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Abstract: High temperatures have large impacts on premature mortality risks across the world,
and there is concern that warming temperatures associated with climate change, and in particular
larger-than-expected increases in the proportion of days with extremely high temperatures, may lead
to increasing mortality risks. Comparisons of heat-related mortality exposure-response functions
across different cities show that the effects of heat on mortality risk vary by latitude, with more
pronounced heat effects in more northerly climates. Evidence has also emerged in recent years of
trends over time in heat-related mortality, suggesting that in many locations, the risk per unit increase
in temperature has been declining. Here, I review the emerging literature on these trends, and draw
conclusions for studies that seek to project future impacts of heat on mortality. I also make reference
to the more general heat-mortality literature, including studies comparing effects across locations.
I conclude that climate change projection studies will need to take into account trends over time
(and possibly space) in the exposure response function for heat-related mortality. Several potential
methods are discussed.
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1. Introduction

This paper summarizes and discusses key findings on trends over time in the effects of temperature
on human mortality. While not intended to be a comprehensive review of the temperature–mortality
relationship literature, I start by briefly summarizing main findings from broad literature. I focus on
mortality, although there is also some evidence emerging from the morbidity literature on trends in
impacts [1].

The effect of temperature on mortality is the most extensively studied topic within the broad
domain of climate and health research, with a reference that covers a broad range of methodologies [2].
A limited number of studies have quantified deaths listed as heat-related on death certificates, most
often accumulating individual case reports from medical records [3]. However, heat-related deaths
identified by medical records tend to capture only cases with clear heat involvement, which represent
only a subset of all heat-related deaths [2]. A recent study found that less than 10% of excess heat-related
deaths were labeled as such on death certificates from 1997 to 2013 in New York City [4]. Another
type of epidemiology study quantifies excess mortality that occurs in a city or region during a clearly
identified heat wave event, as compared to during non heat-wave periods in the same locale. This
was for example the approach used by researchers to quantify the impacts of the 1995 Chicago
heat wave [5] and the 2003 Paris heat wave [6]. However, heat-related deaths also occur during
periods when not obvious heat waves happen, such as when occasional temperature spikes that occur
in most of summers. To more comprehensively quantify the overall burden of heat on mortality,
a third epidemiologic approach uses regression analysis of multi-year daily time series to quantify
exposure–response relationships linking temperature and mortality [7,8]. These latter studies usually
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include deaths due to all causes, or all causes minus “external” causes such as homicide and suicide,
and report substantial impacts in association with high temperatures. Studies that analyze the entire
distribution of temperatures also report that cold temperatures are associated with increased mortality
risk; however, the extent to which these deaths are caused by low temperature, as opposed to seasonal
respiratory infections that co-vary with temperature, has been questioned [9,10]. The specific impact of
winter temperature on mortality is a key area of uncertainty in projecting the health effects of climate
change. However, the present study only focuses on heat-related deaths.

Multi-city and age-stratified analyses have examined vulnerability factors that can explain
differences in heat-mortality effects between cities. Increased heat risk is associated with old or
young age, living alone, preexisting chronic diseases, poverty, and low prevalence of air conditioning
(A/C) [7,8,11]. Thus, to estimate the quantitative impact of future temperatures on mortality, we need
to understand not only how climate may change, but also how these vulnerability factors may evolve
in the future.

