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Abstract: (1) Background: To demonstrate the potential effects of missing exposure data and model
choice on public health conclusions concerning the impact of heat waves on heat-related morbidity.
(2) Methods: Using four different methods to impute missing exposure data, four statistical models
(case-crossover, time-series, zero-inflated, and truncated models) are compared. The methods are used
to relate heat waves, based on heat index, and heat-related morbidities for Florida from 2005–2012.
(3) Results: Truncated models using maximum daily heat index, imputed using spatio-temporal
methods, provided the best model fit of regional and statewide heat-related morbidity, outperforming
the commonly used case-crossover and time-series analysis methods. (4) Conclusions: The extent of
missing exposure data, the method used to impute missing exposure data and the statistical model
chosen can influence statistical inference. Further, using a statewide truncated negative binomial
model, statistically significant associations between heat-related morbidity and regional heat index
effects were identified.
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1. Introduction

Climate change, with respect to extreme heat, is a primary public health concern, especially in
Florida. Complications of studying extreme heat can compound when long-term exposure data are
missing or incomplete. Further, these missing data can change analytical and public health conclusions
from these studies. Previously, public health researchers have either focused on times of known
extreme heat events, eliminating the need for a data-driven extreme heat definition; studied one locale
or city-specific heat waves, which typically results in exposure data having similar quality or patterns
of missingness across heat waves; or have used only 10–20 years of weather data to define extreme
heat, a shorter duration than that used in climate science [1–6].

Climate science generally uses at least 30-year intervals of weather data to establish climate
normals or long-term averages [7]. For Florida, 40 years of maximum daily heat index data from
43 Florida weather monitors were used to establish climate norms. Using these norms, regional heat
waves occurring during 2005–2012 have been established [8,9]. These heat waves were defined using
Florida’s National Weather Service (NWS) regions (Figure 1), combining the small Keys region (KEY)
and the Miami region (MFL) to avoid estimation issues due to small counts.

Atmosphere 2017, 8, 70; doi:10.3390/atmos8040070 www.mdpi.com/journal/atmosphere

http://www.mdpi.com/journal/atmosphere
http://www.mdpi.com
http://www.mdpi.com/journal/atmosphere


Atmosphere 2017, 8, 70 2 of 14
Atmosphere 2017, 8, 70 2 of 14 

 

 
Figure 1. National Weather Service regions and locations of Florida Climate Center monitors  
within Florida. 

In public health extreme heat morbidity research, two methods are typically used to define a case, 
or adverse health event. The first method uses all-cause morbidities and includes inpatient 
hospitalizations and emergency department visits. These studies generally exclude cases described as 
having external causes of injury [10], i.e., car accident; however, associations may be difficult to 
interpret. Other studies use specific groupings of International Classification of Disease (ICD) codes or 
specific symptoms to focus their studies on illnesses of interest such as exertional heat-related illness, 
diabetes, cardiovascular diseases, pulmonary diseases, kidney illnesses, and preterm delivery [1–3,5,6,11]. 
These more focused studies typically have motivating biological mechanisms or processes to inform 
interpretations.  

Regardless of how morbidity is defined, most heat wave morbidity research utilizes case-crossover 
or time-series analysis methods, with no consideration or comparison on which may better reflect the 
data. Fletcher et al. [3] performed a time-stratified case-crossover analysis to determine an association 
between temperatures in July and August, during 1991–2004, with hospital admissions for renal 
diseases in New York State. Basu et al. [2] also used a time-stratified case-crossover model to determine 
associations between high ambient temperature and preterm births in May to September from  
1999–2006, in 16 counties in California. Similarly, Tong et al. [10] used a time-stratified case-crossover 
analysis to compare the effect of different heat wave definitions on the associations between heat and 
emergency departments visits. In a later paper, Tong et al. [12], conducted both time-series and  
case-crossover analyses to assess short-term association between heat waves and both morbidity and 
mortality. To estimate the risk of hospitalization for respiratory diseases associated with outdoor heat, 
Anderson et al. [1] used a time-series model with the county-level daily hospitalization rate during May 
to September, from 1999–2008. Modeling the daily number of heat-related emergency department visits 
during 2007 and 2008, by age group, county and day, a time-series model was also used to estimate the 
association between average daily mean temperature and heat-related emergency department visits in 
Lippman et al. [4]. 

