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Abstract: A generally accepted value for the Radiation Amplification Factor (RAF), with respect to
the erythemal action spectrum for sunburn of human skin, is −1.1, indicating that a 1.0% increase
in stratospheric ozone leads to a 1.1% decrease in the biologically damaging UV radiation in the
erythemal action spectrum reaching the Earth. The RAF is used to quantify the non-linear change
in the biologically damaging UV radiation in the erythemal action spectrum as a function of total
column ozone (O3). Spectrophotometer measurements recorded at ten US monitoring sites were
used in this analysis, and over 71,000 total UVR measurement scans of the sky were collected at
those 10 sites between 1998 and 2000 to assess the RAF value. This UVR dataset was examined to
determine the specific impact of clouds on the RAF. Five de novo modeling approaches were used on
the dataset, and the calculated RAF values ranged from a low of −0.80 to a high of −1.38.

Keywords: Radiation Amplification Factor (RAF); solar zenith angle (SZA); Dobson Unit (DU);
ultraviolet (UV); ultraviolet radiation (UVR); cloudiness

1. Introduction

The Radiation Amplification Factor (RAF) is defined as the measured percentage change in
ultraviolet (UV) irradiance for each one-percent change in total column ozone [1]. Understanding
variations in measured ultraviolet radiation (UVR) over time, along with associated RAF values,
assists health scientists in determining risks associated with UVR exposure through the RAF for
individuals and the environment [2]. Exposure to ultraviolet radiation (UVR) poses risks to both
humans and the environment, therefore a number of national and international government, industrial,
and university research organizations initiated programs to measure the amount of UVR reaching
the Earth’s surface, since stratospheric ozone affects the amount of UVR reaching the Earth. The
United States Environmental Protection Agency (US EPA) conducted a research program from 1996
to 2004 to measure ultraviolet radiation (UVR) at 21 network sites throughout the continental US,
Alaska, Hawaii and the US Virgin Islands (St. John) under all weather conditions. The US EPA
National Exposure Research Laboratory (NERL) developed the UV Radiation Research Program to
measure intensity of UVR at distinct locations throughout the US that differed in spatial location,
geography, climate, altitude, and ecology. The three major categories of research-grade instruments
that have been used to detect UVR are broadband, narrowband, and spectral. NERL chose spectral
UVR monitors called Brewer Spectrophotometers. When operated within a disciplined calibration and
maintenance program, the instruments precisely measure UVR levels through a well-defined portion
of electromagnetic spectrum wavelengths (286.5 nm to 363 nm). Maintaining long-term calibration
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of spectral instruments requires great effort. They are more expensive to operate in comparison to
broadband or narrowband instruments, because they require highly skilled operators.

The Brewer instruments were calibrated for biologically damaging UV radiation in the erythemal
action spectrum at each of the 21 sites using a secondary (travelling) standard lamp traceable to
a primary (stationary) National Institute of Standards and Technology (NIST) 1000-W lamp. The
calibrations were performed by scientists at the University of Georgia at Athens (UGA) National UV
Monitoring Center (NUVMC) on an annual basis. The calibrated Brewer data used a daily temporal
response (estimated) based on the annual calibration. In addition, independent quality assurance
audits of the Brewers were performed by scientists from the National Oceanic and Atmospheric
Administration (NOAA) Central UV Calibration Facility (CUCF). Quarterly checks on the transfer
of the calibration standard from the NIST 1000-W lamp to the traveling secondary standard were
performed at the NUVMC. The response function of each instrument was calculated daily from a linear
interpolation between the two (temporally) closest response functions. Brewer data were corrected for
dark count, dead time, and stray light.

Clouds affect the relative absorption/reflectance of UVR. Transmittance of UVR through clouds
is shown to be wavelength dependent, ranging from 45% in the UV-A region to 60% in the UV-B
region as stated in Chapter 4, page 105 of [3]. Cloud features known to affect the transmission of UVR
include cloud amount and coverage (e.g., percentage of sky covered), particle size distribution, cloud
spatial and temporal variability, season, location, etc., [4]. Realistically, clouds can either increase or
decrease the amount of UVR at the surface [5]. Due to the unpredictable nature of clouds, the extent
of cloudiness (percent clearness) of the sky had to be determined for this analysis in a consistent,
logically defensible manner, to determine the effect of clouds on the Radiation Amplification Factor
(RAF). Using a consistent definition of cloudiness, the results seem to indicate that average RAF values
generally approximate −1.1 at these 10 sites (two urban sites and eight US National Parks sites),
and that total column ozone (O3) and solar zenith angle (SZA) are the most important parameters
in determining the biologically damaging UV radiation in the erythemal action spectrum reaching
the Earth’s surface. Five modeling approaches, labelled A, B, C, D, and E, were used to estimate the
impact of clouds on the biologically damaging UV radiation in the erythemal action spectrum.

1.1. Development of the EPA’s UVR Monitoring Network

In the early 1990s, the EPA’s Office of Research and Development (ORD) originally designed a
UVR monitoring network of five to seven sites principally in urban areas, with a few “pristine” rural
sites for monitoring background UVR levels. The EPA’s role in UVR research was to monitor in urban
areas. The United States Department of Agriculture (USDA) was responsible for monitoring UVR in
rural areas. The focus of the EPA’s original UVR network design was shifted in 1996. In September 1996,
the US EPA and US National Parks Service (NPS), of the US Department of the Interior (DOI), signed
an Interagency Agreement (IAG) to cooperate on a program of long-term monitoring of environmental
stressors, including UVR, at 21 separate locations throughout the United States. When the NPS sites
were added to the network, it greatly expanded the EPA’s UVR monitoring program. The EPA’s
UVR Monitoring Network facilitated research on the observed effects that environmental stressors,
including UVR, pose on various ecosystems and on human health. The 21 EPA UVR monitoring sites
(displayed in Figure 1) were located throughout the continental United States, Alaska (Denali National
Park), Hawaii (Hawaii Volcanoes National Park) and the US Virgin Islands (Virgin Islands National
Park, St. Johns, VI). Fourteen of the sites were located in US National Parks, and seven sites were
located in urban settings. Data collected from the 21 sites was processed through a quality assurance
protocol to ensure proper characterization of UVR intensities measured at each site.
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Figure 1. Location of Brewer Spectrophotometers in the Environmental Protection Agency (EPA)
ultraviolet radiation (UVR) Monitoring Network.

The 21 deployed UVR monitoring instruments measured full sky UV radiation. These instruments
tracked the sun and monitored the variation in solar energy throughout the day. The instruments
measured UVR at wavelengths between 286.5 nm and 363 nm in 0.5 nm wavelength increments [6].
Therefore, each scan produced 154 discrete wavelength values for which UVR would be measured.
The data collected at each network site could then be used to calculate both the dose and dose rate
of UVR received at the Earth’s surface at various times throughout the day. The instruments were
mounted on an azimuth tracker and tripod unit connected to a desktop computer running the Disk
Operating System (DOS) and GWTM Basic Software for instrument control.

The major objectives of the EPA’s UVR Monitoring Network were to:

1. Improve understanding of the nature and intensity of UVR reaching the Earth’s surface.
2. Characterize the physical and chemical parameters that modify UVR flux.
3. Obtain better estimates of UVR exposures at multiple times, locations, meteorological conditions,

altitudes, terrain characteristics, topologies, and air pollution conditions.
4. Evaluate human and ecosystem/environmental exposure to surface UVR across the US.
5. Assess the impact of changes in stratospheric ozone and tropospheric pollution on biologically

damaging UV radiation in the erythemal action spectrum.
6. Assess the effectiveness of control strategies (e.g., Montreal Protocol) designed to reduce the

amount of greenhouse gases in the stratosphere, and increase the amount of stratospheric ozone.
7. Serve as a component of the EPA’s National Environmental Monitoring Strategy.

During the development phase of the EPA’s UVR Monitoring Network, the experimental design
and site selection were planned to test specific hypotheses, which fulfilled the stated research objectives
listed above. Sites were selected which provided UVR data for a variety of conditions (e.g., high and
low elevation, high and low cloud cover, high and low air pollution levels, latitude and longitude
variation, ecosystem variations [fresh and marine water], etc.). The EPA decided that the network
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would consist of spectral UVR monitors so that researchers could determine what key factors caused
changes in UVR levels, e.g., changes in stratospheric ozone composition, tropospheric changes like
cloud cover or pollution (e.g., black carbon, and particulate matter), etc. A secondary benefit of spectral
UVR data is that the data on the UV spectrum can be compared with data on human and ecological
disease incidence and geographic distribution.

