redox Pathways in the Gas Phase

The oxidation of Hg0 is a very crucial step for the removal of Hg from the atmosphere.
Understanding the oxidation reactions of Hg0 is important for estimating the atmospheric lifetime
of mercury. To date, the proposed oxidation pathways of Hg0 in the gas phase include the oxidation
of Hg0 by O3, H2O2, OH radical, NO3 radical and by various halogen species [14]. Table 1 lists the
gas-phase oxidation reactions of Hg0 and the reported rate coefficients. As shown in Figure 2 in
Subir et al. [18], large variations exist in the current reported rate constants of gas-phase oxidation
reactions of Hg. Here we discuss recent advances in the understanding of the oxidation of Hg0 by
halogen atoms and NO3 radicals, as well as determining the major oxidant(s) in the atmosphere.
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Table 1. Current accumulated knowledge on the chemical redox pathways of Hg in the gas phase.

Gas Phase Reaction Diluent Gas a (T = 298 K) Rate Coefficient b (cm3 molec−1 s−1) References

Hg0−+Br→HgBr

Air, N2, 1 atm (3.2 ± 0.3) × 10−12 [19]
Air, NO, 1 atm 9 × 10−13 [20]
N/A, 1 atm c 1.01 × 10−12exp(209.03/T) [3]
N/A, 1 atm 2.07 × 10−12

N/A (180–400 K) 1.1 × 10−12(T/298K)−2.37 [21]
N/A, 1 atm 1.1 × 10−12

N2, 1atm (243–298 K) (1.46 ± 0.34) × 10−32 × (T/298)−(1.86 ± 1.49) cm6/molec2/s [22]
N2, 1 atm (3.6 ± 0.9) × 10−13

Ar, 1 atm (260 K) c 1.2 × 10−12 [23]
Air, 1 atm (1.6 ± 0.8) × 10−12 [24]

HgBr+M→BrHgM
M = NO2 or HO2

N/A (220–320 K) k ([M], T)d [25]

HgBr+Br→HgBr2

CF3Br, 0.26 atm (397 K) 7 × 10−17 [26]
N/A, 1 atm (180–400 K) 2.5 × 10−10(T/298K)−0.57 [21]

N/A, 1 atm 2.5 × 10−10

Hg0+Cl→HgCl

Ar, 0.93 atm (383–443 K) (3.2 ± 1.7) × 10−11 [27]
Air, NO, 1 atm 6.4 × 10−11 [20]
Air, N2, 1 atm (1.0 ± 0.2) × 10−11 [19]
N/A, 1 atm c 1.38 × 10−12exp(208.02/T) [3]
N/A, 1 atm 2.81 × 10−12

N2 (243–298 K) (2.2 ± 0.5) × 10−32 × exp [(680 ± 400)(1/T − 1/298)] cm6/molec2/s [28]
N2, 1 atm 5.4 × 10−13

N2, 1 atm 1.2 × 10−10 [29]
Air, 1 atm (1.8 ± 0.5) × 10−11 [24]

Hg0+O3→HgO(s)+O2

N/A, 1 atm (293 K) 4.2 × 10−19 [30,31]
N/A, 1 atm (293 K) 4.9 × 10−18 [31,32]
Air, 1 atm (293 K) 1.7 × 10−18 [33]

N2/O2, 1 atm (293 K) (3 ± 2) × 10−20 [34]
N2, 1 atm (7.5 ± 0.9) × 10−19 [35]
Air, 1 atm (6.4 ± 2.3) × 10−19 [36]
N2, 1 atm (6.2 ± 1.1) × 10−19 [37]
Air, 1 atm (7.4 ± 0.5) × 10−19 [38]
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Table 1. Cont.