Leary et al. [9] were the first to consider and compare multiple methods of imputing missing 
exposure data for heat waves and was only the second to consider any missing data for heat wave 
research [9,13]. They [9] showed that the identification of heat waves changed, when considering 
different imputation methods for missing heat index values. Here, we explore the subsequent 
changes in inference on heat-related morbidity. 

Figure 1. National Weather Service regions and locations of Florida Climate Center monitors
within Florida.

In public health extreme heat morbidity research, two methods are typically used to define a
case, or adverse health event. The first method uses all-cause morbidities and includes inpatient
hospitalizations and emergency department visits. These studies generally exclude cases described
as having external causes of injury [10], i.e., car accident; however, associations may be difficult
to interpret. Other studies use specific groupings of International Classification of Disease (ICD)
codes or specific symptoms to focus their studies on illnesses of interest such as exertional
heat-related illness, diabetes, cardiovascular diseases, pulmonary diseases, kidney illnesses, and
preterm delivery [1–3,5,6,11]. These more focused studies typically have motivating biological
mechanisms or processes to inform interpretations.

Regardless of how morbidity is defined, most heat wave morbidity research utilizes case-crossover
or time-series analysis methods, with no consideration or comparison on which may better reflect the
data. Fletcher et al. [3] performed a time-stratified case-crossover analysis to determine an association
between temperatures in July and August, during 1991–2004, with hospital admissions for renal
diseases in New York State. Basu et al. [2] also used a time-stratified case-crossover model to determine
associations between high ambient temperature and preterm births in May to September from
1999–2006, in 16 counties in California. Similarly, Tong et al. [10] used a time-stratified case-crossover
analysis to compare the effect of different heat wave definitions on the associations between heat
and emergency departments visits. In a later paper, Tong et al. [12], conducted both time-series and
case-crossover analyses to assess short-term association between heat waves and both morbidity and
mortality. To estimate the risk of hospitalization for respiratory diseases associated with outdoor
heat, Anderson et al. [1] used a time-series model with the county-level daily hospitalization rate
during May to September, from 1999–2008. Modeling the daily number of heat-related emergency
department visits during 2007 and 2008, by age group, county and day, a time-series model was also
used to estimate the association between average daily mean temperature and heat-related emergency
department visits in Lippman et al. [4].

Leary et al. [9] were the first to consider and compare multiple methods of imputing missing
exposure data for heat waves and was only the second to consider any missing data for heat wave
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research [9,13]. They [9] showed that the identification of heat waves changed, when considering
different imputation methods for missing heat index values. Here, we explore the subsequent changes
in inference on heat-related morbidity.

Specifically, we will investigate the effects of missing data and method of analysis on inferences
regarding the association between extreme apparent temperature, as measured using heat index, and
heat-related morbidity. A strict definition of heat-related morbidity (i.e., inpatient hospitalizations
and emergency department visits for heat-related illness) is considered to conservatively assess these
associations in Florida from 2005–2012.

2. Experiments

2.1. Exposure Data with Missingness

The Florida Climate Center (FCC) receives weather data from the National Climatic Data Center
weather monitors and runs multiple data quality checks while computing additional indicators,
such as heat index. Heat index is a measure of how heat is felt by a person, in contrast to measured
temperature. Weather data collected from 1973–2012 for 43 weather monitors across the state of Florida
were obtained from the FCC. Heat index (◦F) was calculated using the standard Rothfusz equation and
adjustments, which combine temperature and humidity into a single index [14]. This study uses the
warm season definition created by the FCC, which is from April through September of each year [15].
The percent missing weather monitor data ranged from 0% to 92% during June through August and
from 9% to 96% during April, May, and September.

