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Abstract: The aim of the study was to characterise the occurrence of hot days and heat waves in
Poznań in the 1966–2015 period, as well as to describe the thermal conditions in the city during
selected heat waves between 2008 and 2015. The basis of the study was the daily maximum and
minimum air temperature values for Poznań–Ławica station from 1966–2015 and the daily values
of air temperature from eight measuring points located in the city in various land types from 2008
to 2015. A hot day was defined as a day with Tmax above the 95th annual percentile (from 1966
to 2015), while a heat wave was assumed to be at least five consecutive hot days. The research study
conducted shows the increase of Tmax, number of hot days and frequency of heat waves in Poznań
over the last 50 years. Across the area of the city (differentiation of urban area types according to
Urban Atlas 2012), there was a great diversity of thermal conditions during the heat waves analysed.

Keywords: air temperature; hot days; heat waves; climate change; city; urban area types;
Poznań; Poland

1. Introduction

Today’s climate warming is unmistakable and visible, among other manifestations, in the
increase in global average air temperature [1]. The consequence of the aforementioned changes is the
increasingly frequent occurrence of hot days and heat waves [2–6]. The waves of 2003, 2006, 2010 and
2015 are to be highlighted amongst the recent extreme heat waves of Poland and Europe. In the future,
an increase in the frequency of heat waves and their duration is expected, which will be a consequence
of the increase in air temperature [7,8]. It is estimated that in the Poland of 2071–2100, the increase in
air temperature in the summer may reach 2.9 ◦C for the average maximum air temperature and 3.4 ◦C
for the average minimum air temperature [9].

Urban areas are particularly vulnerable to prolonged and intense heat waves [10], which is
a consequence of the transformation of the environment. The small proportion of natural vegetation,
numerous vertical surfaces and human activity causes significant heat in the city during the day,
which is then released into the atmosphere, causing it to cool down more slowly than the surrounding
areas [11]. The above factors make bioclimatic conditions more burdensome in the city than in
non-urban areas. As Gabriel and Endlicher’s [12] studies in Brandenburg and Berlin show, the effects
of heat are more pronounced in highly urbanised area. Numerous studies have shown an increase in
the number of deaths during heat waves in large cities, including in Warsaw [13], Munich [14] and
Paris [15].

In urban climate studies since the end of the 20th century, more and more investigations have
been based on remote sensing data. For example, Landsat 5 TM was used by Kawashima et al. [16]
to analyse relations between surface temperature and air temperature in the central part of Japan.
Voogt and Oke [17] emphasised that the urban heat island observed from thermal remote sensing data
is the surface urban heat island (SUHI).
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An attempt at air temperature retrieval from Moderate Resolution Imaging Spectroradiometer
(MODIS) data was made by Sun et al. [18] for the North China Plane. Taking into consideration land
cover categories, vegetation cover, and building density Dobrovolny [19] studied the SUHI in Brno
(Czech Republic). Some indicators obtained from remote sensing data were used by Schwarz et al. [20]
to analyse differences between urban and agricultural areas. Ptak et al. [21] applied Lansat thermal
images in an analysis of lake surface temperature in Poland. In the present study the temperature field
on the area of Poznań city was characterised by using Landsat 5 and 8 TM remote sensing data.

Due to the great risk to human health and life associated with the occurrence of heat waves,
particularly in highly urbanised areas, the research results presented may be useful for a wide and
diverse group of readers. The implementation of this research study is well founded, especially in the
face of UN projections [22] of the increase in the number of people living in cities. With this information
in mind, the purpose of the article was to:

• define multiannual changes in the occurrence of hot days and heat waves in Poznań in the
years 1966–2015;

• characterise thermal conditions in the city during selected heat waves in the years 2008–2015.

2. Research Area, Data and Methods

Poznań is located in western Poland in the area of the Wielkopolska Lakeland. The city’s area is
262 km2 and the population is 545,700 people. Over 58% of the city area is above 80 m a.s.l.; 7% is in
the floodplain of the Warta River Valley, and the rest (35%) in upper river terrains. Within the limits of
Poznań, there are natural and artificial lakes covering a total of 1.9% of the city area. Developed and
urbanised land constitutes 44.6% of the city’s area (of which about 28.6% is residential areas, 30.3% of
communication and 9.1% of industrial areas), while forested and wooded land constitutes 15.3% [23].