Gas Phase Reaction Diluent Gas a (T = 298 K) Rate Coefficient b (cm3 molec−1 s−1) References

Hg0+OH→HgOH Air, 1 atm (8.7 ± 2.8) × 10−14 [39]

HgOH+O2→HgO(s)+OH

N/A, 1 atm (343 K) (1.6 ± 0.2) × 10−11 [40]
Air, 1 atm <1.2 × 10−13 [41]

N/A, 1 atm (180–400 K) 3.2 × 10−13(T/298K)−3.06 [21]
N/A, 1 atm 3.2 × 10−13

Air/N2, 1 atm (9.0 ± 1.3) × 10−14 [42]

Hg0+F→HgF
N/A, 1 atm c 9.2 × 10−13exp(206.81/T) [3]
N/A, 1 atm 1.86 × 10−12

Hg0+I→HgI
N/A, 1 atm (180–400 K) 4.0 × 10−13(T/298 K)−2.38 [21]

N/A, 1 atm 4.0 × 10−13

Hg0+F2→Hg2++Products
Air, 1 atm (1.8 ± 0.4) × 10−15 [36]
N2, 1 atm ≤(1.27 ± 0.58) × 10−19 [43]

Hg0+Cl2→HgCl2

Air, N2, 1 atm (2.6 ± 0.2) × 10−18 [19]
Air, 1 atm (2.5 ± 0.9) × 10−18 [36]
N2, 1 atm 4.3 × 10−15 [29]

Hg0+Br2→HgBr2 Air, N2, 1 atm <(0.9 ± 0.2) × 10−16 [19]

Hg0+ClO→HgClO N2, 1 atm 1.1 × 10−11 [29]

Hg0+BrO→HgBrO
Air, NO, 1 atm (3.0–6.4) × 10−14 [20]

N2, 1 atm (1–100) × 10−15 [44]

Hg0+NO3→HgO+NO2
N2, (5–10) × 10−3atm(294 K) <4 × 10−15 [39]

Air, 1 atm <7 × 10−15 [36]

Hg0+H2O2→HgO+H2O
N/A, 1 atm ≤4.1 × 10−16 [45]

N2, N/A (293 K) <8.5 × 10−19 [46]

a T = 298 K, unless otherwise stated; b The unit is cm3 molec−1 s−1 unless otherwise stated; c Temperature range is unknown. d k([M], T) =

(
k0(T)[M]

1+ k0(T)[M]
k∞ (T)

)
0.6

( 1

1+(log( k0(T)[M]
k∞ (T) )

2 )

where k0(T)

and k∞(T) values are tabulated in [25].
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2.1. Br-Initiated Oxidation of Hg0

The oxidation of Hg0 by Br occurs via a two-step process with HgBr as the intermediate. Previous
quantum calculations by Dibble et al. [47] demonstrated that BrHg could react with the abundant
radicals in the atmosphere to form stable BrHgY compounds where Y is NO2, HO2, ClO, or BrO.
Previous laboratory studies reported apparent rate coefficients in the range of (3.6 ± 0.9) × 10−13 to
(3.2 ± 0.3) × 10−12 cm3 molec−1 s−1, at 1 atm and 298 K [19,20,22]. Theoretical studies estimated the
rate constants to be from 9.8 × 10−13 to 2.1 × 10−12 cm3 molec−1 s−1, at 1 atm and 298 K [3,21,23].
Theoretical and experimental rate constants for mercury oxidation by Br and Cl atoms at 298 K have
previously been compared in detail in Table A.2 by Subir et al. [18].

The first kinetic study of the reactions of BrHg with NO2 and HO2 was recently reported by Jiao
and Dibble [25], using computational chemistry. Quantum calculations were performed to obtain
the rate constants and product yields for the oxidation reactions of BrHg with NO2 and HO2. The
rate constant for the oxidation of HgBr by NO2 was larger than that for the oxidation of HgBr by
HO2 (T = 200–320 K). The fate of HgBr replied more on the concentration ratio of [NO2]/[HO2] in the
atmosphere than the ratio of their oxidation rate constants. While the addition reaction dominated the
reaction of HgBy by HO2, the addition of HgBr by NO2 was competed by a-reduction reaction to form
Hg + BrNO2 (up to 18% of the oxidation). The reaction product of the oxidation of HgBr by NO2 was
computed to be syn-BrHgONO under atmospheric conditions. Because no experimental studies on the
reaction of HgBr of NO2 and HO2 have been previously reported in the literature, the rate constants
computed in this study are significant for future model and laboratory studies [25].

Sun et al. [24] used a relative rate technique with ethane and propene as references and determined
the rate coefficients for Hg0 + Br• reactions to be (1.6 ± 0.8) × 10−12 cm3 molec−1 s−1, at 100 kPa and
298 ± 3 K. The determined rate coefficient was in the midst of previously reported rate constants.
Measurements using a scanning mobility particle sizer by Sun et al. [24] also showed that Hg products
largely existed as wall deposits in agreement with the previous product analysis by Ariya et al. [19].
It has been suggested that the presence of aerosols in the Aitken mode during the oxidation reaction
may be initiated by the vapor nucleation of mercury-containing products.