Assuming the data were missing at random (MAR), the missing data were either (1) ignored
or imputed using one of three approaches; (2) a temporal model; (3) a spatial model; and (4) a
spatio-temporal model [8,9]. Using the distribution of warm season maximum daily heat index for
each of the four missing data approaches, 80th percentiles of maximum daily heat indexes during
Florida’s warm season were estimated using the observed and imputed data. Using these estimates,
heat waves were then defined as a period of consecutive days in which each weather monitor in a
region, or the regional average when ignoring missing data, must (a) have the maximum daily heat
index above the 80th warm season percentile of heat index; and (b) have at least three days, which
need not be consecutive, in the period above a regional upper threshold [9] (Table 1). Note that the
period of the heat wave differs with imputation method.

Imputation Methods for Missing Data

(1) Ignore missing data (regional). To determine regional percentiles when ignoring missing data,
the warm season daily heat index values from weather monitors within NWS regions were
averaged, and the regional percentiles of these daily averages determined.

(2) The temporal modeling method. A Bayesian model of daily maximum heat index for each
weather monitor was used to impute missing data. The model included functions of the date,
day of year (Julian day), and year.

(3) The spatial modeling method. For each day, during the time period of interest, ordinary kriging,
an interpolation method used for predicting spatial data, was used to impute missing data.
Second order stationarity and isotropy was assumed. An exponential covariance model was used
to capture the spatial covariance.

(4) The spatio-temporal method. Imputations for missing data were based on both spatial
relationships and time trends. This space-time process for daily maximum heat index for each
monitor on each day was fit using Restricted Maximum Likelihood methods (REML), using a lag
effect of heat index over time and an exponential covariance structure.
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Table 1. Heat waves identified for all National Weather Service (NWS) regions from 2005–2012,
by region and method of imputation.

Region Imputation Method Heat Waves Regional Threshold

JAX

Ignoring missing data 5–14 August 2007 107 ◦F

Temporal 6–11 August 2007 104 ◦F

Spatial 6–11 August 2007 104 ◦F

Spatio-temporal 6–11 August 2007 104 ◦F

MFL/KEY

Ignoring missing data 11–21 August 2010 105 ◦F

Temporal 18–21 August 2010
22–25 July 2011 103 ◦F

Spatial 18–21 August 2010
22–25 July 2011 103 ◦F

Spatio-temporal 18–21 August 2010
22–25 July 2011 103 ◦F

MLB

Ignoring missing data 24 July–3 August 2010
11–17 August 2011 106 ◦F

Temporal
14–16 June 2010

24 July–1 August 2010
17–21 August 2010

100 ◦F

Spatial 13–20 August 2005
20–22 June 2009 102 ◦F

Spatio-temporal 13–20 August 2005
20–22 June 2009 102 ◦F

MOB

Ignoring missing data 20 July–14 August 2010 112 ◦F

Temporal 20 July–14 August 2010 110 ◦F

Spatial 20 July–14 August 2010 110 ◦F

Spatio-temporal 20 July–14 August 2010 110 ◦F

TAE

Ignoring missing data
5–18 August 2007
14–23 June 2009

9 July–10 August 2010
109 ◦F

Temporal 16–23 June 2009 107 ◦F

Spatial 16–23 June 2009 107 ◦F

Spatio-temporal 16–23 June 2009
28 July–10 August 2010 107 ◦F

TBW

Ignoring missing data 20–23 June 2009 106 ◦F

Temporal 17–19 August 2005
1–3 August 2010 101 ◦F

Spatial 16–19 August 2005 102 ◦F

Spatio-temporal 16–19 August 2005 102 ◦F

Table abbreviations: Jacksonville region (JAX), Miami/Keys region (MFL/KEY), Melbourne region (MLB),
Mobile region (MOB), Tallahassee region (TAE), Tampa Bay region (TBW).