The first (experimental) site in the EPA’s UVR Monitoring Network at Research Triangle Park,
North Carolina, began initial operation in 1992. The UVR data collected from the EPA’s UVR
Monitoring Network was processed through a Level-1 data quality assurance algorithm to ensure
proper characterization of biologically damaging UV radiation intensities at each measured wavelength
(for each instrument), and the data in this study is designated as Level-1 corrected data [7]. The
Level 1 algorithm included corrections for calibration drift of the instruments, cosine response, and
temperature effects. Once the raw UVR monitoring data is run through the L1 algorithm, the acceptance
or rejection of a scan measurement value is based on the number of successful instrument scans during
a given day and the range of the L1-corrected biologically damaging UV radiation values. During the
term of the monitoring program, a total of 40,474 site-days’ worth of UVR data was collected through
the EPA’s UVR Monitoring Network, with 35,811 site-days being usable for analysis (88.5%). The
network collected over 500,000 individual measurements (scans) of UVR data during the program [8].

1.2. Importance of UVR Monitoring

The sun is a near-ideal blackbody radiator with a temperature of 6000 degrees (6000◦) Kelvin,
emitting electromagnetic radiation in a wide and continuous spectral distribution; however, spectral
instruments with photo diode arrays or charge-coupled devices (CCDs) can record the entire spectrum
simultaneously [9]. The wavelength peak in its emission curve resides in the visible wavelength region.
Although the sun emits a tremendous amount of solar energy on a daily basis, the Earth captures only
a small portion of the sun’s radiant energy, approximate 1370 Watts per meter squared (W/m2) per
day [10]. The energy in the UV-A portion of the electromagnetic spectrum is approximately 6.3% of
the total solar energy received at the edge of the Earth’s atmosphere on a daily basis (wavelengths:
315–400 nm), while the UV-B (wavelengths: 280–315 nm), and UV-C (wavelengths: 200–280 nm)
portions represent 1.5% and 0.5% respectively [11]. Approximately 9% of the sun’s total solar energy
output is in the UV spectrum. A high percentage of UV-A reaches the Earth’s surface (because it is
weakly absorbed by atmospheric ozone), but has a low impact on biological systems. UV-B has a
greater impact on biological systems than UV-A, but is efficiently screened by ozone. The EPA’s UVR
monitoring program was conducted in an attempt to detect trends in UVR measurements over time
across a wide geographic area.

1.3. Stratospheric Ozone

The UVR flux is affected by changes in the amount of stratospheric ozone (O3) [12]. The amount
of UVR reaching the surface of the Earth is increased when there is a decrease in the amount of
stratospheric ozone. One of the major factors contributing to a decrease in stratospheric ozone is the use
of chlorofluorocarbons (CFCs) [13]. CFCs in the stratosphere react with ozone through photochemical
reactions, which decompose ozone into both monomolecular oxygen and diatomic oxygen species,
and although the amounts of CFCs used have been significantly reduced, these compounds remain in
the atmosphere for durations of up to 40–60 years, contributing to stratospheric ozone reduction [14].
The atmospheric lifetimes of CFCs can be extremely long. CFC-12 (dichlorodifluoromethane), CCl2F2,
has an atmospheric lifetime of 100 years, while HCFC-22 (chlorodifluoromethane), CHClF2, has an
atmospheric lifetime of approximately 14.6 years [15]. As stratospheric ozone is reduced, there is less
ozone available to absorb UVR, resulting in increased amounts of UVR reaching the Earth’s surface
(holding all other factors constant). Measurement of UVR intensities across the United States assisted
US policymakers in assessing the effectiveness of the Montreal Protocol [16], in reducing the important
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ozone-depleting substances such as CFCs. Title VI of the Clean Air Act [17] also governs the protection
of stratospheric ozone.

2. Materials and Methods

2.1. Measurement of the Ultraviolet (UV) Spectrum

Spectral instruments measuring UVR are called scanning spectroradiometers, and these
instruments make continuous, spectrally resolved measurements either across the entire
electromagnetic spectrum or specific portions of it. Most spectral instruments contain photomultiplier
detectors with either single or double monochromators, where light passes through an initial diffraction
grating (usually 1200 or 2400 lines per nm) and through a middle slit which directs the light onto a
second diffraction grating. The multiple grating configuration minimizes stray light from adjacent
wavelengths caused by the rapid change of UVR intensity at wavelengths below 320 nm. Multiple
diffraction gratings also improve the wavelength resolution of scanning spectroradiometers, which
can be as low as 0.5 nm [18]. It usually takes several minutes for scanning spectroradiometers to make
a single complete scan. The Brewers used in the EPA’s network were spectral instruments requiring
approximately six min to complete a single scan, which introduced temporal variability when clouds
pass overhead during a scan period.

2.2. UVR Monitoring Instruments

The Brewer is manufactured by Kipp and Zonen (formerly SCI-TEC, Saskatoon, SK, Canada).
Figure 2 displays a Mark III Brewer Spectrophotometer that was located in Theodore Roosevelt
National Park in North Dakota as part of the EPA’s UVR Monitoring Network. Brewers measure UVR
in wavelengths ranging from 286.5 nm to 363 nm. The measurement resolution for this device is 0.5 nm.
This means that 154 separate UVR values are recorded, one value for each wavelength, during each full
scan of the instrument. Brewers complete 22 to 39 measurement scans per day during summer daylight
hours depending on the latitude of the instrument, with 32 measurement scans being the minimum
number of ideal scans per day for each instrument during that period. Throughout a full year, the
expected number of daily scans is approximately 15–20. Normal instrument repair and maintenance
caused by components such as its nickel sulfate filter, photomultiplier tube, bearings, and surges
due to lightning strikes and power interruptions reduced instrument availability and subsequently
the number of scans. The device’s scan rate is controlled by ephemeris scheduling software, taking
more UVR measurement scans as solar noon approaches at its particular location. The recorded UVR
data is stored in the computer and archived for post-processing through an algorithm that checks for
inconsistent data and other anomalies.

The instrument computer controls the azimuth tracker which rotates the entire Brewer, allowing
it to track the sun. Brewer software has an ephemeris algorithm, which calculates both the azimuth
and zenith angles of the sun as seen from its (current) location. Brewers accomplish this using
its latitude and longitude placement along with its GMT time and date. Angles calculated by the
ephemeris algorithm along with latitude and longitude are transmitted to both the zenith tracker
and azimuth tracker systems to properly position the Brewer towards the sun. Brewers measure
biologically damaging UV radiation at each wavelength (spectral irradiance) in the instrument’s
measurement range during each scan of the instrument. Spectral irradiance is expressed as power
density per unit wavelength (i.e., watts [or milliwatts] per square meter per nanometer [mW/m2/nm]).
UVR data collected by the instruments is important because it helps us understand the implications
of increased UVR associated with decreasing stratospheric ozone concentrations. The instruments
provide accurate UVR measurements of known quality in assessing the effectiveness of the EPA’s
stratospheric ozone policies. The data allows scientists to evaluate the “climatology” affecting UVR
in the environment. The EPA’s quality-assured UVR data is posted to a publicly accessible web site:
https://www.epa.gov/hesc/rsig-data-inventory (Last Accessed: 4 August 2017).

https://www.epa.gov/hesc/rsig-data-inventory
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Each instrument in the EPA’s UVR monitoring network was programmed to measure UV spectra
during daylight hours (generally between 6 a.m. and 6 p.m. local time). A Brewer’s schedule for
scanning the local sky was programmed based on zenith angle of the sun at its particular location. The
first UV spectrum scan recorded each day by a Brewer occurred at a local solar zenith angle (SZA)
of 85 degrees (i.e., approximately 5 degrees above the local horizon at sunrise). The instrument is
programmed to make subsequent spectral scans at 5-degree increments after that point, since the
SZA is changing rapidly. Near local noon, when the local SZA does not change rapidly, the scanning
schedule was programmed to occur at intervals of approximately 20 min. On a typical summer day
at mid-latitudes, approximately 30 UV spectral scans were recorded. The raw UV spectral data from
each Brewer in the network was collected daily and processed through a data correction algorithm,
which performed numerous quality control checks. The algorithm corrected the data for known
systematic biases caused by temporal drift in Brewer calibration, non-ideal cosine response, and
temperature dependence.