2.2. Cl-Initiated Oxidation of Hg0

Similar to Hg0-Br oxidation, the oxidation of Hg0 by atomic Cl was believed to occur via a
two-step chlorination process with HgCl as the intermediate [19,24,28]. Theoretical calculations
indicated that after the initializing step to form the HgCl intermediate, the secondary oxidation of
HgCl could be carried out by NO2, HO2, ClO, or BrO [47]. Recently, Sun et al. [24] determined the rate
coefficients using a relative rate technique with ethane and 2-chloro-propane as references. The rate
coefficient for the Hg0 + Cl• reaction was reported to be (1.8 ± 0.5) × 10−11 cm3 molecule−1 s−1,
at 100 kPa and 298 ± 3 K, which was in agreement with three earlier laboratory studies by
Horne et al. [27], Spicer et al. [20] and Ariya et al. [19] (1.0–6.4 × 10−11 cm3 molecule−1 s−1).
However, the reported rate coefficient was about two orders of magnitude larger than that determined
by Donohoue et al. [28] (5.4 × 10−13 cm3 molecule−1 s−1) and one order of magnitude smaller
than that determined by Byun et al. [29] (1.2 × 10−10 cm3 molecule−1 s−1). The determined rate
constant was one order of magnitude higher than the only theoretical estimation by Khalizov et al. [2]
(2.81 × 10−12 cm3 molecule−1 s−1).

More studies are needed to reduce the uncertainties in the kinetic estimate of the oxidation
reactions of atmospheric Hg. To render it more complex, as the existing reactions show the importance
of surfaces in catalysis and heterogeneous reactions [4,48], further studies on atmospherically-relevant
surfaces are recommended.
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2.3. Oxidation of Hg0 by NO3

The experimentally-determined rate constant for the oxidation of Hg0 by NO3 has been previously
reported to be <4× 10−15 cm3 molecule−1 s−1 by Sommar et al. [39] and <7× 10−15 cm3 molecule−1 s−1

by Sumner et al. [36] at 1 atm and 298 K. However, based on the new HgO thermochemistry, Hynes et al.
estimated this reaction to be highly endothermic and, thus, suggested that this oxidation pathway
is not viable in the atmosphere [14,49]. Furthermore, theoretical calculations by Dibble et al. [47]
suggest that NO3 do not form strong bonds with Hg0 and therefore is unlikely to initiate gas-phase
Hg0 oxidation reactions.

A recent study by Peleg et al. [50] provided field evidence of the possible participation of nitrate
radicals (NO3) in the nighttime oxidation of Hg0 in the atmosphere. In their study, the role of NO3 inthe
nighttime oxidation of Hg0 in the atmosphere was evaluated by measuring the concentrations of NO3,
Hg0 and HgII continuously during a six-week period in the urban air shed of Jerusalem, Israel during
the summer of 2012. The R2 average of 0.47 indicated a strong correlation between nighttime [HgII] and
[NO3], while correlations of nighttime [HgII] with other environmental variables were either weak or
absent. Detailed analyses implied that NO3 radicals may be involved in the Hg0 oxidation reaction in
the atmosphere. Previous theoretical calculations suggested that NO3 may be unlikely to initiate Hg0

oxidation [47,49]; therefore, NO3 may be involved in the secondary oxidation reaction of unstable HgI

species [50]. More laboratory and theoretical studies are required to assess the role of NO3 in secondary
reactions of Hg0 oxidation in the real atmosphere, including on atmospherically-relevant surfaces.

2.4. Dominant Gaseous Oxidant for Hg0: O3/OH, Br or Others?

Previous studies have assumed O3 and OH to be the major Hg0 oxidants in the atmosphere [51–56].
Despite theoretical doubts concerning the thermal stability of gaseous HgOH and HgO products, many
modeling results using O3/OH as the main atmospheric Hg oxidants showed good agreement with
the observed Hg0 concentration and wet deposition flux. However, more complex atmospheric Hg
oxidation reactions, particularly heterogeneous reactions involving O3 and OH, have been implied in
recent studies ([57] and references therin).