Poznań is located in a temperate transition zone between the sea and the continental climate.
The average annual air temperature is 8.3 ◦C. On average, the coldest month is January with an average
temperature of−1.6 ◦C, and the warmest is July with an average of 18.1 ◦C. The average annual rainfall
is 517 mm, with the lowest observed in February (26 mm) and the highest in July (75 mm). Over the
year, winds from the western sector (SW, W, NW) dominate the study area and about 5% of the day
is calm. The average wind speed is 4.1 m/s and it ranges from 3.5 m/s in August to 4.8 m/s in
March [24].

This article has used daily values of the maximum (Tmax) and minimum (Tmin) air temperature for
the station in Poznań (Poznań–Ławica) from 1966 to 2015. The data were obtained from the records of
the Institute of Meteorology and Water Management–National Research Institute (IMGW). In addition,
daily air temperature data for the years 2008–2015 were used from eight measuring points located in
the Poznań area on various types of land (Table 1, Figure 1). The analysis excluded the year 2012 due
to the lack of complete data for all the measuring points. Data were obtained from the Department of
Climatology of Adam Mickiewicz University in Poznań. The air temperature is measured 2 m above
ground level with HOBO U23-001 recorders with 30-min resolution and 0.2 ◦C accuracy.

Table 1. Location and characteristics of measuring points in Poznań.

Location Latitude [N] Longitude [E]
Distance from the City

Center–Piekary
(km)/Direction

Land Cover

1. Piekary 52◦24′19.96′ ′ 16◦55′39.60′ ′ 0.0/- Industrial, commercial, public,
military and private units

2. Collegium Minus 52◦24′31.13′ ′ 16◦54′53.22′ ′ 0.9/W Industrial, commercial, public,
military and private units

3. Słoneczna 52◦23′40.27′ ′ 16◦52′29.69′ ′ 3.9/W Green urban areas

4. Rusa 52◦23′29.65′ ′ 16◦59′0.75′ ′ 4.0/SE Discontinuous Dense Urban
Fabric

5. Dębina 52◦21′19.88′ ′ 16◦54′46.14′ ′ 5.7/S Green urban areas
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Table 1. Cont.

Location Latitude [N] Longitude [E]
Distance from the City

Center–Piekary
(km)/Direction

Land Cover

6. Ławica 52◦24′59.46′ ′ 16◦50′4.71′ ′ 6.9/W Airports

7. Collegium
Geographicum 52◦27′46.80′ ′ 16◦56′28.92′ ′ 6.7/N Industrial, commercial, public,

military and private units

8. Strzeszyn 52◦27′15.14′ ′ 16◦50′50.79′ ′ 7.7/NW Discontinuous Dense
Urban Fabric

9. Świerczewo 52◦22′11.90′ ′ 16◦53′56.11′ ′ 4.5/S Continuous urban fabric
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number of days in the multiannual period were determined by Sen’s non-parametric method. Sen’s 
method adopts a linear trend model, f (t) = Qt + B, where Q is an estimator of the linear regression 
coefficient (trend strength); B is a free term. The calculations were done using the MAKSESENS 1.0 
application (freeware) developed by researchers from the Finnish Meteorological Institute [29]. 

Moreover, with the threshold values from Poznań–Ławica station, hot days and heat waves were 
distinguished at every measuring point in the city. 

Thus, to characterise the thermal conditions in the city accurately, two satellite images were 
used, i.e., the image recorded by the LANDSAT-5 TM satellite on 12 July 2010 at. 9:34 UTC and 
LANDSAT-8 OLI/TRIS on 11 August 2015 at 9:34 UTC. Both days were characterised by the heat 
wave occurrence. In addition, on 12 July 2010, there was clear and calm weather with a clearly marked 
thermal diversification of the urban surface; 11 August 2015 was thus characterised by the passage of 
warm weather front and less spatial thermal diversification of the city. 