2.3. Determining Cloudiness in a Consistent Manner

To determine the dependence of the RAF on cloudiness, the parameter “cloudiness” must first
be defined. Most Brewer sites had no additional instrumentation to independently measure clouds
or broadband solar radiation, but general sky conditions were manually recorded in site operator
logs. Therefore, Brewer UV spectral measurements were used to derive the cloudiness, or percent
“clearness” (e.g., percent clear sky) indicator, where the sum of percent clearness and cloudiness equals
1.0. The selected indicator of percent clearness was based on the amount of light received with clouds
compared to the amount of light received when the sky is cloudless. The percent clearness indicator
was selected to be (1) independent of total column ozone, and (2) able to be determined as closely to the
biologically damaging UV radiation measurement temporally as possible. Furthermore, the percent
clearness indicator needed to be a value derived entirely from the recorded UV spectral data, rather
than from the output of a radiative transfer model. The measurement of UV spectral irradiance is not
an instantaneous measurement. The Brewer records UV spectral irradiance, progressing from shorter
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to longer wavelengths, while its internal diffraction grating is physically rotated. An entire UV spectral
scan, from 286.5 nm to 363 nm, takes approximately six min. This yields a rate of approximately
13 nm/min of wavelength scan progression.

Although Brewers are capable of measuring total column ozone, the Brewer instruments in the
EPA’s network were never initialized or calibrated to measure total column ozone. For that reason,
NASA’s Total Ozone Mapping Spectrometer (TOMS) satellite provided total column ozone, in Dobson
Units (DUs), from its daily overpass for each of the 10 sites analyzed in this study. Since only one
daily satellite overpass was accomplished per site, the recorded daily total column ozone values were
constant for each site. The biologically damaging UV radiation is largely determined from energy in
wavelengths less than 320 nm (which are very sensitive to changes in total column ozone). The effective
UV wavelength band range for ozone impacts occurs at wavelengths from 290 nm to 325 nm [19].
Changes in UVR flux at wavelengths of 320 nm and greater are associated with trends in aerosols,
haze, and clouds, therefore wavelengths between 325 nm and 330 nm were selected to account for
clouds as described below. There is less UVR sensitivity to ozone in this wavelength range.

The UV spectral data scanned and recorded by the Brewers between 325–330 nm was used as the
indicator for percent clearness. This particular wavelength segment was chosen because it lies above
the wavelengths that are affected by total column ozone. The rational for selecting this wavelength
segment (325–330 nm) was to ensure that any changes observed could be attributed to clouds and not
to any potential impacts from total column ozone. This portion of the electromagnetic spectrum also
provides a stable measurement basis. This wavelength segment is temporally close (within two min) to
the wavelength segment which provides the major contribution to biologically damaging UV radiation.
Given that the peak biologically damaging UV radiation contribution occurs at approximately 310 nm,
the following calculation illustrates the temporal resolution (difference) between the wavelengths
unaffected by total column ozone and those contributing to maximum biologically damaging UV
radiation (e.g., the difference between 330 nm and 310 nm is 20 nm; with an instrument scan rate
of 13 nm/min: 20 nm/(13 nm/min) = 1.538 min, yielding approximately 1.5 minutes’ temporal
difference). The wavelength segment between 330–363 nm was also used, which is minimally affected
by clouds, to ensure that a consistent definition of cloudiness could be determined at each site using
the appropriate UV wavelength segment least impacted by clouds based on local site conditions. The
rational for selecting this particular wavelength segment (330–363 nm) was to attribute observed
changes to total column ozone and to remove impacts from clouds. For each of the 10 selected sites,
a data set was generated with each observation consisting of four pieces of data including: (a) SZA
measurement; (b) a total column ozone (O3) measurement from TOMS; (c) a biologically damaging
UV radiation (Brewer) measurement; (d) an unweighted, integrated Brewer UVR measurement taken
between the 325 nm and 330 nm wavelength segment (designated UV325). Using the data collected at
the 10 selected UVR monitoring sites from 1998 through 2000, a plot of UV325 (in mW/m2) versus
SZA, shown in Figure 3, clearly indicates an upper envelope of UV325, which is indicative of the
percent clearness of the sky at a given SZA. The objective is to define separate indicators for percent
(sky) clearness that are unaffected by total column ozone and unaffected by clouds.

Examination of the UV325 versus SZA plots for the 10 selected sites led to the determination
of CLR1 (a parameter describing a cloud free day, based on the maximum range of UV irradiance
values) which was added to the datasets, containing (a) through (d) above, from an SZA-dependent
polynomial approximation of the 95th percentile of the UV325 measurements for each site {as shown by
the black lines in Figure 3}. The polynomial regression fit for the 95th percentile is: UV95 = {cos(SZA)}3

+ {cos(SZA)}2 + {cos(SZA)}, (0). The parameter CLR1 is a line which represents a boundary indicating
where most (95%) of the UV measurements between 325 nm and 330 nm are found based on SZA at
each particular site. CLR1 is the parameter describing a cloud free day, according to the maximum
range of UV irradiance values, which would not occur on a cloudy or partially cloudy day. CLR1 tends
to approach the upper limit of UV325 values at each SZA, but some values can exceed CLR1 values
plotted along the 95th percentile line by up to 20 percent, most likely due to cloud reflections. The
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generated data set for each site could now be supplemented with an additional parameter (CLR1)
derived from the UV325 versus SZA plots: CLR1 = UV325/(95th percentile of measurements at
each SZA). The ten sites selected for the analysis are provided in Table 1. Brewer 105 was operated,
maintained, and calibrated by the National Institute of Standards and Technology (NIST). Brewer 087
was operated and maintained by the US EPA. The remaining eight sites were operated, maintained,
and calibrated by the NPS. The graphs, residuals, and histograms were generated using SASTM

statistical software.

Table 1. Ten EPA UV Radiation Research Program Sites Used in the Analysis.

Brewer
Number Site Location GPS

Latitude
GPS

Longitude
Elevation
(Meters)

Elevation
(Feet)

Start
Date Site Type

087 Research Triangle
Park (RTP), NC 35.8924 N 78.8771 W 104 341 1995 Urban

105 Gaithersburg, MD 39.1342 N 77.2167 W 43 141 1994 Urban

130 Big Bend, TX 29.3050 N 103.1770 W 329 1079 1997 National
Park

132 Great Smoky
Mountains, TN 35.6044 N 83.7829 W 564 1850 1996 National

Park

133 Canyonlands, UT 38.4584 N 109.8211 W 814 2671 1997 National
Park

134 Glacier, MT 48.7409 N 113.4325 W 424 1391 1997 National
Park

135 Everglades, FL 25.3906 N 80.6805 W 18 59 1997 National
Park

137 Shenandoah, VA 38.5226 N 78.4349 W 325 1066 1997 National
Park

138 Acadia, ME 44.3769 N 68.2609 W 137 449 1998 National
Park

144 St. John, USVI 18.3360 N 64.7960 W 30 98 1998 National
Park
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Figure 3. Plot of UV325 versus solar zenith angle (SZA) at (a) Research Triangle Park, NC;
(b) Gaithersburg, MD; (c) Big Bend National Park, TX; (d) Great Smoky Mountain National Park,
TN; (e) Canyonlands National Park, UT; (f) Glacier National Park, MT; (g) Everglades National Park,
FL; (h) Shenandoah National Park, VA; (i) Acadia National Park, ME; (j) Virgin Islands National Park
(St. John), USVI (CLR1, illustrated by the black line, represents the polynomial of the 95th percentile
measurement at each SZA).
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The vertical lines shown in Figure 3 are an artifact of how the Brewer is configured to capture UV
scan measurement data.

2.4. Variability in Biologically Damaging UV Radiation Data

It is preferable for conditions to remain constant during a scan, but that was not always the case.
The temporal gap between the bulk of the contribution to the biologically damaging UV (at 310 nm)
and the UV325 wavelength segment introduced some variability in the data. The variability appeared
to be systematic, and can be illustrated through the following two examples. Hypothetical Situation: A
day with widely scattered cumulus clouds; Example 1: At one point during the day, the sun is exposed
(i.e., no clouds) at the beginning of an instrument spectral scan. Then, at the 320 nm wavelength
portion of a spectral scan, a cloud passes in front of the sun. The calculated UV325 will be lowered to
approximately 50% of the previous CLR1 value, and the measured biologically damaging UV radiation
value will be higher than the UV325 value. Example 2: At another point during the same day, the sun
is hidden in the early stages of a spectral scan and then emerges at approximately 320 nm, the UV325
will record nearly 100% clear, and will be higher than the previous CLR1 value, and the measured
biologically damaging UV radiation value will be lower than the UV325 value. The frequency of
such systematic variations tends to diminish as the sky becomes either heavily overcast (0% clear) or
cloud-free (100% clear).