2. Spatial/Climatic Differences in Temperature Impacts

One very consistent finding from the time series literature is that the shape of the
exposure–response function (ERF) differs by latitude (i.e., prevailing climate) [7,8,12–14]. A classic
figure from an early study is reproduced in Figure 1, showing the ERFs from 11 U.S. cities [7]. Southern
cities show small or non-existent heat effects, but substantial cold effects. Conversely, northern cities
show less pronounced cold effects but larger heat effects. Additionally, the lowest point on the
curve (termed “minimum mortality temperature” (MMT)) tends to shift to higher temperatures
in southern, warmer cities. It is important to note that Figure 1 displays the raw relationship
between temperature and mortality, not controlled for seasons. As a result, the “cold” effect is
likely substantially overestimated.
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These findings support the concept that populations adapt to climate conditions typical in their
cities. This means the populations exhibit health responses mainly at temperatures that are extreme
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within the local context. Hondula and colleagues defined four classes of climate adaptation from the
following aspects: physiological (referred to as acclimatization), behavioral (e.g., avoidance; use of
A/C), infrastructural (e.g., white roofs and green infrastructures), and technological (e.g., heat warning
systems, and more efficient A/C) [15]. It seems likely that all of these factors play a role, with the
relative importance of each varying with settings, populations, and health outcomes of interest. Among
the studies that provide empirical evidence of differential temperature effects by location, Anderson
and Bell’s analysis of 107 U.S. cities from 1987 to 2000 [8] is noteworthy in analyzing factors that modify
temperature effects by location. Prevalence of A/C is one significant predictor of the differences across
cities in heat effects. Barreca and colleagues [16] also reported higher heat–mortality effects in cooler
climates, based on a nationwide, state-level analysis. Further insights into spatial differences in
exposure response as a function of local climate were provided by Lee and colleagues who analyzed
data from 148 U.S. cities from 1973 to 2006 [17]. Cities were grouped into 8 clusters based on weather
patterns. As shown below in Figure 2, heat and cold effects differed across clusters as a function
of temperature, with more pronounced cold effects—steeper slopes—in warmer clusters, and lower
thresholds for heat effects, but similar slopes, in cooler clusters. It would be tempting to use these
findings to develop empirical adaptation functions by relating parameters of the cluster-specific ERFs
to cluster-specific climate variables such as seasonal mean temperature. Further evidence supporting
the concept that populations adapt to local temperatures has been shown in an international study
across over 300 cities [13,14]. Guo and colleagues found that MMTs vary with the mean temperature
across countries in a surprisingly consistent way. Still, the authors noted that the exposure–response
relationship between climate indicators and temperature-related mortality is not a simple one, and
cautioned against using these relationships in a quantitative way to project future impacts.

At a finer spatial scale, one innovative study in France reported an analysis of heat-related
mortality within 30 × 30 km grids across the entire country [18]. This is the only example in the
literature to date where health and environmental data have been analyzed within a regular grid over
a region, rather than within administrative areas. Within each grid, non-linear exposure-response
functions were fit, and the MMTs computed. There was a strong correlation (0.90) between MMTs and
mean summer temperatures (MSTs) across grid squares. This suggests that another way to project
adaptation might be to model within-country associations between MMTs and MSTs in the current
climate, and then adjust future MMTs based on changing future MSTs.

The literature on geographical differences in temperature–mortality ERFs shows that effects
vary substantially depending on local climate, and imply that populations eventually adapt to local
conditions. They say nothing about the time course over which adaptation occurs. Still, it is tempting
to hypothesize based on these findings that future populations would also adapt to changing climatic
conditions, at least once a new steady state climate is achieved [19]. A key question is “what does
the pace of adaptation look like while climate is on a changing trajectory from historical conditions to
a future steady state?”.

One way to address this question is by looking at trends over time in temperature–mortality ERFs
in a given location as climate changes. However, detecting a climate change-induced adaptation signal
from these trends is problematic for several reasons. First, climate has warmed by only about 1 ◦C over
the past century, and health datasets often span only a fraction of this period; thus, the climate-driven
trend in adaption would be expected to be small within the observed record. Secondly, there may be
trends in other factors that, while not directly related to climate change, can have a profound impact
on heat-health effects. These include trends in urbanization, income, housing, the built environment,
indoor/outdoor activity patterns, access to healthcare, chronic disease prevalence, and others. One
such trend has been the rapid increase in A/C prevalence in the past 3–4 decades in the U.S. In the
following section, I examine the literature on temporal trends in temperature–mortality ERFs.
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Figure 2. From Lee et al., 2014 [17]. Temperature-mortality risk functions by US region. At (left) is
effect of temperature on mortality in January. At (right) is effect of temperature on mortality in July.
Between 8–36 cities are included in each region, with effects summarized using meta regression.

