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Abstract: The motivation of this paper is that the effect of landscape pattern information on the
accuracy of particulate matter estimation is seldom reported. The landscape pattern indexes were
incorporated in a land use regression (LUR) model to investigate the performance of PM2.5 simulation
over Zhejiang Province. The study results show that the prediction accuracy of the model has
been improved significantly after the incorporation of the landscape pattern indexes. At class-level,
waters and residential areas were clearly landscape components influencing decreasing or increasing
PM2.5 concentration. At landscape-level, CONTAG (contagion index) played a huge negative role
in pollutant concentrations. Latitude and relative humidity are key factors affecting the PM2.5

concentration at province level. If the land use regression model incorporating landscape pattern
indexes was used to simulate distribution of PM2.5, the accuracy of ordinary kriging for the LUR-based
data mining was higher than the accuracy of LUR-based ordinary kriging, especially in the area of
low pollution concentration.

Keywords: fine particulate matter (PM2.5); land-use regression (LUR); landscape pattern index;
data-mining; concentration simulation

1. Introduction

Fine particulate matter (PM2.5) refers to particles with aerodynamic equivalent diameters less
than 2.5 µm that are highly toxic to humans and reduce air visibility and have thus attracted rising
social attention in recent years. With accelerating urbanization in China, fine particles have become
the primary pollutant affecting the air quality in cities and severely influence people’s daily lives.
A routine analysis of the PM2.5 was added to the new Ambient Air Quality Standards (GB2095-2012)
published in China in March 2012. PM2.5 has become a pollutant of focus for future atmosphere
pollution research and control in the nation.

The land-use regression (LUR) model is widely applied in the simulation of atmospheric pollutants
on different spatial and temporal scales [1–9]. The model achieves the simulation of the PM2.5 spatial
distribution through performing a regression analysis of the PM2.5 concentrations at monitoring
stations and the influencing factors in the surroundings (e.g., land use, topography, transportation,
climate, population, and pollution sources). The landscape pattern index is a landscape ecological
expression that quantifies land use [10–14]. Landscape pattern indexes and atmosphere pollution are
typically related by a complicated pattern–process relationship. Land use structure and landscape
patterns can affect the spatial distribution of particles [15]. Research has suggested that green patches
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in a city landscape serve a greater atmospheric pollution purification function if the average area is
greater and the fragmentation index lower [16]. The reduction in the atmospheric pollution is different
depending on the population density, industrial distribution, and landscape patterns (characteristics
such as horizontal structure, heterogeneity, and connectivity) [17]. Thus, the inclusion of landscape
pattern indexes in the LUR model may improve the accuracy of the simulation. Nevertheless, studies on
this aspect have seldom been reported.

Using the LUR model, there are two methods to achieve the simulation of the spatial distribution
of the PM2.5 concentration. In one method, the particle concentrations of the stations are obtained based
on the constructed model, and the simulation of the spatial distribution of the PM2.5 concentration
is achieved through spatial interpolation [18,19]. In the other method, the raster data of variables
are incorporated into the model for regression analysis mapping to obtain the spatial distribution
of the PM2.5 concentration [20]. However, there have been few studies that compared these two
methods of LUR model application. Some studies have shown that the complete spatial distribution of
particles in a region could be reflected using interpolation [21]. The performance of ordinary kriging
interpolation was better than that of remote sensing inversion for the reflection of the overall particle
distribution in the study region, and the continuity of the results obtained was also better. However,
traditional interpolation methods tend to weigh extreme changes excessively due to their dependence
on single factors. Surface fitting for PM2.5 is typically not possible for regions with low station density
or missing data [22].

The urbanization of the Yangtze River delta is developing rapidly, which is one of the national
economic centers, and the pollution of particulate matter is serious. Zhejiang province is the main
component of the Yangtze River delta, typical representative of regional characteristics and it has
rich land use types and diverse landscape patterns. In this study, we investigated the effects of
landscape pattern indexes on PM2.5 simulation using the LUR model and compared the two methods
of land-use model application. Finally, data mining method was introduced to improve the regional
PM2.5 estimation.

2. Experiments

2.1. Investigated Regions and Monitoring Stations

Zhejiang is a coastal province located on the south of the Yangtze River Delta in southeast
China. It is one of the provinces that are most economically active but has a small land area. In 2015,
the population of the province was 48.7334 million, with a high population density. The PM2.5

index in regions such as Hangzhou, Shaoxing, and Huzhou indicated a heavy pollution level.
The environmental health of the province is thus a matter of great concern. The investigated region
contained 150 evenly distributed national air quality monitoring stations (Figure 1). Zhoushan city
is composed of sparse islands and has unique natural and cultural conditions. For the study to be
representative, Zhoushan city was not included.
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Figure 1. Distribution and elevation of the national air quality monitoring stations in Zhejiang province.