2.5. Relationship between Biologically Damaging UV Radiation, Cloudiness, Column Ozone, and RAF

Data sets were compiled for the ten selected sites in the UVR network containing the measured
parameters (SZA, total column ozone [O3], biologically damaging UV radiation in the erythemal action
spectrum, UV325), and the derived CLR1 parameter. These parameters were then used to plot the
biologically damaging UV radiation in the erythemal action spectrum versus total column ozone (O3),
for different values of CLR1 and SZA. The biologically damaging UV radiation values were then
normalized for the seasonal change in Earth–sun distance. Finally, although the polynomials defining
“clear” (sky) UVR are approximately the same, there should be some systematic differences based on
altitude, topographic obstruction, and haze/pollution at each site. For this analysis, the biologically
damaging UV radiation values were normalized between sites to produce a nearly identical definition
of “clear” sky. The data from all ten sites were then combined to produce the four plots shown
in Figure 4 below, which display the biologically damaging UV radiation in the erythemal action
spectrum versus total column ozone (O3) for percent clearness PCLR of 25% (black), 50% (blue), 75%
(green), and 100% (red) ±3% and SZA from 25 to 30 degrees. The curved line relationship for the
RAF = −1.1 is based on the power law:

Biologically Damaging UV Radiation = PCLR × A × ((O3)/cos (SZA))−1.1 (1)

where A is determined from the mean value of the biologically damaging UV radiation for total column
ozone (O3), approximately 350 Dobson Units (DU).

There was considerable skewing of the measurements for the different percentages of clearness
(100% clear [red, downward]) and (50% clear [blue, upward]) as would be expected from sudden
appearance or disappearance of direct sun due to cloud configuration/movement, as discussed in two
hypothetical examples described above. This skewing affected the regression analyses designed to
determine the RAF theoretically.

Figure 4 illustrates that as total column ozone (O3) increases, biologically damaging UV radiation
in the erythemal action spectrum decreases in a consistent manner. Clouds may have a systematic
effect in altering the generally accepted value of a 1.1% decrease in the biologically damaging UV
radiation in the erythemal action spectrum (–1.1%) for each 1.0% increase in total column ozone, as
measured in Dobson Units (DUs).
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2.6. Experimental Approach Used to Determine Radiation Amplification Factor (RAF)

An initial description of the relationship between cloud coverage and its effect on the RAF was
obtained from 71,000 total UV measurement scans taken between 1998 and 2000 at ten Brewer sites
in the EPA’s UVR Monitoring Network. The range of solar zenith angles for which measurements
were taken was less than 60 degrees (60◦). The relationship between the biologically damaging UV
radiation, total column ozone (O3), cloudiness/percent clearness of the sky, and solar zenith angle
was determined using the experimental setup. The RAF is a parameter which is designed to answer
the question, “If total column ozone increases by one percent, what is the percentage change in the
biologically damaging UV radiation (weighted integral of short wave UVR)”? If the assumption is that
the RAF is a reasonable concept, an experiment must be designed to determine if there is a relationship
between the RAF and cloudiness. The idea is to isolate the changes due to atmospheric ozone and
minimize the impact of clouds when measuring changes in UVR at different wavelengths.

2.7. Ideal Experiment

An ideal experiment to assess the RAF would collect biologically damaging UV radiation
measurements for a period of time and would be designed as follows. For a series of fixed SZA’s
(e.g., constrained between SZA = 90 degrees [the local horizon at sunrise], with SZA = 0 being directly
overhead, and SZA = −90 degrees [the local horizon at sunset]):

a. Measure the total column ozone [O3] levels (using either TOMS satellite measurements or
ground measurements with spectrophotometers as applicable, etc.) at each fixed SZA.

b. Measure the biologically damaging UV radiation levels (using ground measurements with
spectrophotometers, etc.) at each fixed SZA at measured:



Atmosphere 2017, 8, 153 14 of 33

i. Percent clearness = 0% [100% cloud cover] to Percent clearness = 100% [0% cloud cover]
ii. Percent clearness = 100% to 120% [accounting for cloud “reflections”]—Note: enhancement

of UVR by cloud reflections has been measured at up to 30 percent [20], therefore using a
20% enhancement (120%) for maximum biologically damaging UV radiation values provides
a reasonable and conservative estimate where the percent clearness (cloudiness) would be
measured by satellites and/or from ground-based instruments. Total column ozone was not
measured using instruments at the sites, and cloudiness could not be assessed independent of
human observation. The instruments could not (and cannot) measure biologically damaging
UV radiation at fixed SZAs for extended periods, therefore the ideal experimental setup had
to be adjusted to conform to the limitations of real-world constraints. When developing a
preliminary methodology for implementing this hypothesis, an examination of the initial set of
UV325 versus SZA plots that were generated by the statistical software indicated that “clear”
was best defined as a SZA-dependent polynomial approximation of the 95th percentile of the
UV325 measurements. This polynomial approximation was determined to be satisfactory, since
it captured almost all of the upper values, and allowed some values to exceed clear by at least
20 percent, possibly due to cloud reflections, as noted in the literature [20].

2.8. Realizable Experiment (Driven by Real-World Constraints)

The total column ozone [O3] was measured, in DUs, from the TOMS satellite. The biologically
damaging UV radiation is measured, in mW/m2, from the ground using Brewers. The computerized
Brewer scan schedule does not accommodate measuring the biologically damaging UV radiation
at fixed SZAs for long periods of time. There were no independent or reliable measurements or
estimates of cloud cover either from ground-based measurements or from satellites at either Brewer
site. However, operator logs at each site recorded the general sky condition and amount of cloudiness
(e.g., overcast, rain, clear, sunny, etc.). This left the question of how to determine percent clearness
(cloudiness) unanswered. Since there was no instrument-based measurement of cloudiness (percent
clearness) available at either of the Brewer sites, a theoretically determined methodology for assessing
percent clearness (cloudiness) was used as described below.

2.9. A Theoretical Definition of Cloudiness (Percent Clearness)

We used the wavelength segment between 325–330 nm (UV325) because it is minimally affected
by total column ozone, and the wavelength segment between 330–363 nm (UV330) which is minimally
affected by clouds. This was done so that a consistent and site-appropriate definition of cloudiness
was used based on local site conditions, due to the differences in location, geography, climate, altitude,
and ecology for each site. The polynomial representing the 95th percentile of all UVA measurements,
between 330–363 nm, as a function of SZA is defined as 100 percent clear sky. The parameter CLR2,
denoting the percentage of clear sky is calculated by:

CLR2 = (100 × (UVA/95th percentile of UVA)) (2)

2.10. Measured and Calculated Parameters

The parameters used in determining the RAF for each of the five modeling approaches, as
displayed in Figures 6, 7, 13, 16, and 17, are as follows:

SZA = measured solar zenith angle of the sun, where SZA = 90 degrees [the local horizon at
sunrise], SZA = 0 is directly overhead, and SZA = −90 degrees [the local horizon at sunset].

O3 = total column ozone (in Dobson Units)—from TOMS satellite measurements.
Biologically Damaging UV Radiation = Brewer spectrophotometer measurements.
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CLR2 = percent clear (percent clear sky measurement at a selected SZA)—calculated value,
derived from the polynomial representing the 95th percentile of all UVA measurements, between
330–363 nm, as a function of SZA.

To ensure that all potential confounding parameters are eliminated from the calculation and
only RAF versus percent clear curves are generated for each modeling approach, the following steps
were taken:

a. The UVR calculations were normalized with respect to the distance between the sun and the
Earth during the year. Note: Earth is closest to sun on 5 January. The formula used to calculate
the normalized UVR values is:

UVR = {1−0.034 cos(2π(jday−5)/365))} × Biologically Damaging UV Radiation (3)

where jday = 1, 2, . . . , 365, with jday = 5 being 5 January, [21].
b. The UVR values were normalized with respect to systematic differences due to site altitude,

topography, pollution, aerosol, haze, etc.
c. The data from all ten sites was combined into curves of RAF versus percent clear sky for each of

the five modeling approaches, Model A through Model E, (as shown in Figures 6, 7, 13, 16, and
17 respectively).

Figure 5 illustrates the unweighted UVR measurements taken between the 330–363 nm wavelength
segments. This wavelength segment is minimally affected by clouds, and is designated as UV330. The
95th percentile envelope for UV330, defined by a non-linear polynomial approximation for each site,
is identical in shape to that of UV325, matching the behavior of CLR1 in that wavelength segment
over the same SZA range, with the only difference being that the power values are higher for the
UV330 envelopes.