3. Studies of Trends over Time in Heat Impacts

In addition to the literature documenting geographical/climatological differences in
temperature–mortality ERFs, recently, there has been growing literature on temporal changes in
these effects. Recent review papers document a generally decreasing trend over time in heat-related
mortality ERFs, particularly in North America, with less consistent findings in Europe, and Asia [20–22].
Evidence shows that the quantitative effect of heat on mortality has been decreasing in most, but not
all, cities where studies have been carried out. The reasons for this decreasing risk have not been
clearly identified, but may include: enhanced heat-health awareness and prevention measures, general
improvements in population health, and technological changes such as increases in residential A/C
prevalence. There are virtually no mortality trend studies for low-income countries, nor for persons
who are exposed outdoors because of work, homelessness or recreational activities. Where examined,
there has been little evidence that cold effects on mortality have decreased over time [21].

One of the first studies to examine trends over time in heat-related mortality was carried out
by Davis and colleagues [23], which documented declining heat effects in 28 U.S. cities over the
years 1964–1998. More recently, Bobb and colleagues [24] analyzed data from 105 U.S. cities over
1987–2005 and reported more than a 60% drop in the mortality effect per 5.5 ◦C (10 ◦F) rise in same-day
temperature. The authors hypothesized that A/C may play a role in this trend, but they were unable to
show that rates of decline in health effects by city were related to differences in rates of A/C adoption.
Their inability to detect statistically significant A/C effects may have been due in part to the limitations
of available A/C data over time, as well as the lack of A/C data that are specific to population groups
most affected by high temperatures, such as the poor and elderly. The authors speculated that declines
over time in cardiovascular mortality rates may contribute to reduced heat vulnerability.

In contrast to the findings in [24], Barreca et al. [25] reported that A/C prevalence largely explains
temporal and spatial differences in heat effects on mortality in U.S. over the 20th century when
analyzing at the levels of state and month. This study, and related econometric work by Deschenes
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and colleagues [26,27] stands apart in methodology by using monthly or annual data aggregated at the
state level, rather than the daily time series, city-level approach used in the epidemiologic literature.
One advantage of the econometric approach is that, by analyzing data in monthly or annual segments,
it likely avoids biases in effect estimates due to short-term harvesting. It could also be argued that
annual statistics are more relevant to future climate impact projections, which are usually aggregated to
annual or decadal statistics. An interesting review of the advantages and limitations of the econometric
approach is provided in [27].

While focusing only on New York City, the work of Petkova and colleagues [28] is noteworthy
because it reported heat effects over multiple decades of the 20th century, from 1900 to 2006. They
reported a marked decrease in the ERF for heat-related mortality between the first five decades of the
20th century and the most recent four decades. In recent decades, the downward trend appeared to
slow somewhat, suggesting a leveling off of the ERF (See Figure 3).
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gap in mid-century. From Petkova et al., 2014 [28].

Nordio and colleagues [29] reported declines in heat-related mortality but no change in cold
related mortality, from 1962 to 2006 in 211 U.S. cities. This is the largest U.S. daily time series study in
both spatial and temporal coverages. Cities were divided into 8 climatological clusters, and analyzed
in six 7-year segments. Key results are summarized in Figure 4.