Atomic bromine (Br) has been suggested to be the dominant oxidant of Hg0 in the marine
boundary layer and in the Arctic [58–60]. A previous model study by Holmes et al. [61] implied that
Br could be the major oxidant of Hg0 in the global atmosphere. The existence of BrO radical has
been reported in the upper troposphere [62,63] and over the southeastern US [5,64]. Due to the rapid
exchange between Br and BrO radicals [65] and the much slower oxidation rate of Hg0 by BrO [18]
the field observations of BrO seem to support the dominant oxidation of Hg0 by Br in the atmosphere.
Shah et al. [5] found that sensitivity simulations using the GEOS-Chem chemical transport model by
either increasing Br concentrations, or using a faster rate constant for the oxidation reaction of Hg0

byBr, resulted in a better agreement between the modeled results and the aircraft observations. Yet,
consistent BrO measurements do not exist in the lower troposphere where humans and biota exist.
Moreover, note that the majority of chemical compounds are more concentrated and diversified in
the boundary layer, which leads to much more complexity in chemistry, physics and biology due to
various interfacial processes. The field studies by Gust in and co-workers during the last decades
also suggested that Hg0 may be oxidized not just by Br or BrO, but also by various oxidants in the
atmosphere. The composition of oxidized mercury showed that Hg0 is subject to oxidation processes
with various oxidants and not necessarily Br. The assumption of using Br as a universal global oxidant
for atmospheric Hg may need further evaluation [66].

The most recent modeling studies indicated more complex Hg chemistry in the atmosphere,
and multiple oxidants may be significant under various atmospheric conditions. Ye et al. [67] developed
a box model including up-to-date atmospheric Hg chemistry and used it to study the oxidation of
Hg0 at three different locations in the northeastern United States. The simulated diurnal cycles of
HgII agreed well with the observations. Model results showed that Hg0 oxidation was dominated
by O3 and OH at the coastal and inland sites during the day and Hg0 oxidation initiated by H2O2
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was significant at the inland site during the night. In the marine boundary layer (MBL), the model
simulations indicated that Br/BrO were the major oxidants of Hg0 at midday while O3 became the
dominant oxidant for the remainder of the day.

Travnikov et al. [57] compared simulation results from four state-of-the-art chemical transport
models with field data from various global and regional monitoring networks. It was found that models
using the Br oxidation mechanism correctly simulated the observed seasonal variation of the HgII/Hg0

ratio in the near-surface layer but failed to predict the observed wet deposition maximum in summer at
monitoring sites in North America and Europe. Models applying OH chemistry successfully predicted
both the observed amplitude of seasonal changes and the periods of maximum and minimum values,
but did not catch the maximum HgII/Hg0 ratios observed in spring. Models using O3 chemistry could
not predict the observed large seasonal variation of either Hg oxidation or wet deposition flux.

Gencarelli et al. [68] simulated the deposition, transport and chemical interactions of atmospheric
Hg over Europe for the year of 2013. The outputs of 14 model sensitivity tests were compared with field
data from 28 monitoring sites. In general, good agreement was achieved between the model results and
the observations. However, the observed deposition in precipitation was significantly underestimated
when employing either the O3 or OH reaction mechanism alone. Using the Br oxidation mechanism
overestimated HgII at the ground level and produced a lower overall Hg wet deposition than the
simulations using both O3 and OH as atmospheric oxidants for Hg0. These model results revealed
that the filed data could not be reproduced using the oxidation of Hg0 by O3, OH or Br alone, which
indicated a more complicated oxidation mechanism of atmospheric Hg.

Bieser et al. [69] performed a model comparison study evaluating the impact of oxidation
schemes and emissions on atmospheric mercury. The models under study successfully simulated the
concentration distribution of total Hg and Hg0 in the troposphere. It was found that the agreement
between the observed HgII patterns and the model results employing different chemistry schemes
seemed to depend on altitude. Although models using the Br oxidation scheme well simulated
high concentrations of HgII in the upper troposphere, models applying O3 and OH chemistry better
estimated elevated concentrations in the lower troposphere. However, more studies are needed to
confirm this conclusion due to the possible significant influence of model results by the physical and
chemical parameters used in these models.