For each of the 10 selected sites, a data set was generated with each observation consisting of
four pieces of data including: (a) solar zenith angle (SZA) measurement; (b) a total column ozone
(O3) measurement from TOMS; (c) biologically damaging UV radiation (Brewer measurement); (d) an
unweighted, integrated Brewer UVR measurement taken between the 330 nm and 363 nm wavelength
segment (designated UV330). Using the data collected at the 10 selected UVR monitoring sites from
1998 through 2000, a plot of UV330 (in mW/m2) versus SZA, shown in Figure 5, clearly indicates an
upper envelope of UV330, which is indicative of the percent clearness of the sky at a given SZA.

Examination of the UV330 versus SZA plots for the 10 selected sites led to the determination of
the derived “clear” (CLR2) parameter added to the datasets, (containing a through d above), from an
SZA-dependent polynomial approximation of the 95th percentile of the UV330 measurements for each
site {as shown in Figure 5}. CLR2 tends to approach the upper limit of UV330 values at each SZA,
but some values can exceed CLR2 values plotted along the 95th percentile line by up to 20 percent,
most likely due to cloud reflections. The generated data set for each site could now be supplemented
with an additional parameter (CLR2) derived from the UV330 versus SZA plots: CLR2 = UV330/(95th
percentile of measurements at each SZA).
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Figure 5. Plot of UV330 versus SZA at (a) Research Triangle Park, NC; (b) Gaithersburg, MD; (c) Big
Bend National Park, TX; (d) Great Smoky Mountain National Park, TN; (e) Canyonlands National Park,
UT; (f) Glacier National Park, MT; (g) Everglades National Park, FL; (h) Shenandoah National Park,
VA; (i) Acadia National Park, ME; (j) Virgin Islands National Park (St. John), USVI (CLR2, illustrated
by the black line, represents the polynomial of the 95th percentile measurement at each SZA).
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The vertical lines shown in Figure 5 are an artifact of how the Brewer is configured to capture
UV scan measurement data. During the analysis of the UVR data, various parameters were kept in a
limited range such as SZA, at less than 60 degrees (60◦), and wavelengths, at less than 330 nm, to ensure
that only the effect of clouds would manifest itself in the analysis. There were five modeling approaches
used in the analysis of the 71,000 data points analyzed between 1998 and 2000 at the 10 UVR monitoring
sites. Four of the five modeling approaches are based on “thought experiments”, using empirical data,
and one model is based on a purely empirical relationship (Beer–Lambert’s Law). The five different
modeling approaches were compared to each other, and these five models each related the biologically
damaging UV radiation to the following set of parameters (as illustrated in Table 2: Model A—(1)
total column ozone [O3], (2) percent (%) clear sky {i.e., percent clearness/cloudiness} [CLR], (3) SZA;
Model B—(1) total column ozone [O3], (2) “clear” [replaces the “CLR” term, and is calculated by
performing a regression on percentage “classes” of cloud cover, and the result of the regression is called
iclear]; “iclear” is the parameter describing cloudiness (as discrete percentage levels grouped into
different classes), based on the maximum range of UV irradiance values, (3) SZA; Model C—(1) total
column ozone [O3], (2) “iclear*” [replaces the “CLR” term, and is calculated by performing a regression
on percentage “classes” of cloud cover, with the removal of the tails of the biologically damaging UV
radiation distribution, i.e., censor “bad” data (remove the extreme values below the 2.5th percentile and
above the 97.5th percentile), and the result is called iclear*], (3) SZA—Note: This is the same as Model B,
except with the tails of the biologically damaging UV radiation distribution removed; Model D—(1)
total column ozone [O3], (2) CLRˆ [replaces CLR with a linear function in percent clearness {“classes”
of CLR} between 40% and 100% clear skies], (3) SZA; Model E—(1) total column ozone [O3]/cos(SZA),
and (2) cos(SZA): This is an empirical relationship known as Beer–Lambert’s Law. At the 10 UVR
monitoring sites selected for the analysis, the NASA Total Ozone Mapping Spectrometer (TOMS)
satellites were used to measure total column ozone. This provided the benefit of an independent
measurement source for determining atmospheric (total column) ozone.

Table 2. Comparison of the RAF Values for Modeling Approaches Used.

Model Low RAF High
RAF Functional Relationship Calculate RAF—Use Functional Relationship between

Biologically Damaging UV Radiation and:

A −0.84 −1.38
biologically damaging UV
radiation ~f (O3, CLR, SZA)

total column ozone [O3]

CLR [percent (%) clear sky {i.e., percent clearness/cloudiness}]

solar zenith angle [SZA]

B −0.88 −1.375
biologically damaging UV
radiation ~f (O3, iclear, SZA)

total column ozone [O3]

“iclear” [eliminate CLR term, and perform a regression on
“classes” of CLR, and replace the parameter CLR with the result
of the regression on the “classes” of clear, called iclear]

solar zenith angle [SZA]

C −1.00 −1.18

biologically damaging UV
radiation ~f (O8, iclear#,
SZA)—with data censoring
(tails of the biologically
damaging UV radiation
distribution)

total column ozone [O3]

revised “iclear” [eliminate CLR term, and perform a regression on
“classes” of CLR, and replace the parameter CLR with the result
of the regression on the “classes” of clear, called iclear, and
remove the tails of the biologically damaging UV radiation
distribution, i.e., censor “bad” data; This is the same as Model B,
except with the tails of the biologically damaging UV radiation
distribution removed]

solar zenith angle [SZA]

D −0.80 −1.30

biologically damaging UV
radiation ~f (O3, CLRˆ,
SZA)—CLR is a linear
function between 40% and
100% clear skies

total column ozone [O3]

CLR [assume a linear function in percent clearness {“classes” of
CLR} between 40% and 100% clear skies]

solar zenith angle [SZA]

E −0.80 −1.28
biologically damaging UV
radiation ~f (O3/cos[SZA],
cos[SZA])

total column ozone [O3]/cos(SZA)

cos(SZA)

This is known as Beer–Lambert’s Law
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3. Results

Each model is based on the 71,000 total UVR measurements taken at the ten sites listed in Table 1
between 1998 and 2000. The five modeling approaches, Model A through Model E, all yield average
RAF values of approximately −1.1 for all sky conditions (e.g., 0% to 120% clear sky) at the ten selected
UVR monitoring sites. A consistent “definition” of sky cloudiness (clearness) was provided at each
site using the segment of UVR wavelengths least impacted by clouds (or ozone as applicable). This
provided a stable baseline for comparison of each set of model-derived RAF values. Since Model E
was solely based on an empirical relationship, it can be compared against the four hypothetical models
(A through D). The summary results for each modeling approach is described below.

Model A: The average RAF value from Model A for all 10 sites and for all sky conditions (i.e., in
% [sky] clearness from 0% to 120%: parameter—CLR) and solar zenith angles less than 60◦ is −1.167.
Model A is the base model from which Models B, C, and D are derived.

Model B: The average RAF value for all 10 sites and for all sky conditions and solar zenith angles
less than 60◦ is −1.1936. This model performed a regression on the discrete “classes” of the parameter
CLR and replaced it with the result (called iclear). This model produced the highest average RAF
value of the five models.

Model C: The average RAF value for all 10 sites and for all sky conditions (i.e., in % [sky] clearness
from 0% to 120%: parameter—iclear*) and solar zenith angles less than 60◦ is −1.105. This model is
identical to Model B, except data censoring was applied (i.e., the “tails” of the biologically damaging
UV radiation distribution [below the 2.5th percentile and above the 97.5th percentile] was removed).

Model D: The average RAF for all 10 sites and for all sky conditions (i.e., in % [sky] clearness
from 0% to 120%: parameter—CLRˆ) and solar zenith angles less than 60◦ is −1.087. The parameter
representing the percentage of clear sky (CLRˆ), was assumed to be a linear function between 40% and
100% clear skies. This model provided the lowest average RAF value of the five models.

Model E: The average RAF value for all 10 sites and for all sky conditions (i.e., in % [sky]
clearness from 0% to 120%) and solar zenith angles less than 60◦ is −1.119. Model E is based on a
physical/empirical model (Beer–Lambert’s Law).