Astrom and colleagues [30] reported a decrease in heat effects in Stockholm over the 20th century,
and there was some evidence of a leveling off in recent decades. No change in cold effects was
observed. In a follow-up study, the same team reported a steady rise in the MMT over the century [31].
As noted above, the MMT may prove to be a useful metric to model changes over time and space in
temperature–mortality ERFs. In France, Todd and Valleron also reported a rise in MMTs over time
(1968–2009) as well as a strong dependence of the MMT on the MST [18]. (MMT and MST were
correlated at 0.9 in all periods cross sectional correlation analysis.) The rise in the MMT with time
corresponded to 0.44 ◦C per degree temporal rise in the MST. The cross-sectional increase in MMT was
0.76 ◦C per degree rise in MST. The ratio of these quantities (0.58) may offer one measure of the time
lag in adaptation due to warming temperatures, in a country where A/C is probably less of an issue
in general.
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Carson and colleagues analyzed weekly data from London over the 20th century, and found
little evidence for heat-related mortality declines, but this may be an artifact of their analysis method,
which analyzed data in weekly units, rather than daily data as usually used elsewhere [32]. In contrast,
cold-related mortality declined substantially over the 20th century in four discrete time windows.
An earlier study of trends in North Carolina, Southern Finland, and Southeastern England reported
declines in heat-related mortality in all three locations, including the latter two where A/C was not
prevalent [33]. This suggests economic and general health improvements may play a role in the
observed declining heat effects. In an internationally combined analysis of data from 272 cities across
seven countries from 1985 to 2009 [34], significant declines in heat-related mortality were seen in the
U.S., Japan and Spain; however, there was little evidence for declines seen in the UK and the other
countries, though the latter analyses were severely limited by statistical power. Declines in heat-related
mortality have also been observed in South Korea, Japan, Taiwan and Vienna, Austria [35–39], with
little or no change in cold-related mortality effects investigated. One outlier is a study in Shanghai,
China that found no decline in heat-related mortality but saw some evidence for decline of cold-related
mortality [40]. An examination of 20-year trends in heat-related mortality in nine European cities
found some declines and some increases, though interpretation of these findings is limited by the short
duration of study [41].

4. Interpretion of Temporal Trends in Temperature Effects

What factors are responsible for the declining ERF for heat-related mortality? While attribution to
specific factors remains elusive, studies have speculated that increasing wealth, enhanced heat-health
awareness and prevention measures, general improvements in population health, and housing
improvements all could play a role [22,23,32,33,42,43]. One leading explanation, at least in the U.S.,
is the increasing prevalence of A/C usage in recent decades. There is some empirical support for
a role of A/C as a modifier of effects, but a great deal of evidence is cross sectional. For example, A/C
prevalence can explain some of the city-to-city differences in effect estimates [7,8]. Longitudinally,
the evidence remains incomplete, with some studies reporting a strong role for A/C [25] and others
not [24]. It seems likely that the power to test for effect modification over time by A/C has been limited
by the coarse temporal scale of A/C survey data (e.g., decadal), and also by the problem of not having
A/C usage data that are specific to the vulnerable population subset (the ill, elderly and poor). While
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potentially effective as an adaptive measure, A/C has several important limitations, including capital
and energy cost, carbon- and pollution-generating energy demand, and potential for failure during
power outages [19].

A related question is the extent, to which heat adaptation trends are being driven by climate
warming itself. After analyzing this question, Christidis and colleagues [43] suggested that trends
in heat- and cold-related mortality have more to do with economic and cultural trends than with
adjustments to the changing climate. In addition, there has been considerable attention paid to
reducing heat-health risks by a range of public actors in the U.S. and Europe in the past two decades.
This view is supported by the fact that heat effects have declined quite rapidly over the past several
decades during a time when climate has warmed only slightly. This is not to say that climate warming
will not affect future adaptation trends, but rather that most of the trends observed to date are likely
driven by non-climate factors such as those noted above.

Hondula and colleagues provided a thoughtful review of the role of climate in spatial and
temporal trends in adaptation [15]. They reviewed ways in which adaptation has been modeled to
date in climate and health projection studies. An important caveat to keep in mind is that the ERF,
while declining, is only one component of future risk. Rising temperatures and ageing populations
could lead to increasing risks in the future [39,44].