The image processing involved the data processing procedure described in detail by Sobrino 
and Raissouni [30], Jiménez-Muñoz and Sobrino [31], Walawender [32] and Majkowska et al. [33], 
including separate patterns for LANDSAT-5 TM and LANDSAT-8 OLI/TRIS images. The 
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Based on the data from the Poznań–Ławica station, the average Tmax for each summer season
(June–August) was calculated and the hot days and heat waves were differentiated. A hot day was
defined as a day with Tmax above the 95th annual percentile (from 1966–2015), and a heat wave was
assumed to be at least five consecutive hot days. The aforementioned assumption was based on the
definition of an extreme weather event included in IPCC reports [1], according to which a weather
phenomenon is so rare within the particular area that it lies within the range of 10th or 90th percentile
of an observed probability density function or rarer. It is hence defined as an extreme weather event.
The value of the 95th percentile of the air temperature was often used in previous studies on the
occurrence of heat waves [25–28].

The next step was to examine changes in the above characteristics in the years 1966–2015 and
determine their statistical significance. To this end, the non-parametric Mann–Kendall test was used to
detect the trend in the time series. The strength of trends in temperature characteristics and the number
of days in the multiannual period were determined by Sen’s non-parametric method. Sen’s method
adopts a linear trend model, f (t) = Qt + B, where Q is an estimator of the linear regression coefficient
(trend strength); B is a free term. The calculations were done using the MAKSESENS 1.0 application
(freeware) developed by researchers from the Finnish Meteorological Institute [29].

Moreover, with the threshold values from Poznań–Ławica station, hot days and heat waves were
distinguished at every measuring point in the city.

Thus, to characterise the thermal conditions in the city accurately, two satellite images were
used, i.e., the image recorded by the LANDSAT-5 TM satellite on 12 July 2010 at 9:34 UTC and
LANDSAT-8 OLI/TRIS on 11 August 2015 at 9:34 UTC. Both days were characterised by the heat
wave occurrence. In addition, on 12 July 2010, there was clear and calm weather with a clearly marked



Atmosphere 2018, 9, 11 4 of 15

thermal diversification of the urban surface; 11 August 2015 was thus characterised by the passage of
warm weather front and less spatial thermal diversification of the city.

The image processing involved the data processing procedure described in detail by Sobrino and
Raissouni [30], Jiménez-Muñoz and Sobrino [31], Walawender [32] and Majkowska et al. [33], including
separate patterns for LANDSAT-5 TM and LANDSAT-8 OLI/TRIS images. The aforementioned
procedure consisted of the following steps:

1. conversion of the values measured by the satellite sensor (in the thermal channel) for each pixel
to the energy radiation value;

2. conversion of radiation values to radiation temperature using Planck’s law;
3. calculation of the land surface temperature under the Stefan–Boltzmann law, taking into account

the differentiation of the emissivity of different surfaces;
4. conversion of the land surface temperature (LST) to the air temperature at 2 m above the surface

layer (Tasl) using a linear regression model. This model is used to estimate the air temperature
(Tasl) value when the LST value is known:

Tasl = a × LST + b.

a, b—linear regression coefficient.

Maps of the air temperature distribution were then constructed for the area analysed for the days
and the air temperature course analysed along the designated profiles on 12 July 2010. This day was
chosen because of the large variation in air temperature in the city area and the apparent impact of
land development on the thermal conditions. Daily sea level pressure (SLP), heights of isobaric surface
500 hPa (z500 hPa) and temperatures on isobaric surface 850 hPa (T850) were used to characterise
the weather conditions. The data were obtained from the collection of the National Centre for
Environmental Prediction/National Centre for Atmospheric Research (NCEP/NCAR) Reanalysis [34],
which are available at the Climate Research Unit resources. Based on the aforementioned data,
the maps of SLP, z500 hPa and SLP, z500 hPa and T850 anomalies maps were plotted for the analysed
days. In addition, weather maps and comments from the Daily Meteorological Bulletin from IMGW
resources were used.

What is more, the Urban Atlas 2012 [35] database for Poland was used. For each type of land use,
the average values of LST and their median, first and third quartiles as well as outliers and ranges
were calculated. The aforementioned data was used to evaluate the impact of land use on the thermal
conditions in the city during the hot days analysed. The following were used in the research: ESRI
ArcGiS Desktop 10.5 software with Spatial Analyst, Quantum GIS 2.8 and R software (R Core Team,
Vienna, Austria, 2015) and its packages: “raster” [36] and “rgdal” [37] dedicated to the spatial analysis.