The overall average RAF value from the five methods used for the ten selected network sites was
−1.134, with the RAF values for individual methods ranging from a low of −0.80 to a high of −1.38, as
shown in Table 2. The ensemble average of the low RAF values resulting from the five models, applied
across the ten selected sites, is −0.864. The ensemble average of the high RAF values resulting from
the five models, applied across the ten selected sites, is −1.302. The comparison of the five models is
presented in Table 2.

3.1. Experimental Determination of the RAF: Five Modeling Approaches

3.1.1. Model A

The relationship between the biologically damaging UV radiation and the following parameters:
(1) total column ozone [O3]; (2) CLR [percent (%) clear sky {i.e., percent clearness/cloudiness}]; (3) solar
zenith angle [SZA], is given as follows (where a = RAF, and b and c are regression coefficients):

Biologically Damaging UV Radiation = A × (O3)a × (CLR)b × (cos(SZA))c (4)

The slope of the UVR–ozone relationships derived for clear skies, light cloudy skies, medium
cloudy skies and heavy cloudy skies for this model, can be found using the formula:

ln (Biologically Damaging UV Radiation) = ln (A) + a × ln (O3) +

b × ln (CLR) + c × ln (cos(SZA))
(5)
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(with ln representing the natural logarithm) which can be rewritten as:

ln (Biologically Damaging UV Radiation) = a × ln (O3) + b × ln (CLR)

+ c × ln (cos(SZA)) + d
(6)

where d = ln (A), a constant.
If we generate a graph of “a”, where a = RAF, as a function of CLR (% clearness, where 100% clear

is defined as the 95th percentile of all integrated UVR measurements for 330–363 nm [where cloud
effects are minimized], as a function of SZA = solar zenith angle), the black line envelope in Figure 6
gives the 2-sigma (95%) confidence interval around the value of the RAF.

Atmosphere 2017, 8, 153  21 of 32 

 

The slope of the UVR–ozone relationships derived for clear skies, light cloudy skies, medium 
cloudy skies and heavy cloudy skies for this model, can be found using the formula: 

ln (Biologically Damaging UV Radiation) = ln (A) + a × ln (O3) + b × ln (CLR) + c × 
ln (cos(SZA)) (5) 

(with ln representing the natural logarithm) which can be rewritten as:  

ln (Biologically Damaging UV Radiation) = a × ln (O3) + b × ln (CLR) + c × ln 
(cos(SZA)) + d (6) 

where d = ln (A), a constant. 
If we generate a graph of “a”, where a = RAF, as a function of CLR (% clearness, where 100% 

clear is defined as the 95th percentile of all integrated UVR measurements for 330–363 nm [where 
cloud effects are minimized], as a function of SZA = solar zenith angle), the black line envelope in 
Figure 6 gives the 2-sigma (95%) confidence interval around the value of the RAF. 

With Model A, the RAF tends to increase (i.e., become less negative) as the clear sky percentage 
decreases (from 45% clear sky radiation [transmitted] to 15% clear sky radiation [transmitted]). This 
behavior is expected, as an increase in cloudiness (decrease in percent clear sky radiation transmitted) 
tends to reduce the amount of UV radiation reaching the Earth’s surface for each 1% change in total 
column ozone. At 45% clear sky radiation, where the lowest RAF value (−1.38) is found, there is an 
inflection point, after which RAF values tend to increase in general, with negligible decreases 
(between 55% to 65% clear sky radiation and between 105% to 115% clear sky radiation). 

 
Figure 6. Model A: RAF versus percent clear sky radiation transmitted (cloudiness) parameter (CLR). 

3.1.2. Model B 

The relationship between the biologically damaging UV radiation and the following parameters: 
(1) total column ozone [O3]; (2) “iclear” [Note: to obtain “iclear”, replace the “CLR” term {used in 
Model A}, with a regression performed on “classes” of CLR; the result of the regression on the 
“classes” of CLR is called “iclear”]; (3) solar zenith angle [SZA], is given as follows: 

Biologically Damaging UV Radiation = A × (O3)a × (CLR)b × (cos(SZA))c (7) 

The slope of the UVR–ozone relationships derived for clear skies, light cloudy skies, medium 
cloudy skies and heavy cloudy skies for this model, can be found using the formula used in Model 
A: 

ln (Biologically Damaging UV Radiation) = ln (A) + a × ln (O3) + b × ln (CLR) + c × 
ln (cos(SZA)) 

(8) 

 %
 c

ha
ng

e
 D

UV
 p

e
r 

%
 c

ha
ng

e
 o

zo
ne

-1.5

-1.4

-1.3

-1.2

-1.1

-1.0

-0.9

-0.8

-0.7

percent of clear sky radiation
0 10 20 30 40 50 60 70 80 90 100 110 120

Figure 6. Model A: RAF versus percent clear sky radiation transmitted (cloudiness) parameter (CLR).

With Model A, the RAF tends to increase (i.e., become less negative) as the clear sky percentage
decreases (from 45% clear sky radiation [transmitted] to 15% clear sky radiation [transmitted]). This
behavior is expected, as an increase in cloudiness (decrease in percent clear sky radiation transmitted)
tends to reduce the amount of UV radiation reaching the Earth’s surface for each 1% change in total
column ozone. At 45% clear sky radiation, where the lowest RAF value (−1.38) is found, there is an
inflection point, after which RAF values tend to increase in general, with negligible decreases (between
55% to 65% clear sky radiation and between 105% to 115% clear sky radiation).

3.1.2. Model B

The relationship between the biologically damaging UV radiation and the following parameters:
(1) total column ozone [O3]; (2) “iclear” [Note: to obtain “iclear”, replace the “CLR” term {used in
Model A}, with a regression performed on “classes” of CLR; the result of the regression on the “classes”
of CLR is called “iclear”]; (3) solar zenith angle [SZA], is given as follows:

Biologically Damaging UV Radiation = A × (O3)a × (CLR)b × (cos(SZA))c (7)

The slope of the UVR–ozone relationships derived for clear skies, light cloudy skies, medium
cloudy skies and heavy cloudy skies for this model, can be found using the formula used in Model A:

ln (Biologically Damaging UV Radiation) = ln (A) + a × ln (O3) +

b × ln (CLR) + c × ln (cos(SZA))
(8)
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which can be rewritten in its derivative form as:

[δBiologically Damaging UV Radiation/δO3]/Biologically Damaging UV Radiation

= a/(O3) + b × [δCLR/δO3]/CLR
(9)

Note: The ln (A) term and the c × ln (cos(SZA)) term both are reduced to 0 when derivatives are
taken since ln (A) is a constant and cos(SZA) is a constant, since 0 < cos(SZA) < 1. Equation (9) can be
reduced to:

[∆Biologically Damaging UV Radiation/Biologically Damaging UV

Radiation]/[∆O3/O3] = a = RAF
(10)

If we generate a graph of “a”, where a = RAF, as a function of the regression on each class of CLR
(iclear—where, for example, for CLR representing 40–50% clear skies, iclear = 45; for CLR representing
90–100% clear skies, iclear = 95%, etc.), the black line envelope in Figure 7 gives the 2-sigma (95%)
confidence interval around the value of the RAF.
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Figure 7. Model B: RAF versus percent clear sky radiation transmitted (cloudiness) parameter using
“classes” of percent clear sky radiation transmitted (variable: iclear).

With Model B, the RAF tends to increase (i.e., become less negative) as the clear sky percentage
decreases (from 45% clear sky radiation [transmitted] to 15% clear sky radiation [transmitted]). This
behavior is expected, as an increase in cloudiness (decrease in percent clear sky radiation transmitted)
tends to reduce the amount of UV radiation reaching the Earth’s surface for each 1% change in total
column ozone. At 45% clear sky radiation, where the lowest RAF value (−1.375) is found, there is an
inflection point, after which RAF values tend to increase in general, with a constant region between
85% to 95% clear sky radiation and a decreasing region between 105% to 115% clear sky radiation.

The Model B residuals versus the natural logarithm of the total column ozone value in Dobson
Units (LOZ), for clear sky radiation between 90–100% (e.g., iclear = 95), may indicate some biologically
damaging UV radiation well below the expected values as shown in Figure 8 below.