2.2. Settings for LUR Model

The equation of the LUR models is expressed as

y = a0 + a1x1 + a2x2 + · · ·+ anxn + ε

where the dependent variable y is the pollutant concentrations, independent variables x1 · · · xn are the
potential variables, a1 · · · an are the associated coefficients, and ε is the constant intercept [20].

2.2.1. Dependent Variable

The PM2.5 concentration data were from the air quality publication platform of the Zhejiang
Environmental Protection Bureau (http://aqi.zjemc.org.cn/aqi/flex/index.html). Daily averages of
the PM2.5 were collected from the 150 national air quality monitoring stations during June 2015 to
May 2016, and from them, the monthly average and annual average of each station were obtained.

2.2.2. Independent Variables

A total of 80 independent variables of the LUR model were selected, which covered five categories,
including the meteorological data, land-use data, population data, digital elevation data, and pollution
source data. By manual interpretation, data were obtained on the land use/coverage in areas within
5 km of the stations. The types of land use included woodland, residential, industrial, commercial,
urban greenery, transportation, agricultural, bare land, waters, and roads. Buffers were created for
100, 300, 500, 800, 1000, 2000, 3000, 4000, and 5000 m, according to previous research findings [23–25].
Using version 4.2 of FRAGSTATS [10,26], We calculated landscape pattern index [27] of different
distance buffers for analysis (Table 1).

The weather data were obtained from the China Meteorological Data Service Center
(http://data.cma.cn/), the indexes obtained included temperature, relative humidity, pressure,
sunlight, wind speed, and rainfall.

The national population density per square kilometer was obtained from the Center
for International Earth Science Information Network provided by Columbia University
(http://sedac.ciesin.columbia.edu/), and the population data of each station were extracted from
that data.

http://aqi.zjemc.org.cn/aqi/flex/index.html
http://data.cma.cn/
http://sedac.ciesin.columbia.edu/
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Table 1. Landscape pattern index of different distance buffers.

Landscape Pattern Index Category Description (Within Each Buffer) Buffer Distance
(m) Land Use Types Variables Names (Example)

Class area (CA) Total area of land cover types

100, 300, 500, 800,
1000, 2000, 3000,

4000, 5000

woodland, residence,
industrial, commercial,

urban greenery,
transportation, agricultural,

bare land, waters, roads

buffer-distance_land-use-
type_landscape-pattern indexes
(100_woodland_CA
300_residence_PLAND
500_industrial_LPI
800_commercial_ED
1000_urban greenery_PD
2000_transportation_CONTAG
3000_agricultural_SHDI
4000_bare land_SHEI)

Percent of landscape (PLAND) The percentage of area of different patch types

Largest patch index (LPI) Largest area of different patch types

Edge density (ED) The length of the unit area of different patch type

Patch density (PD) The number of different patch type of unit area

Contagion index (CONTAG) The degree of clustering or trend of extension of
different patch type

Shannon’s diversity index (SHDI) The diversity of patch type

Shannon’s evenness index (SHEI) The degree of inhomogeneity of different patch



Atmosphere 2018, 9, 47 5 of 12

Data on pollution sources were from the monitoring of primary pollutants by the
Zhejiang Environmental Protection Bureau, and the sources included power plants, steel plants,
and other industries.

2.2.3. Model Development and Evaluation

Each variable was paired with the PM2.5 concentration for bivariate correlation analysis to screen
for influencing factors that were significantly correlated with the PM2.5 concentration. Remove the
independent variables that have insignificant t-statistics (α = 0.05). To solve the issue of the reduced
model accuracy due to collinearity between the factors, the influencing factor that was the most
correlated with PM2.5 among the variables in the same category was selected. The variables that were
highly relevant (R > 0.6) to the selected factor were eliminated, and the variables with correlations
different from historical experiences were removed [18]. By comparing the prediction accuracy
of forward, backward, and stepwise selection, we found that the prediction accuracy of stepwise
selection was higher [25,28–30]. All variables that satisfied the requirements were subjected to stepwise
multivariate linear regression along with the PM2.5 concentration. The statistical parameters were
defined, followed by the detection of outliers and influential data points. Based on practical needs,
a regression equation a higher adjusted R2 and easy-to-interpret independent variables was selected as
the final prediction model.