Recent model studies seem to suggest that multiple oxidants are likely involved in the oxidation
of atmospheric Hg0 dependent on seasons and locations. However, whether Br, O3/OH or multiple
oxidants are the major oxidants of Hg0 in the global atmosphere is unclear. To address this important
question, more studies on reducing the large uncertainties in rate constants, understanding the
heterogeneous oxidation reactions of Hg0, as well as improving the treatment of chemical mechanisms
in atmospheric Hg models and the accuracy of mercury emission inventories are needed [8,18,48].

3. Chemical Redox Reactions of Hg in the Aqueous Phase

To date, the proposed chemical oxidation pathways in atmospheric droplets include the
aqueous-phase oxidation of Hg0 by O3, OH, chlorine (HOCl/OCl−) and bromine (Br2/HOBr/BrO−).
The proposed chemical reduction pathways of mercury in the aqueous phase relevant to environmental
conditions include the reduction of HgII by sulfite, photo-reduction of Hg(OH)2, photo-reduction of
HgII by HO2 and photo-reduction of HgII-dicarboxylic acid complexes. The obtained rate constants
and proposed mechanisms for these reactions were summarized in Table 2. Recent advances include
the aqueous photoreduction of HgII-organic complexes and the effects of environmental variables on
the aqueous reduction of HgII by sulfite.
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Table 2. Current accumulated knowledge on chemical redox pathways of Hg in the aqueous phase.

Reactant (s) Rate Constants T (K) pH Potential Mechanism Reference

Identified Aqueous Reduction Pathways of Hg2+

Hg2+ + sulfite (aq)

0.6 s−1 299 3.0–4.84 HgSO3 → Hg+
+HSO−3 or +Hg+

→ Hg0 + products [70]

0.0106 ± 0.0009 s−1 298 3 HgSO3 + nH2O→ [Hg(SO3) · (H2O)n]→ Hg0 + products [71]
0.013 ± 0.007 s−1 298 7 Same as above [72]

<10−4 s−1 299 3.0–4.84 Hg(SO3)
2−
2 → Hg0 + products [70]

Hg(OH)2 3 × 10−7 s−1 293 7 Hg(OH)2
hv→ [Hg(OH)2∗]→ Hg(OH)• + •OH → Hg0 + products [73]

HgS2
2− ~10−7 s−1 298 Not available [73]

Hg2+ + HO2
1.7 × 104 M−1 s−1 298

C2O4
2− + 2O2

hυ→ 2O2
•− + 2CO2

O•−2 + H+ → HO•2
HO•2 + Hg2+ → Hg+ + O2 + H+

HO•2 + Hg+ → Hg0 + O2 + H+

HO•2 + HO•2 → H2O2 + O2

[74]

Not available Intramolecular 2e− transfer via Hg2+-oxalate complex [75]

Hg2++Dicarboxylic acids (C2–C4)
(1.2 ± 0.2) × 104 M−1 s−1(Oxalic)

(4.9 ± 0.8) × 103 M−1 s−1(Malonic);
(2.8 ± 0.5) × 103 M−1 s−1(Succinic)

296 3.0 Mainly intramolecular 2e− transfer via Hg2+-dicarboxylate complexes [76]

Identified Aqueous Oxidation Pathways of Hg0

Hg0 + O3 (4.7 ± 2.2) × 107 M−1 s−1 298 4.5–9.5 Hg0 + O3 → HgO + OH− + O2
HgO + H+ → Hg2+ + OH−

[77]

Hg0 + •OH
2.0 × 109 M−1 s−1 298 Hg0 + .•OH → Hg+ + OH−

Hg+ + .•OH → Hg2+ + OH−
[74]

(2.4 ± 0.3) × 109 M−1 s–1 298

Hg0 + •OH → •HgOH
•HgOH + O2 + H2O→ Hg(OH)2 + H+ + O−•2

•HgOH + •OH → Hg(OH)2
2•HgOH → Hg2(OH)2 ↔ Hg0 + Hg(OH)2

[78]

5.5 × 109 M–1 s–1 Not available [79]

Hg0 + aqueous bromine
0.28 ± 0.02 M–1 s–1

0.27 ± 0.04 M–1 s–1

0.2 ± 0.03 M–1 s–1
294–296 2, 6.8, 11.7

HOBr + Hg0 → Hg2+ + Br− + OH−

OBr− + Hg0 H+

→ Hg2+ + Br− + OH−

Hg0 + Br2 → Hg2+ + 2Br−
[80]