3. Results

3.1. Tmax in the Summer Season in the Years 1966–2015 (Poznań–Ławica)

The average summer season (June–August) Tmax in the years 1966–2015 was 23.6 ◦C and ranged
from 20.8 ◦C (1980) to 26.8 ◦C (1992) (Figure 2). The standard deviation for the given multiannual
period was 1.4 ◦C. A statistically significant (p < 0.05) increase in Tmax was observed in the period
analysed, which was 0.35 ◦C per 10 years. The aforementioned increase was significantly influenced
by Tmax changes at the beginning of the 21st century, when its value in almost all summer seasons was
higher than the average for the 1966–2015 period (Figure 2). In the 1966–2000 period, during 19 of the
35 summer seasons, the Tmax mean was lower than the mean from the multiannual period.
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3.2. Hot Days and Heat Waves in the Years 1966–2015 (Poznań–Ławica)

Hot days (i.e., days above the 95th annual percentile—>27.8 ◦C) in Poznań occurred on average
18 times a year. In individual seasons, the number varied from two days (1980) to as many as
37 days (2006), and the standard deviation was 9.1 days (Figure 3). In the period analysed, there was
a statistically significant (p < 0.05) increase in the number of hot days (2.9 days/10 years). Days with
Tmax > 27.8 ◦C were observed from April to October, although the largest number were reported in
July and August, representing 39.8% and 31.3% of all hot days, respectively. In total, there were seven
days in April and only one day in October.
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In the analysed multiannual period, there were 42 heat waves in total, which lasted 310 days
(Table 2). Five- and six-day waves were the most common and accounted for, respectively, 34.9% and
20.9% of all heat waves. The longest heat wave was recorded in 1994, which lasted 18 days (from 21 July
to 7 August). Long heat waves were observed in 2015 (16 days, from 2 to 17 August), 2006 (14 days,
from 18 to 31 July), 1969 and 1971 (12 days—27 July to 3 August and 24 July to 4 August, respectively).
The average heat wave length in the multiannual period analysed was 7.4 days, while in the individual
years it ranged from six (1996–2005) to 8.8 days (2006–2015). Heat waves occurred between May and
August, although most of them (as much as 56%) occurred in July. The earliest recorded heat wave in
1979 was from 31 May to 7 June, while the latest one in 1997 occurred from 22 to 27 August.

Table 2. Characteristics of heat waves in 1966–2015 in Poznań–Ławica.

Years Number of
Heat Waves

Total Duration of
Heat Waves (Days)

Average
Length (Days)

Average Tmax
(◦C)

Average Tmin
(◦C)

1966–1975 6 51 8.5 30.7 16.8
1976–1985 9 57 6.3 30.1 16.2
1986–1995 9 63 7.0 30.6 15.0
1996–2005 7 42 6.0 29.9 14.5
2006–2015 11 97 8.8 31.2 17.7

1966–2015 42 310 7.4 30.5 16.2
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The mean Tmax during the heat waves analysed was 30.5 ◦C, while Tmin was 16.2 ◦C (Table 2).
The highest mean Tmax was found during the heat wave of 1992 (6–11 August), which was
33.9 ◦C, while the lowest average Tmax value, which was 28.9 ◦C, was seen in 1992 (24–28 July),
1997 (22–27 August) and 2001 (26–30 July). During the longest heat wave, i.e., that lasting from 21 July
to 7 August, 1994, the average Tmax was 32.1 ◦C, while the average Tmin was 16.1 ◦C.