Due to the lack of landscape information and the brush selection of independent
variables, in the end, 126 samples were applied to regression modeling. The models
were validated using cross-validation statistic of geostatistical analysis of ArcGIS software
(ESRI, Red Lands, CA, USA) [31,32]. By comparing the PM2.5 predicted values versus monitored
values, the model yields a smaller RMSE (Root-Mean-Square Error), and a greater adjusted R2 provides
better fitting. Generally, lower RMSE values mean more stable and accurate models [18].

3. Results and Discussion

3.1. LUR Model Construction

A stepwise multivariate linear regression analysis was performed on the 65 variables that
satisfied the requirements for the model construction (Table 2). The last five variables included in
the model were the latitude, annual average relative humidity, 5000_residence_CA, 4000_water_LPI,
and 5000_CONTAG. Among these variables, the latitude and 5000_residence_CA were positively
correlated to the PM2.5. The latitude is positively correlated to the PM2.5 concentration, which may be
attributed to the differences in land use types and weather data for the regions adjacent to the stations
as the latitude increases. On the one hand, the average urban construction area in northern Zhejiang
province is more than southern Zhejiang province. Urbanization can lead to serious pollution [33].
On the other hand, under the influence of the wind direction of the northwest wind in the Yangtze
River delta region, the fine particulate matter of the urban site at the junction of the Yangtze River in the
Yangtze River delta is significantly affected by the internal transmission of the region [34]. Northerly air
masses transport pollution to the south. In addition, the variable that showed the most significant
negative correlation with the increase in latitude from Wenzhou to Huzhou and Jiaxing was the
annual average temperature, with a Pearson correlation coefficient of −0.865. The higher temperature,
the stronger atmospheric convection. The pollutants in the atmosphere was be transported to distance,
thereby reduced the concentration of fine particulate matter. The variable that showed the second
most significant correlation was the air pressure, with a Pearson correlation coefficient of 0.410.
High pressure inhibits the transportation of particles [35]. 5000_residential_CA represented residential
area within the 5000 m buffer. The more 5000_residence_CA, the more sources of pollution. It can
stimulate liveness of the surrounding businesses, transportation, and production activities so as to
release more pollution and cause environmental damage to a certain extent [36,37]. The variables
negatively correlated with the PM2.5 were the annual average relative humidity, 5000_CONTAG,
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and 4000_waters_LPI. When relative humidity is high, as long as PM2.5 concentration reaches specific
value, it will settle because of its own weight, thereby reducing the concentration of particles in the
air [38]. 5000_CONTAG represented the degree of clustering or trend of extension of the landscape
patterns in the 5000 m buffer regions of the monitoring stations [39]. Generally, the higher the
5000_CONTAG, the better the continuity of a certain dominant patch in the landscape, while a
higher degree of fragmentation of the landscape increases the inter-patch transportation cost for urban
residents and speeds up gas emissions. 4000_water_LPI represented the proportion of the largest
patch of water in the landscape of 4000 m buffer regions. An increase in the area of water bodies
in a city, whether in a scattered or centralized distribution, results in a decreased air temperature,
increased humidity, increased average wind speed, reduced urban heat island effects, and increased
spread of air pollutants. To investigate the effects of the landscape pattern indexes on the simulation
accuracy of the model, the specific parameters used in the model before and after the inclusion of the
landscape pattern indexes were as indicated in Tables 3 and 4.

Table 2. List of variables of modeling.

Variables Variables Variables

Latitude 5000_woodland_CA 5000_residential_CA
DEM 500_woodland_CA 1000_residential_CA

Population density 300_woodland_CA 800_residential_CA
Wind speed 100_woodland_CA 500_residential_CA

Pressure 5000_woodland_PLAND 300_residential_CA
Relative humidity 500_woodland_PLAND 5000_residential_PLAND

Temperature 300_woodland_PLAND 1000_residential_PLAND
Rainfall 100_woodland_PLAND 800_residential_PLAND

5000_CONTAG 1000_woodland_PD 500_residential_PLAND
5000_SHDI 800_woodland_PD 300_residential_PLAND
5000_SHEI 500_woodland_PD 800_residential_PD

4000_waters_LPI 100_woodland_PD 5000_residential_LPI
5000_transportation_LPI 5000_woodland_LPI 800_residential_LPI

5000_roads_CA 100_woodland_LPI 1000_residential_LPI
500_roads_CA 500_woodland_LPI 5000_commercial_CA

5000_roads_PLAND 300_woodland_LPI 5000_commercial_PLAND
500_roads_PLAND 2000_woodland_ED 300_commercial_PD

5000_roads_PD 100_woodland_ED 2000_commercial_PD
4000_roads_LPI 5000_agricultural_CA 5000_commercial_PD
2000_roads_LPI 5000_agricultural_PLAND 5000_commercial_ED
800_roads_LPI 1000_agricultural_PD 5000_commercial_LPI
5000_roads_ED 5000_residential_ED

DEM: Digital Elevation Model.