Hg0 + HOCl/OCl−
(2.09 ± 0.06) × 106 M–1 s–1 Ambient HOCl + Hg0 → Hg2+ + Cl− + OH−

OCl− + Hg0 H+

→ Hg2+ + Cl− + OH−
[81]

(1.99 ± 0.05) × 106 M–1 s–1
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3.1. Field Evidence for the Reduction of HgII

The first field observation of the sunlight-induced reduction of HgII in the atmosphere was
recently reported by Foy et al. [82]. In their study, concentrations of Hg0, HgII and Hg(p) were
monitored hourly over four winter months in a remote, high-altitude location. This study site is absent
of local anthropogenic sources, which is ideal for studying atmospheric Hg chemical transformations.
The parameters of a chemical box model required to reproduce the observations were determined
using an optimization algorithm. It was found that the presence of a photolytic reduction reaction
previously observed in laboratory studies was needed in order to match the model results with the field
observations. The results suggested that the reduction reaction needs to be included in atmospheric
Hg models in order to improve simulations of mercury deposition in the atmosphere.

3.2. Photoreduction of HgII-Organic Complexes

HgII could form strong complexes with organic ligands such as reduced sulfur groups [74,83–85].
The photoreduction of HgII in the presence of dissolved organic matter (DOM) has been widely
documented in various natural water systems [86–90] and may also occur in atmospheric droplets
and organic aerosols (OA) [91]. Recent model studies by Horowitz et al. supported the occurrence
of the reduction of HgII-organic complexes in the atmosphere. Horowitz et al. [91] incorporated the
updated chemical mechanism for atmospheric Hg into the GEOS-Chem global model and found
that the inclusion of aqueous-phase photoreduction of HgII-organic complexes reported by Si and
Ariya [76] in GEOS-Chem models, was critical for reproducing the observations. The major HgII

deposition to the global oceans and the relatively low observed wet deposition of Hg over rural China
may be due to different reduction rates of HgII with organic aerosols at various geographic locations.

3.3. Direct Reduction of HgII by Sulfite

The aqueous-phase reduction of Hg2+ with sulfite is believed to be a process relevant to
atmospheric droplets. The first-order rate constant determined by van Loon and her co-workers [71]
has been widely used in current atmospheric Hg models. The effects of pH (1–7), temperature
(274–318 K) and HgII sources (Hg(NO3)2 or HgO) on the aqueous-phase reduction rate were recently
examined by Feinberg et al. [72] to better understand this reduction pathway. The results showed
that the reduction could occur in the pH range of 1–7. The activation parameters of the aqueous HgO
reduction by sulfite at pH 1 and 3 with T = 274–318 K, was in good agreement with the previous
study [71]. The reduction rate at pH = 7 decreased with increasing ionic strength, especially with
Hg(NO3)2. No statistical difference was found between the reduction rate constants of Hg(NO3)2 and
HgO, which suggested that the reduction of HgII by sulfite may be independent of the HgII species
in the aqueous phase. The results indicated the possible occurrence of this reduction reaction under
various environmental conditions and, thus, the necessity of its universal inclusion in atmospheric
Hg models.

4. Heterogeneous Redox Reactions of Hg

As shown in Figure 1b, gaseous mercury species can adsorb on atmospheric surfaces and
then undergo desorption, dissolution to atmospheric droplets or surface-enhanced (photo)chemical
reactions [48]. Despite the potential significant role of heterogeneous Hg reactions on atmospheric Hg
chemistry and model simulations [37,92], scare data is available on mercury reactions and equilibrium
processes on atmospheric surfaces such as aerosols [48]. A systematic understanding of the surface
chemistry of Hg is extremely difficult [48,93] due to the varying concentration, size distribution
and composition of aerosols at different locations, times and meteorological conditions [94,95].
Nevertheless, several recent laboratory studies focus on understanding the complex heterogeneous
reactions between atmospheric mercury and various aerosols. The major findings in these studies are
summarized in Table 3.



Atmosphere 2018, 9, 76 11 of 18

Table 3. Current accumulated knowledge on heterogeneous chemical reactions of Hg in the atmosphere.

Reactants Surfaces Major Findings References

Hg2+ + organic acids
0.1 g/L iron oxides particles or

0.01 g/L ambient aerosols

• The presence of iron oxides or ambient aerosols enhanced the rate.