The Model B residuals versus the natural logarithm of the total column ozone value in Dobson
Units (LOZ) for sky clearness percentages of 40–50% (iclear = 45) may indicate some biologically
damaging UV radiation well above the expected values, as shown in Figure 9 below.
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Figure 8. Model B: Residuals versus the natural logarithm of the total column ozone value in Dobson
Units (LOZ) for sky clearness class 90% to 100% (iclear = 95)—Note: LCZA = natural logarithm of the
cosine of the solar zenith angle, LDUV = natural logarithm of the biologically damaging UV radiation,
and LOZ = natural logarithm of the total column ozone.
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Figure 9. Model B: Residuals versus the natural logarithm of the total column ozone value in Dobson
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The residuals for the for sky clearness class 90% to 100% (iclear = 95), Figure 8, and for the sky
clearness class 40% to 50% (iclear = 45), Figure 9, would seem to indicate that Model B fits the data
well. But note that residuals vs. LOZ for iclear = 95 seems to indicate some biologically damaging UV
radiation well below the expected values. The residuals vs. LOZ for iclear = 45 may indicate some
biologically damaging UV radiation well above the expected values.

The distributions of the biologically damaging UV radiation as shown in Figure 10 are skewed
in opposite directions for iclear = 45 (right) and iclear = 95 (left). Partial cloud covering during the
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measurement of the spectrum (which takes six min to complete) is a potential cause of the skewed
biologically damaging UV radiation distributions.Atmosphere 2017, 8, 153  24 of 32 
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Figure 10. Model B: The biologically damaging UV radiation (adjusted for SZA) for 45% clear skies
(green) and 95% clear skies (black) for total column ozone from 250 Dobson Units (DU) to 280 DU—Note:
x-axis shows distribution of biologically damaging UV radiation wavelengths seen at 45% clear skies
(green) and 95% clear skies (black) and the y-axis shows the percentage of biologically damaging UV
radiation at each wavelength range.

The distributions of the biologically damaging UV radiation as shown in Figure 11 for iclear = 45
and iclear = 95 are less skewed, and closer to normality, for this larger total column ozone range as
compared to the total column ozone range (250–280 DU) in Figure 10.
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Figure 11. Model B: The biologically damaging UV radiation (adjusted for SZA) for 45% clear skies
(green) and 95% clear skies (black) for total column ozone from 375 DU to 450 DU—Note: x-axis shows
distribution of biologically damaging UV radiation wavelengths seen at 45% clear skies (green) and
95% clear skies (black) and the y-axis shows the percentage of biologically damaging UV radiation at
each wavelength range.
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The distributions of the biologically damaging UV radiation as shown in Figure 12 are skewed in
opposite directions for iclear = 45 (right) and iclear = 95 (left) for solar zenith angles constrained near
30 degrees.Atmosphere 2017, 8, 153  25 of 32 
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Figure 12. Model B: The biologically damaging UV radiation for 45% clear skies (green) and 95% clear
skies (black) for solar zenith angles from 27 degrees to 33 degrees—Note: x-axis shows distribution
of biologically damaging UV radiation wavelengths seen at 45% clear skies (green) and 95% clear
skies (black) and the y-axis shows the percentage of biologically damaging UV radiation at each
wavelength range.

3.1.3. Model C

The relationship between the biologically damaging UV radiation and the following parameters:
(1) total column ozone [O3]; (2) “iclear” [Note: to obtain “iclear”, replace the “CLR” term {used in
Model A}, with a regression performed on “classes” of CLR; the result of the regression on the “classes”
of CLR is called “iclear*”, and remove the tails of the biologically damaging UV radiation distribution,
i.e., censor “bad” data; (3) solar zenith angle [SZA], is identical to Model B (using the same equations)
except the tails of the biologically damaging UV radiation distributions are removed (data censoring).

If we generate a graph of “a”, where a = RAF, as a function of the regression on each class of CLR
(iclear—where, for example, for CLR representing 40–50% clear skies, iclear = 45; for CLR representing
90–100% clear skies, iclear = 95%, etc.), with data censoring (biologically damaging UV radiation
distribution tails removed), the black line envelope in Figure 13 gives the 2-sigma (95%) confidence
interval around the value of the RAF. When the data in the tails of the biologically damaging UV
radiation distributions are removed, there is minimal effect of percent clear sky (cloudiness) on the
RAF as compared to Model A or Model B.

With Model C, the RAF tends to increase (i.e., become less negative) as the clear sky percentage
decreases (from 25% clear sky radiation [transmitted] to 15% clear sky radiation [transmitted]). This
behavior is expected, as an increase in cloudiness (decrease in percent clear sky radiation transmitted)
tends to reduce the amount of UV radiation reaching the Earth’s surface for each 1% change in total
column ozone. Between 25% and 45% clear sky radiation, there is no visible change in RAF value. This
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may be a result of the removal of the “tails” of the biologically damaging UV radiation distributions,
which would be expected to drive the values of the distributions closer to the mean value. This is
the only model without an inflection point at 45% clear sky value, which seems reasonable given the
censoring of the tails of the biologically damaging UV radiation distributions. The lowest RAF value
(−1.18) occurs at 95% clear sky radiation, which again might be attributable to the data censoring used
in this model. The residuals for Model C censored data are provided in Figures 14 and 15.
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Figure 13. Model C: RAF versus percent clear sky radiation transmitted (cloudiness) parameter using
“classes” of percent clear sky radiation transmitted (variable: iclear)—with removal of the “tails” of the
biologically damaging UV radiation distributions.

The Model C residuals versus the natural logarithm of the total column ozone value in Dobson
Units (LOZ) for sky clearness percentages of 90–100% (iclear = 95) indicate that biologically damaging
UV radiation mostly clusters around the expected values, with a high R2 value, as shown in Figure 14
below. The high R2 value for Model C can be attributed to the fact that extreme values were removed
by data censoring. The R2 values for the residuals of the other models are lower than Model C and
display more scatter.

The Model C residuals versus the natural logarithm of the total column ozone value in Dobson
Units (LOZ) for sky clearness percentages of 40–50% (iclear = 45) indicate that these biologically
damaging UV radiation measurements have a larger spread than those at sky clearness percentages of
90–100% (iclear = 95), with a relatively high R2 value, as shown in Figure 15 below.

At first glance, the residuals for the for sky clearness class 90% to 100% (iclear = 95), Figure 14,
and for the sky clearness class 40% to 50% (iclear = 45), Figure 15, would seem to indicate that Model C
fits the data well, but the fact that the tails of the distribution were removed does not allow there to be
an accurate assessment of model fit by analyzing residuals.



Atmosphere 2017, 8, 153 27 of 33

Atmosphere 2017, 8, 153  26 of 32 

 

the data censoring used in this model. The residuals for Model C censored data are provided in 
Figures 14 and 15. 

 
Figure 13. Model C: RAF versus percent clear sky radiation transmitted (cloudiness) parameter using 
“classes” of percent clear sky radiation transmitted (variable: iclear)—with removal of the “tails” of 
the biologically damaging UV radiation distributions. 

The Model C residuals versus the natural logarithm of the total column ozone value in Dobson 
Units (LOZ) for sky clearness percentages of 90–100% (iclear = 95) indicate that biologically damaging 
UV radiation mostly clusters around the expected values, with a high R2 value, as shown in Figure 
14 below. The high R2 value for Model C can be attributed to the fact that extreme values were 
removed by data censoring. The R2 values for the residuals of the other models are lower than Model 
C and display more scatter.  

 
Figure 14. Model C: Residuals versus the natural logarithm of the total column ozone value in Dobson 
Units (LOZ) for sky clearness class 90% to 100% (iclear = 95) with removal of the “tails” of the 
biologically damaging UV radiation distributions—Note: LCZA = natural logarithm of the cosine of 
the solar zenith angle, LDUV = natural logarithm of the biologically damaging UV radiation, and LOZ 
= natural logarithm of the total column ozone. 

Figure 14. Model C: Residuals versus the natural logarithm of the total column ozone value in
Dobson Units (LOZ) for sky clearness class 90% to 100% (iclear = 95) with removal of the “tails” of
the biologically damaging UV radiation distributions—Note: LCZA = natural logarithm of the cosine
of the solar zenith angle, LDUV = natural logarithm of the biologically damaging UV radiation, and
LOZ = natural logarithm of the total column ozone.
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Figure 15. Model C: Residuals versus the natural logarithm of the total column ozone value in Dobson
Units (LOZ) for sky clearness class 40% to 50% (iclear = 45) with removal of the “tails” of the biologically
damaging UV radiation distributions—Note: LCZA = natural logarithm of the cosine of the solar
zenith angle, LDUV = natural logarithm of the biologically damaging UV radiation, and LOZ = natural
logarithm of the total column ozone.