5. Projecting Future Temperature Effects

In a great deal of the past literature projecting future mortality impacts of temperature in
a warming climate, no adaptation was assumed [45]. Given the mounting evidence for declines over
time in heat effects, ignoring “adaptation” trends likely yields overestimates of future heat impacts on
mortality. One simple and intuitive approach to incorporating adaptation is to apply ERFs derived
from currently hot cities (e.g., Atlanta, GA, USA) to represent the future ERF in currently cool cities
(e.g., New York City, NY, USA) that are projected to have hotter temperatures in the future [46]. This
has been termed the “analogue city” method. Some have noted that this approach could yield biases if
analogue cities differ from the index city in relevant social, economic, or demographic features that
affect risk [47]; however, these factors could be theoretically taken into account in a meta regression
context. Another limitation of the analogue city method is that it assumes that the ERF from the
analogue city is fixed in time, and not itself changing due to trends in other factors. A related method
uses ERFs derived from the hottest “analogue summers” in a given location to estimate future risk [48].
However, this method would only capture short-term acclimatization or inter-annual behavioral
adaptations. A recent study modeled adaptation based on the mortality risk on “heat wave days”
falling above the 99th percentile of temperature [49]. For future projections, a “no adaptation” scenario
used the threshold temperatures observed in the historical baseline period to define heat wave days
and associated mortality risk in the 2061–2080 period. An “on pace adaptation” scenario used the 99th
percentile temperatures for the future time period to define risk. An intermediate, “lagged adaptation”
scenario used 99th percentile temperatures for an intermediate time period (2023–2042) to define
heat wave days and risks in the 2061–2080 period. This latter approach incorporates the reasonable
assumption that it will take some time for adaptation to occur in a rapidly warming climate.

A few projection studies have made adjustments to the heat slope or MMT of the ERF to represent
future conditions [50–52]. While in most cases, these adjustments have been made arbitrarily, a more
empirical approach was recently reported by Petkova and colleagues, where the ERF in NYC was
projected into future, unobserved decades by fitting and extrapolating a non-linear function to the
historical trend in effects [53]. Mills and colleagues are the only authors who incorporated both heat
and cold adaptation. This is important because even though time trend studies generally do not
show measureable changes in cold-related mortality impacts, cross sectional studies show marked
differences in the cold ERF depending on the local climate.

How do future mortality projections change when the adaptation assumptions are incorporated?
Knowlton et al. provided a useful illustration in [46]. There, heat-related mortality impacts in the 2050s,
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as compared with those in the 1990s, were modeled with and without an analogue city adjustment
to the ERF. Without adaptation, the observed ERF from a time series analysis in NYC was used in
both the baseline and future impact assessment. To model adaptation, the ERFs from two analogue
cities—Washington DC and Atlanta GA—were averaged. Both cities had current MST within 1 ◦F of
that projected for NYC in the 2050s. Future impacts were reduced by between 28% and 34% depending
on the scenario. Other studies using a range of methods have reported a reduction by between 20%
and 80% in future impacts under various adaptation assumptions [50,52,53]. A recent comprehensive
analysis in 14 European cities applied six different adaptation assumptions for future projections,
and concluded that uncertainties related to adaptation were generally larger than those related to
climate models and emission scenarios [54].

While available evidence from high-income countries shows that heat effects have been trending
downward in recent decades, data gaps and demographic trends add considerable uncertainty to
future projections. We have no trend studies in low-income countries, where the epidemiological
transition towards increasing chronic disease prevalence, as well as rapid urbanization, may place
more people at risk. Additionally, technology-based heat-adaptation measures, such as A/C, may
be largely unavailable in low-income settings. We also lack studies of agricultural and construction
workers, the homeless, youth athletes and others exposed while engaged in intense physical exertion
outdoors [20]. Of particular note is the emerging worldwide epidemic of chronic kidney disease
among agricultural workers, which is thought to be partly related to high temperature exposures [55].
In addition, ageing is likely to worsen heat-health risks in the future. Populations are ageing rapidly
worldwide, particularly in wealthy countries, and this could lead to increased heat-related mortality
risk in the future [56].