• Proposed Mechanism: 〉Fe3+ −OH +OA→ 〉Fe3+ −OA hν→ R•
+Hg2+

→→ Hg0 [96]

HgCl2 Synthetic NaCl aerosols
• Significant reduction of HgII observed upon UV, visible or a simulated

solar radiation.
• The presence of iron in synthetic NaCl aerosols inhibited the reduction rate.

[97]

HgCl2 Coal fly ash or synthetic aerosols

• The average half-life was estimated to be 1.6 h under clear sky atmospheric
conditions from the reduction rates on three diverse fly ash samples;

• The reduction rate on low sulfate/low carbon fly ash was the fastest of the fly ash
samples under study.

• The reduction rates on synthetic aerosols of carbon black and levoglucosan were
about the same as those on coal fly ashes;

• The presence of adipic acid in synthetic aerosols significantly increased the
reduction rate.

• The soluble constituents of fly ash may be important for the reduction.

[98]

Hg2+ + sulfite Fly ash

• The presence of Cumberland and Shawnee fly ash samples inhibited the
reduction rate.

• The reduction was observed in Cumberland fly ash without sulfite, possibly due
to the richness of sulfur in these fly ash samples.

[72]

HgCl2, HgBr2,
Hg(NO3)2,

HgSO4

Fe(110), NaCl(100) and NaCl(111)Na

• The reduction was highly favorable on Fe(110) and NaCl(111)Na surfaces.
• The desorption of reduced Hg required either no energy input on the NaCl(111)Na

surfaces or ~0.5 eV of external energy on the Fe(110) surfaces.
• The reduction of many HgII species may proceed on metallic Fe and

NaCl surfaces.

[99]
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Recently, Feinberg et al. [72] performed the first investigation of the kinetics of heterogeneous HgII

reduction by sulfite (Na2SO3) in the presence of fly ash using UV absorption spectroscopy. Compared
with the corresponding homogeneous reduction rates of HgII by sulfite, the addition of fly ash samples
from Cumberland Power Plant (Tennessee, USA) and Shawnee Fossil Plant (Kentucky, USA) reduced
the reduction rates by c.a.45% and 95%, respectively. The observation of the HgII reduction in presence
of the fly ash samples from Cumberland Power Plant (Tennessee) without added Na2SO3, may be due
to the richness of sulfite in these fly ash samples. The existence of a large proportion of nanoparticles in
the fly ash samples suggested that there were adequate surfaces for heterogeneous chemical reactions
to occur. These results indicated the need to incorporate heterogeneous Hg reduction reactions into
various environmental models of mercury.

Previous laboratory studies showed that the heterogeneous reduction reaction of HgII could
occur on iron and sodium chloride aerosol surfaces, which are important components of atmospheric
aerosols [97]. Recently, theoretical calculations by Tacey et al. [99] supported the experimental results.
In this study, theoretical calculations were performed for the heterogeneous reduction reactions of
HgCl2, HgBr2, Hg(NO3)2 and HgSO4 on clean Fe(110), NaCl(100) and NaCl(111)Na surfaces. Here,
Fe(110) was the most thermodynamically stable and, thus, the most abundant surface on metallic
iron aerosols. The NaCl(100) facet is composed of neutrally charged layers with both Na and Cl
atoms exposed on the surface, while NaCl(111)Na surfaces are charged layers exposing only Na atoms.
The results indicated that the heterogeneous reduction reactionthatgeneratesHg0 is highly favorable on
Fe(110) and NaCl(111)Na surfaces. The desorption of reduced Hg required either no energy input on
the NaCl(111)Na surfaces or ~0.5 eV of external energy on the Fe(110) surfaces. The results suggested
that many oxidized mercury species can be heterogeneously reduced on metallic Fe and NaCl surfaces
and the photochemical reaction on the aerosol surfaces may be a necessary step to catalyze the reaction.

Kurien et al. [100] used various iron(oxyhydr)oxide (γ-Fe2O3, α-FeOOH, α-Fe2O3 and Fe3O4)
nanoparticles as proxies for reactive components of mineral dust and determined the uptake coefficients
for the heterogeneous reaction of Hg0

(g) on these nanoparticles. Upon irradiation (λ = 290–700 nm),
the Hg0

(g) uptake kinetics significantly increased on γ-Fe2O3, α-FeOOH, α-Fe2O3 nanoparticles, but
not on the Fe3O4 surface at P = 760 ± 5 Torr and T = 295 ± 2 K. The effect of radiation on the uptake
of Hg0

(g) by α-Fe2O3was retarded by relative humidity. The variation in the uptake behavior of the
iron(oxyhydr) oxides nanoparticles was due to their different band gaps. More studies are needed to
improve our understanding of such reactions.