3.1.4. Model D

The relationship between the biologically damaging UV radiation and the following parameters:
(1) total column ozone [O3]; (2) CLRˆ [assuming a linear function in percent clearness {“classes” of
CLR} for skies between 40% clear and 100% clear]; (3) solar zenith angle [SZA], is given as follows:

Biologically Damaging UV Radiation = A × (O3)a + b × CLRˆ × (cos(SZA))c (11)
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where a + b × CLRˆ represents a linear function in percent clearness for 40–100% clear skies.
The slope of the UVR–ozone relationships derived for clear skies, light cloudy skies, medium

cloudy skies and heavy cloudy skies for this model, can be found using the formula:

ln (Biologically Damaging UV Radiation) = ln(A) + a × ln (O3) + b × CLRˆ × ln (O3) +

c × ln(cos(SZA))
(12)

which can be rewritten in its derivative form as:

[δBiologically Damaging UV Radiation/δO3]/Biologically Damaging UV Radiation

= (a + b × CLRˆ)/(O3)
(13)

Note: The ln (A) term and the c × ln (cos(SZA)) term both are reduced to 0 when derivatives are
taken since ln (A) is a constant and cos(SZA) is a constant, since 0 < cos(SZA) < 1. Equation (13) can be
reduced to:

[∆Biologically Damaging UV Radiation/Biologically Damaging UV Radiation] [∆O3/O3]

= (a + b × CLRˆ) = RAF
(14)

The black line envelope in Figure 16 gives the 2-sigma (95%) confidence interval around the value
of the RAF. The results were similar to those found in Model B for individual regressions using the
“iclear*” parameter to represent classes of percent clearness. Note in Figure 16 the “dip” in RAF values
between 45–55% clearness. This could indicate isolated clouds passing over the sun during individual
measurement scan periods.
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With Model D, the RAF tends to increase (i.e., become less negative) as the clear sky percentage
decreases (from 45% clear sky radiation [transmitted] to 15% clear sky radiation [transmitted]). This
behavior is expected, as an increase in cloudiness (decrease in percent clear sky radiation transmitted)
tends to reduce the amount of UV radiation reaching the Earth’s surface for each 1% change in total
column ozone. At 45% clear sky radiation, where the lowest RAF value (−1.3) is found, there is
an inflection point, after which RAF values increase, with one exception between 85–95% clear sky
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radiation. The RAF values between 40–60% clear sky radiation could possibly indicate an isolated
cloud over the sun during a scan.

3.1.5. Model E—(A Model Based on an Empirical Relationship: Beer–Lambert’s Law)

The functional relationship between the biologically damaging UV radiation and the following
parameters: total column ozone [O3]/cos(SZA), and cos(SZA), based on Beer–Lambert’s Law is shown
in Equation (15) (where k = −RAF/{O3/cos(SZA)}):

Biologically Damaging UV Radiation = A × exp (−k × O3/cos(SZA)) × (cos(SZA))c (15)

The slope of the UVR–ozone relationships derived for clear skies, light cloudy skies, medium
cloudy skies and heavy cloudy skies for this model, can be found using Equation (16):

ln (Biologically Damaging UV Radiation) = ln (A)−k × O3/cos(SZA) + c × ln (cos(SZA)) (16)

Which can be rewritten in its derivative form as:

[δBiologically Damaging UV Radiation/δO3]/Biologically Damaging UV Radiation

= −k × O3/cos(SZA)
(17)

Note: The ln (A) term and the c × ln (cos(SZA)) term both are reduced to 0 when derivatives are
taken since ln (A) is a constant and cos (SZA) is a constant, since 0 < cos(SZA) < 1. Equation (17) can be
reduced to:

[∆Biologically Damaging UV Radiation/Biologically Damaging UV Radiation]/[∆O3/O3]

=−k × O3/cos(SZA) = RAF
(18)

Using fixed values for average total column ozone and average solar zenith angle facilitates
sensitivity analysis of the RAF.

RAF =−k × avg O3/cos(avg SZA): [avg O3 = 315 DU, avg SZA = 36 deg] (19)

In order to make the definition of UV-A temporally closer to the definition of the biologically
damaging UV radiation, for this model (Model E), use the UVR wavelength range of 325–330 nm
{UV325: Figure 3}, which is unaffected by ozone, not 330–363 nm (Figure 5) used previously in
Models A through D. Since the empirical relationship is proportional to total column ozone, it is
necessary to find the portion of the electromagnetic spectrum where UVR is unaffected by atmospheric
ozone and observe the variation of SZA and cloudiness on biologically damaging UV radiation. The
black line envelope in Figure 17 gives the 2-sigma (95%) confidence interval around the value of
the RAF. Beer–Lambert’s Law suggests that a more suitable physical model implies that the RAF is
not constant but is proportional to (O3/cos(SZA)). However, using average ozone and SZA values
yielded results similar to those provided in Figure 17. Note in Figure 17 the “dip” in RAF values
between 40–50% clearness. This could indicate isolated clouds passing over the sun during individual
measurement scan periods. Note: There may be a relationship between the seasonal ozone cycle
(i.e., high ozone = spring, low ozone = fall), cloud types, and cloud coverage amounts requiring
further exploration.

With Model E, the RAF tends to increase (i.e., become less negative) as the clear sky percentage
decreases (from 45% clear sky radiation [transmitted] to 15% clear sky radiation [transmitted]). This
behavior is expected, as an increase in cloudiness (decrease in percent clear sky radiation transmitted)
tends to reduce the amount of UV radiation reaching the Earth’s surface for each 1% change in total
column ozone. At 45% clear sky radiation, where the lowest RAF value (−1.28) is found, there is an
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inflection point, after which RAF values increase, with exceptions between 75% and 85% clear sky
radiation, and between 105% and 115% clear sky radiation, consistent with [22].
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Although Model A and Model B have average RAF values closer to −1.2, while Model D has an
average value of nearly −1.1 (−1.087), Model A, Model B, and Model D behave in a similar fashion,
as they each display the relationship where RAF decreases as clear sky increases (percent cloudiness
decreases) between the 100% to 120% clear sky values. Each of these three models displays the
lowest RAF values (−1.3 to −1.38) at the 45% clear sky value. Due to the censoring of the tails of the
biologically damaging UV radiation distribution, understandably, Model C has a “flattened” RAF
versus clear sky response curve. Model E, like Model A, Model B, and Model D, also has its lowest
RAF value (−1.28) at the 45% clear sky value. The average RAF value of Model E is −1.119 (less
than Model A), and it displays the relationship where RAF increases as clear sky increases (percent
cloudiness decreases) between the 85% to 105% clear sky values, unlike Models A, B, and D.

4. Conclusions

This research project utilized a large dataset of UVR measurements from ten monitoring sites that
were diverse with respect to spatial location, geography, climate, altitude, and ecology to calculate
RAF using four hypothetical approaches and one empirical model. This research project developed
a consistent definition of cloudiness, independent of total column ozone, and temporally close to
biologically damaging UV radiation measurements to facilitate direct and consistent comparisons
between each of the approaches for modeling RAF. Model C, which censors the tails of the biologically
damaging UV radiation distribution, should not be used to assess RAF, since the RAF value is
artificially driven to a mean value (−1.1). While Models A, B, and D are consistent and comparable in
the relationship between RAF and clear sky radiation between 100% and 120%, the empirically-based
model, Model E, behaves differently in that range.

The results show that for all models except Model C (censored tails), in the 35% to 65% range of
clear sky radiation (65% to 35% cloudiness), as cloudiness decreases, RAF increases, ranging from −1.2
to −1.4, where it reaches its highest level before decreasing. Between 15% and 25% clear sky radiation
(85% to 75% cloudiness), there is an increase in RAF for all models. In general, RAF tends to increase
as the sky conditions change from high to moderate cloudiness. Clouds block biologically damaging
UV radiation in this range and the behavior is qualitatively the same as if stratospheric ozone was
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increased. UVR can experience a 4.3% increase per kilometer of altitude, from 0 km to 6.2 km, and is
also affected by atmospheric pressure and aerosol density [23]. It is noted in the literature that mean
cloud attenuation of UVR in the UV-B (wavelengths: 280–315 nm) is approximately 15–30% [24]. UV
radiation is also reflected by both clouds and the Earth’s surface [25], which complicates analyses in
this area. Erythemally-weighted UV-B has displayed a 3–7% decadal increase in mid and high latitudes
from Nimbus 7 satellite observations [26]. For 105% to 120% clear sky radiation, RAF increases for
Models A, B and E, while decreasing for Models C and D. The RAF is important because it serves as
a sensitivity metric that directly relates changes in stratospheric ozone to changes in the UVR flux
reaching the Earth’s surface. Overall, the resulting RAF values from the five modeling approaches are
consistent with those found in [27].
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