3.3. Tmax, Hot Days and Heat Waves in the City Area in 2008–2015

In 2008–2015, the average Tmax in the city area was 23.8 ◦C and changed from 22.3 ◦C in Collegium
Geographicum to 25.1 ◦C in Piekary. At all points, the coldest season was recorded in 2009. The average
Tmax then changed from 21.6 ◦C in the Collegium Geographicum to 24.3 ◦C in Piekary (Figure 4).
Also, at the two points (Collegium Geographicum and Słoneczna), the same average Tmax as in the
summer of 2009 was recorded in the 2014 season. On the other hand, at most points, the highest mean
Tmax in the summer occurred in 2015 and ranged from 21.9 ◦C at the Collegium Geographicum up to
25.8 ◦C in Strzeszyn and Piekary.
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In the studied years, the total number of hot days in the city ranged from 131 days at Słoneczna to
197 days in Collegium Minus and Piekary. Apart from two points (Dębina and Piekary), the least hot
days were recorded in the coldest season (summer 2009) and their number ranged from 11 days at
Słoneczna to 25 days in Collegium Minus and Piekary (Figure 4). In turn, the hottest days occurred in
2015, and their number changed from 29 days at Słoneczna to 35 days in Collegium Minus, Dębina
and Ławica.

A total of 10 heat waves were recorded in the city, of which five heat waves occurred at every
measuring point. These were the waves from 2010 (8–17 July), 2014 (4–9 July, 15–23 July, 26–30 July
and 2015 (2–18 August). The start and end dates of these waves (except for the wave from 2015)
were similar throughout the entire city. In turn, three heat waves occurred in the city area, but they
were not recorded in the Poznań–Ławica station. These were the waves of 2008 (30 May–3 June),
2009 (29 June–4 July) and 2011 (3–8 June). Across the city, the longest heat wave was recorded in
August 2015. The length of this wave ranged from 10 days (6–15 August) at Słoneczna to 17 days
(2–18 August) in Dębina and Collegium Minus.
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3.4. Heat Waves of 2010 and 2015

3.4.1. Tmax in the Heat Waves

The heatwave lasted from 8–17 July 2010. On 8 July, it started in Collegium Minus and Piekary,
while for the rest of the area it was on 9 July. Mean Tmax during the wave ranged from 32.5 ◦C in
Collegium Geographicum and Ławica to 33.7 ◦C in Dębina. At most points, the highest Tmax was
found on 12 July and fluctuated from 33.1 ◦C at Słoneczna to 35.4 ◦C in Collegium Minus (Figure 5a).
During the heat wave there was a marked cooling on 14 July, caused by the passage of a warm weather
front. Then Tmax changed from 30.1 ◦C at Słoneczna to 32.9 ◦C in Collegium Minus.

In 2015, the start and end of the heatwave varied across the city. At six points, it began on
2 August, while at three points it only started on 6 August. The end of the heat wave was recorded
between 15 and 18 August. The mean Tmax during the wave ranged from 31.9 ◦C in Ławica to 32.8 ◦C
in Dębina. At all points the highest Tmax was recorded on August 8th, which ranged from 36.8 ◦C at
Słoneczna to 38.3 ◦C in Świerczewo (Figure 5b).
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3.4.2. Daily Air Temperature on 12 July 2010 and 15 August 2015

On 12 July 2010, the course of daily air temperature was found to be similar at all measuring
points. The lowest air temperature was observed at 2–3:30 UTC, while the highest temperature was
found at 13–15 UTC (Figure 6a). During the day, the air temperature differences between the individual
measuring points were lower than at night. In the hours before noon, the range of air temperature
fluctuations was less than 2 ◦C (minimum 1.7 ◦C at 10:30 UTC), while in the night and early morning
they exceeded 5 ◦C (maximum 5.2 ◦C at 1:00 UTC). On the aforementioned day the lowest daily
amplitude of the air temperature was found at Słoneczna (10.6 ◦C), while the highest was at Dębina
(16.8 ◦C).