Such research presents the need for further studies of the heterogeneous chemistry of mercury,
because elemental mercury and many types of oxidized mercury are likely adsorbed and undergo
(photo)chemical reactions in the presence of abundant atmospheric surfaces, such as particles
and clouds.

5. Future Research Directions

Despite research progress in the understanding of the atmospheric processes of Hg, there are still
major knowledge gaps in laboratory, theoretical and modeling studies, as well as field measurement.
These gaps include but are not limited to mercury chemical speciation in the field, better kinetic and
laboratory studies under various environmental conditions, and more consistent and sophisticated
theoretical and modeling integration. We herein focus on the future research needs implied in recent
studies since 2015.

Despite the potential importance of the oxidation of Hg0 by O3/OH in the atmosphere, large
uncertainties exist in the current gas-phase reaction rate constants and more studies need to be carried
out to reduce these uncertainties in the first place. More studies are needed to evaluate the contribution
of heterogeneous processes to the obtained rate coefficients for the oxidation of Hg0 by O3 and/or
OH, in order to fully understand the discrepancy between the consistent experimental values and
theoretical studies. Secondly, recent theoretical studies indicated that the oxidation of Hg0 could be
initiated by Br- or Cl-atoms and then the secondary oxidation of the HgX (X= Br or Cl) intermediate
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could be carried out by NO2, HO2, ClO, or BrO. More laboratory studies are welcome to confirm this
oxidation mechanism. Future field work and model sensitivity studies will also provide valuable
insights into the viability of these reactions in the atmosphere. Since several studies supported the
possible significant role of Br in the oxidation of Hg0 in the atmosphere, more kinetic and mechanistic
studies are required to reduce the discrepancy in the reported rate constants for the oxidation of Hg0

by halogen atoms.
Recent model studies seemed to suggest that multiple oxidants are likely involved in the

oxidation of atmospheric Hg0 dependent on seasons and locations. However, whether Br, O3/OH
or multiple oxidants are the major oxidants of Hg0 in the global atmosphere is unclear. Accurate
measurements of vertical tropospheric concentration profiles of the species involved, such as various
atmospheric oxidants, Hg0

(g) as well as detailed chemical compositions of oxidized mercury using
diverse techniques, are critical for verifying the significance of various oxidants in Hg removal in the
atmosphere globally.

Recent field observations and model studies supported the occurrence of reduction reactions in
the atmosphere. Furthermore, their results supported the hypothesis that the reduction of HgII–organic
complexes may play an important role in atmospheric Hg cycling besides sulfite-mediated reduction
and photo-reduction of Hg(OH)2. More kinetic and mechanistic studies of HgII reduction pathways
under environmentally-relevant conditions are needed. A better understanding of the reduction of
HgII by organic compounds will require studies on the possible reduction pathways as well as on the
quantification of various organic compounds in atmospheric droplets and aerosols.

Another important knowledge gap is the understanding of the redox reactions of Hg on various
environmental surfaces such as aerosol, water, ice, snow, soil, and vegetative surfaces [48]. Despite
the experimental difficulties caused by the variability in the size and composition of aerosols, several
recent studies using fly ash or model aerosols have provided valuable information on understanding
heterogeneous reactions of Hg on aerosols. The measured reaction rates are likely important in
the chemical transformation of mercury in the atmosphere and the incorporation of these recent
laboratory data in future model studies is essential to reduce uncertainties in current atmospheric Hg
models. Such endeavors will benefit from the identification and quantification of oxidized mercury
compounds, which has been a major challenge in atmospheric Hg research. There are novel instruments
including mercury mass spectrometry [101], which can be used to provide such information. Further
complementary analytical innovations to accurately quantify mercury-containing compounds in the
atmosphere and atmospheric interfaces are needed.

In the light of the Minamata convention, we encourage a more integrated multi-disciplinary
approach to comprehend mercury transformation, dynamics, speciation and remediation. Such
integration is required to translate sound science to sound policy and regulations.
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