Table 3. Parameters of the multiple regression model with the inclusion of landscape pattern factors.

Model
Unstandardized Coefficients Standardized Coefficients

t Significance
B Std. Error Beta

Constant 17.802 19.266 0.924 0.357
Latitude 4.202 0.357 0.498 11.775 0.000

Relative humidity −1.257 0.215 −0.265 −5.854 0.000
5000_residential_CA 0.003 0 0.317 6.383 0.000

5000_CONTAG −0.155 0.038 −0.183 −4.068 0.000
4000_waters_LPI −0.111 0.039 −0.114 −2.857 0.005
Adjust R square 0.805 F 103.212 Sig. 0.000

RMSE 3.420

RMSE: Root-Mean-Square Error.
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Table 4. Parameters of the multiple regression model prior to the inclusion of landscape pattern factors.

Model
Unstandardized Coefficients Standardized Coefficients

t Significance
B Std. Error Beta

Constant 38.062 22.921 1.661 0.099
Latitude 4.917 0.448 0.583 10.975 0.000

Relative humidity −1.853 0.248 −0.391 −7.468 0.000
DEM −0.014 0.006 −0.127 −2.244 0.027

Adjust R square 0.681 F 73.342 Sig. 0.000
RMSE 4.680

DEM: Digital Elevation Model; RMSE: Root-Mean-Square Error.

3.2. Cross Validation

It is important for the simulation precision of LUR based landscape pattern index to get rid
of the spatial autocorrelation and detect the normal distribution and trends of PM2.5 concentration
in supplementary section (Figures S1–S4). The RMSE of the ordinary kriging for the LUR-based
data-mining was 3.512 µg/m3, which of the LUR-based ordinary kriging was 3.571 µg/m3, that of
the ordinary kriging was 4.067 µg/m3, and that of the data-mining-based ordinary kriging was
4.055 µg/m3 (Table 5). A smaller RMSE indicates a lower deviation of the predicted values from the
measured values. Therefore, the cross-validation results suggested that the simulation accuracy of
ordinary kriging for the LUR-based data-mining was better (Figure 2). As found in the pair-wise
comparisons, the RMSE was significantly reduced using the LUR model; the accuracy of particle
concentration prediction was improved by 0.5 µg/m3. These improvements were attributed to the
factors incorporated in the regression model. The factors considered included not only space and
distance but also environmental and social factors such as the weather, transportation, population,
elevation, and land use. Different influencing factors have different interpretation abilities for the PM2.5

concentration. The use of the LUR model could avoid over-reliance on the spatial and distance factors.
Furthermore, the factors incorporated in the model were considered comprehensively, which resulted
in predictions that were closer to the actual conditions; hence, the model is based on a more solid
scientific foundation.
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Table 5. Cross-validation parameters for the four different simulation methods.

Cross-Validation
Parameters

Ordinary Kriging for
LUR-Based Data

Mining

LUR-Based
Ordinary Kriging Ordinary Kriging Data-Mining-Based

Ordinary Kriging

RMSE 3.512 3.571 4.067 4.055

Regression
function 8.009 + 0.809x 7.715 + 0.819x 8.252 + 0.798x 9.409 + 0.772x

3.3. Concentration Simulation

We have compared the prediction accuracy of the different LUR-model application methods in
supplementary section, the simulation accuracy was greater when directly applying the land use
model to point fitting (Figure S5, Table S1). Compared with the other three methods, ordinary kriging
for LUR-based data mining resulted in a prediction range of 19.81–53.06 µg/m3 (Figure 3); for the
low-pollution regions, the prediction value was even closer to the monitored range of 19.83–59 µg/m3