On 11 August 2015, the course of the daily air temperature was similar in all measuring points.
The lowest air temperature was observed at 4–4:30 UTC, while the highest temperature was found
at 13–15:30 UTC (Figure 6b). During the day, the air temperature differences between the individual
measuring points were significantly lower than at night. The smallest differences (about 1.5 ◦C)
occurred in the morning (6:30 UTC) and the afternoon (16:00 UTC), while the largest were in the
evening and night hours with a maximum at 21:00 UTC (4.8 ◦C). On the day analysed, the lowest daily



Atmosphere 2018, 9, 11 8 of 15

amplitude of air temperature was observed at Słoneczna (12.5 ◦C), while the largest were in Dębina
and Collegium Geographicum (16.3 ◦C and 16.2 ◦C, respectively).
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3.4.3. Air Temperature and Land Use

To obtain the air temperature on 2 m high above land surface (Tasl) conversion of the land surface
temperature (LST) using a linear regression model for two, taking into consideration the days used.
The regression equations for 12 July 2010 (1) and 11 August 2015 (2) are:

Tasl = 0.20234 × LST + 24.22906 (1)

Tasl = 0.3278714 × LST + 11.68150. (2)

The coefficient of determination (R2) was 0.65 (for probability level p = 0.008467) and 0.68 (for
probability level p = 0.01112), respectively, for the first and second day. It should be emphasised
that the regression models used are only an attempt to quantify the dependencies (Tasl and LST)
according to the limited possibilities of their verification, due to difficulties in obtaining the subsequent
observations (a limited number of satellite images).

On 12 July 2010 at 9:34 UTC there was a significant diversification of the thermal conditions in
the surveyed area (Figure 7a). The spatial distribution of air temperature clearly showed the impact
of land development and use. The lowest mean air temperature was 29.8 ◦C over water bodies, and
the highest 32.6 ◦C, within the industrial and commercial, public, military and private unit areas
(Figure 8a). Among the warmest areas in the city were those with continuous urban fabric, industrial
and commercial, public, military and private unit areas, fast transit roads and associated land, other
roads and associated land, while among the coldest areas were water bodies, herbaceous vegetation
associations and forests (Figure 8a).
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Figure 8. Statistic of air temperature in Poznań ((a)—12 July 2010, (b)—11 August 2015) on the basis
of Landsat images according to Urban Atlas 2012 types (colours and order of types according to
legend in Figure 1). In the boxplot, the middle values denote medians; the box extends to the Q1
(first quartile) and Q3 (third quartile), while the whiskers show the range (99.3%). The upper whisker
shows Q3 + 1.5 × IQR (the interquartile range) and the lower shows Q1 − 1.5 × IQR. The notches
extend to +/−1.58 IQR/sqrt(n) and the dots represent outliers.
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On 11 August 2015 at 9:34 UTC, there was less variation in air temperature than on 12 July 2010
(Figure 7b). The impact of land development and use on the thermal conditions was significantly
weaker. The lowest mean value of air temperature was 29.7 ◦C over water bodies and the highest,
31.2 ◦C, in continuous urban fabric, airports and mineral extraction and dump sites (Figure 8b).

The effect of land use on thermal conditions is evident in the air temperature profile from the
northwest of the city to the southeast (about 22 km) (Figure 9). Along the profile, the air temperature
varied from 28.9 ◦C to 33.2 ◦C. The coldest areas were recorded in the northwestern part of the city, i.e.,
in the western green wedge area, where Kierskie Lake is situated; then there is a systematic increase in
air temperature with a maximum in the city centre (>32.0 ◦C), where a slightly colder area of the Warta
River is also noted.
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A significant decrease in the air temperature is observed in forest areas in the eastern part of
Poznań, forming the eastern green wedge. In turn, along the profile made along the north–south line
(about 19 km length), the air temperature changed from 29.6 ◦C to 33.7 ◦C (Figure 9). The coldest areas
were found in the northern part of the city, where farmland dominates. A significant increase in air
temperature (>32.0 ◦C) was found in areas with low-density, compact urban development occurring in
the Naramowice, Winogrady, Stare Miasto and Wilda housing estates. A clear drop in air temperature
was recorded in the Warta River Valley.