6. Summary and Implications

The above review allows us to draw several broad conclusions. Across space, temperature–mortality
ERFs for both heat and cold effects differ substantially in ways that appear to depend strongly on
prevailing temperatures. In relatively cool climates, the MMT is shifted to the left on the temperature
axis, with a shallow cold slope and steep hot slope. In relatively warm climates, the MMT is shifted
to the right (higher temperatures), with a steep cold slope and a shallow hot slope. Over time, there is
strong evidence that MMTs are rising and that hot slopes are declining, with the particular finding being
somewhat dependent on the analytical methods used in individual studies, which are not standardized.
There is relatively little evidence for changes in cold slopes over time, in contrast to the cross sectional
evidence noted above. Projections of future heat-related mortality that do not take adaptation into account
very likely overestimate future heat impacts.

What information can we draw from the current literature to guide future mortality projection
studies? There are several possible approaches. As a simple way to incorporate uncertainty regarding
adaptation trends, future projections could incorporate sensitivity analyses that apply adjustments to
the hot slope ranging from −20% to −80%, a range that is supported by the literature. However, such
adjustments would remain somewhat arbitrary, and also would not explicitly take elapsed time into
account, which ought to matter in projecting risks of the future.

Alternatively, one could apply a simple time-dependence adjustment by drawing quantitative
information on trends in heat slopes based on longitudinal studies such as in [28,29]. The average
decadal decline in the heat slope in Petkova’s analysis of the past four decades in NYC was about
31% [28]. Nordio’s analysis over five decades nationally suggested a decadal decline of about 45% on
average per decade [29]. Thus, a range of between 30% and 45% decline in the heat ERF per decade
could be applied to projections over the next several decades. This approach has the appeal that it is
tied to empirical evidence for trends over time. Additional data to support this approach are available
from the supplemental materials provided by Nordio et al., where ERFs by cluster and time period are
given, along with corresponding climate data. A recent study applied this approach to project future
mortality across the U.S. in a changing climate [57].
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Another adaptation model that would be supported by the literature is to adjust the MMT
upwards as a function of MST, either keeping the hot slope constant or allowing it to be reduced with
rising temperatures. Todd and Valleron [18] provided quantitative backing for this approach in France,
although A/C is not yet prevalent in this country. [Their study suggests that the temporal change in
MMT vs. MST is about 60% of the magnitude of the spatial change in MMT vs. MST, which hints at
the pace of adaptation in a changing climate; in other words, we observe about a 60% adjustment to
new climate conditions compared to the observed cross sectional differences.] These findings warrant
replication using other national datasets. Heat wave-based mortality models are also amenable to
simple adaptation adjustments, as in [49].

More generally, international datasets that include mortality and temperature data observed over
multiple decades and locations could be further analyzed to better quantify spatial and temporal
patterns in heat-related ERF parameters [57], perhaps using simple parameterizations that include
a hot slope and a threshold as in [17]. Cold effects could be similarly modeled. The parameters of
city-specific fits could then be analyzed in second stage models that relate them to both time per se,
and to spatial and temporal differences in mean temperatures.

Finally, it is important to emphasize that this review has focused on trends in heat-related mortality
analyzed at the city scale using administrative data in high-income countries, because that is where
the literature has focused until now. While these data are of high relevance to public health planning
in the context of a changing climate, they miss important aspects of the problem, which should be
a priority for research moving forward. In particular, there is an urgent need for studies focusing on
low-income countries, and on vulnerable population subgroups such as agricultural and other outdoor
workers [20], for whom adaptation options will be much more limited. New study designs and data
sources could also help advance the science of heat adaptation, taking advantages of new health and
exposure sensors, citizen science, GIS, and big data.
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