(Figure 3). The overall results of the concentration simulation by the four methods were similar.
This distribution of prediction value was, to a large extent, consistent with the monitored particle
distribution (Figure 3). In particular, the pollution in the northern Zhejiang was severe, but that
in the southern region was relatively mild. Among the station of the northern Zhejiang, the PM2.5

concentration at the Zhaohui, Wuqu, and Hemu school station in Hangzhou were detected to be
as highest as 59 µg/m3. In addition, the PM2.5 concentration at others in the northern Zhejiang
almost more than 40 µg/m3. On the contrary, among the stations of the southern Zhejiang, the PM2.5

concentration were detected to be as low as 40 µg/m3. Although PM2.5 concentration of Qianjiangyuan
station in the east was lower than all of sites of the Zhejiang province, the pollution in the east and
west of the province were similar, and the degree of severity was between those of the north and
south. The heavily polluted regions were mainly located in Huzhou, Jiaxing, Hangzhou, Shaoxing,
and the northeast of Jinhua, which were regions with higher levels of urbanization. On the other hand,
the landscape in the southern regions was mainly composed of mountains, and the population was
more scattered compared with in the north. The southern region also had a higher vegetation coverage,
lower emission of pollutants, and higher air humidity. Therefore, the pollutant concentration was
lower. Urban planning could directly impact the air quality of a city [40,41]. Without proper guidance
and management, rapid urban development will lead to environmental issues and health risks caused
by poor air quality. As shown in our study, the air quality can be improved with the following
measures: reduce the area of residence within 5000 m of the city center, increase the clustering of
lands with the same type of use, suitably increase the area of water bodies within 4000 m of the city
center, avoid intensive traffic that triggers the outbreak of pollutant emissions [42–44], and allow the
dispersion of air pollutants. Although we have proposed some suggestions for improving air quality,
there are some shortcomings in our research. Only 150 sites’ data over Zhejiang province was collected
to test the model in our study, the representation was limited, and the method was mainly linear,
without considered the nonlinear relation between factors. The prediction accuracy of the model still
has room for improvement. Although we have a certain understanding of the long-term changes of
particulate matter at regional scale, the process of short-term formation and dispersion of particulate
matter cannot be caught by the model due to the lack of daily changes.



Atmosphere 2018, 9, 47 9 of 12
Atmosphere 2018, 9, x FOR PEER REVIEW  9 of 12 

 

 
(a) (b)

(c) (d)

Figure 3. Pollutant concentration simulation by the four different methods: (a) ordinary kriging for 
LUR-based data mining; (b) LUR-based ordinary kriging; (c) ordinary kriging; (d) data-mining-based 
ordinary kriging. 

4. Conclusions 

The prediction accuracy of the model with the inclusion of the landscape pattern factors was 
greater than the model of without the inclusion of the landscape pattern factors. The latitude and 
5000_residential_CA were positively correlated to the PM2.5, however, the variables negatively 
correlated with the PM2.5 were the annual average relative humidity, 5000_CONTAG, and 
4000_waters_LPI. Over the lightly polluted region, the predicted value obtained by ordinary kriging 
for the LUR-based data mining was closest to the monitored value, and the RMSE was the lowest 
(3.512 μg/m3). 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: Histogram. 
Figure S2: Normal QQ diagram. Figure S3: Trend analysis: (a) rotational angle of 0°; (b) rotational angle of 90°. 
Figure S4: Semi-variogram: (a) south-north direction; (b) east-west direction. Figure S5: Predicted pollutant 
concentration and error distribution resulting from different application mechanisms: (a) applying model to 

Figure 3. Pollutant concentration simulation by the four different methods: (a) ordinary kriging for
LUR-based data mining; (b) LUR-based ordinary kriging; (c) ordinary kriging; (d) data-mining-based
ordinary kriging.

4. Conclusions

The prediction accuracy of the model with the inclusion of the landscape pattern factors was
greater than the model of without the inclusion of the landscape pattern factors. The latitude
and 5000_residential_CA were positively correlated to the PM2.5, however, the variables
negatively correlated with the PM2.5 were the annual average relative humidity, 5000_CONTAG,
and 4000_waters_LPI. Over the lightly polluted region, the predicted value obtained by ordinary
kriging for the LUR-based data mining was closest to the monitored value, and the RMSE was the
lowest (3.512 µg/m3).

Supplementary Materials: The following are available online at www.mdpi.com/2073-4433/9/2/47/s1,
Figure S1: Histogram. Figure S2: Normal QQ diagram. Figure S3: Trend analysis: (a) rotational angle of
0◦; (b) rotational angle of 90◦. Figure S4: Semi-variogram: (a) south-north direction; (b) east-west direction. Figure

www.mdpi.com/2073-4433/9/2/47/s1
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S5: Predicted pollutant concentration and error distribution resulting from different application mechanisms:
(a) applying model to surface fitting; (b) applying model to point fitting. Table S1: Fitting parameters of different
application mechanisms.
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