3.4.4. Atmospheric Circulation on 12 July 2010 and 11 August 2015

The analysis showed the different effects of land development on the thermal conditions in the
city on selected days; the weather situation in Poland occurring on these days was therefore analysed.
On 12 July 2010, Poland was within the weak-gradient high-pressure system, while on 11 August 2015
it was within the reach of the trough of low pressure (Figure 10). Both pressure situations provided an
influx of warm air masses from the east and southeast sector. Recorded anomalies indicate the presence
of warm air masses, whose temperature was higher by more than 8 ◦C than average in the summer.
The 500 hPa isobaric surface on both days over central Poland settled over 140 m higher than average
during the summer season. On 11 August, a warm weather front moved from the south to the north
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of the country, providing the exchange of air masses over the area. Advection of tropical air masses
took place after the weather front (Figure 11). The different thermal conditions in the city during the
two selected days were due to the differentiation of atmospheric circulation. On 12 July 2010, the air
over the city was additionally warmed up by settling for longer over the urban area with anticyclonic
weather. In turn, the passage of the weather front on the second of the days analysed resulted in
significantly lower temperature values.
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4. Discussion

The research showed the Tmax increase in the summer season in Poznań over the last 50 years.
The results are consistent with previous studies conducted in Poznań [27,38] and other Polish cities [27,39],
as well as in the rest of Europe [38,40,41].

The observed increase in Tmax translated into an increase in the number of hot days and heat waves.
Of the exceptionally hot summer seasons in Poznań, one should especially mention the summers
of 1992, 1994, 2006 and 2015. Similar results were also obtained in other regions of Poland [42–44].
As Sulikowska et al. [27] have shown, the summer of 2015 was exceptionally hot in Poland, especially
in the southwest of the country.

In the city districts, there was a great diversification of thermal conditions during the summer
season and during the analysed heat waves. The highest air temperature was recorded in heavily
transformed areas, i.e., in the developed city centre or industrial and commercial and public
areas, while natural areas such as forests and areas near water bodies were characterised by the
lowest air temperature. On this basis, within the city, one may distinguish areas with favourable
biometeorological conditions during heat waves, such as green wedges, where the air temperature was
significantly lower than in the centre and the air temperature differences were several degrees. A similar
distribution of areas with highest and lowest temperatures was determined by Majkowska et al. [33]
by analysing the urban heat island in Poznań, and Walawender [32], who analysed the urban heat
island in Kraków based on satellite images.

In the course of daily air temperature in Poznań, the greater difference between the individual
measuring points in the early hours, which gradually decreased during the day, was clearly visible.
These differences are due to numerous shadowing effects of urban space and slower heating of
the artificial surfaces [11,45–47] and faster cooling of natural areas, especially in clear and windless
weather [11].

The research conducted using satellite images showed different variations in air temperature
in the city area on the days analysed. On the first day, the average air temperature differences in
the studied area were 2.8 ◦C, while on the second day they were smaller and amounted to 1.5 ◦C.
On the second day, there was also less variation in air temperature within the various types of land
use. No significant impact of the city’s development on thermal conditions on 11 August 2015 was
caused by the exchange of air masses.

This situation was a consequence of the passage of a weather front, while on 12 July 2010 the
anticyclonic weather caused tropical air to hold for a few days. When stable pressure systems hold
for a longer time, this leads to intensification of thermal conditions in highly transformed areas,
which results in deterioration of biometeorological conditions and poses risks to human health and life.
This highlights the significant role of atmospheric circulation in shaping weather conditions that can be
modified by local factors. Similar results were obtained by Półrolniczak et al. [48], who demonstrated
that the greatest intensity of the urban heat island is at night, especially during anti-cyclone circulation.

5. Conclusions

The results of the research conducted thus show how diverse thermal conditions occur in the city
and how in particular types of land use they may be compared to those recorded at the meteorological
station representing the mesoclimatic conditions (Poznań–Ławica). As the article has demonstrated,
this diversity may result from the dissimilarity of a given part of the city due to the type of land
development, but also it may result from meteorological conditions, i.e., barometric situation and
the passage of atmospheric fronts, as well as advection or settling of the same air mass for a long
time. The correct recognition of dependencies governing the occurrence of extreme phenomena in the
city, such as heat waves, will hence translate into the possibility of more accurate forecasting of this
phenomenon, which may consequently have a considerable social dimension.
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23. Główny Urząd Statystyczny. Rocznik Statystyczny Rzeczypospolitej Polskiej 2015. Available online:
https://stat.gov.pl/obszary-tematyczne/roczniki-statystyczne/roczniki-statystyczne/rocznik-
statystyczny-rzeczypospolitej-polskiej-2015,2,10.html (accessed on 5 November 2017).
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