2.2. Health Data

In-patient hospitalization and emergency department billing data from 2005 to 2012 were obtained
from all Florida hospitals and emergency departments, except state-operated, Federal, or Shriner’s
hospitals. These health data were accessed through partnership with the Florida Department of Health;
Institutional Review Board approvals and protocols were followed for the Florida Department of
Health, the University of Florida, and the University of Missouri.

This study follows the Centers for Disease Control and Prevention (CDC 2013) guidelines for
heat-related illness, such that a strict definition using only heat-related ICD-9 codes is used (Table 2).
Patients presenting to a Florida hospital or emergency department from 2005 through 2012 and who
have a heat-related ICD-9 code are considered in this study. An indicator variable was created for
each imputation approach indicating whether or not the patient was admitted during a heatwave.
All non-Florida residents were excluded and the county in Florida associated with the medical record
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billing address was taken as the patient’s county of residence and used in the analysis. To protect
patient confidentiality, county is the geographical area considered for these analyses. External cause of
injury code E900.1 is defined as accident due to excessive heat man-made, which could be a burn from
a house fire; any billing record with this code was removed. Consequently, 27,934 cases of heat-related
morbidity from 2005–2012 were analyzed in this study.

Table 2. ICD-9 codes used to determine heat-related morbidities from inpatient hospitalization and
emergency department billing data.

ICD-9 Code ICD-9 Code Description

E900.0 Excessive heat exposure due to weather conditions
E900.9 Excessive heat exposure due to unknown origins
992.0 Heat stroke and sunstroke
992.1 Heat syncope
992.2 Heat cramps
992.3 Heat exhaustion from water depletion
992.4 Heat exhaustion from salt depletion
992.5 Heat exhaustion, unspecified
992.6 Heat fatigue, transient
992.7 Heat edema
992.8 Other specified heat effects
992.9 Unspecified effects of heat and light

Adapted from CDC. Note: any person having ICD-9 code E900.1 (man-made source of heat) in any part of their
record were removed from analysis.

2.3. Linking Health and Exposure Data

Morbidity data are available at the county level, and heat exposure data are reported by individual
weather monitors. To link maximum daily heat index to heat-related morbidity at the county level
for analysis, block kriging was used to predict the county-level maximum daily heat index based on
observed and imputed data from the 43 FCC weather monitors. Block-kriged predictions spatially
average the point level estimates from the individual weather monitors and avoid the bias that arises
when using the alternative method of aggregation based on county centroids [16,17]. However,
block kriging requires at least two observations for maximum daily heat index. When less than two
observations of maximum daily heat index were recorded for a day, a monitor’s monthly average
maximum daily heat index, across years, was taken as that day’s predicted value. This scenario
occurred for less than 4% of the data (n = 43) and never during June, July, or August, typically the
warmest months of the defined warm season.

2.4. Case-Crossover Model

The time-stratified case-crossover design is used when a short exposure period causes a change
in risk of acute-onset events [18] and is much like a self-matched case-control design in which every
case serves as its own control. The case-crossover design documents exposures immediately prior
to the event of interest (called the hazard period) and compares them to exposures from a period
during which the event of interest did not occur (called the referent periods). The case-crossover
design has previously been applied in studies investigating the association between morbidity and
temperature [3,10,12]. Because each case acts as its own control, individual characteristics, such as
sex, age, and race, are exactly matched; therefore, the time-stratified case-crossover design inherently
controls for confounding effects.

Adapting the notation and likelihood derivation directly from Lu and Zeger [19], let Xictic
be the

exposure for person i in county c, c = 1, . . . , C, in interval t, t = 1, . . . , T, indexed by i and c. Using
the score function, the estimating equation is the sum, over counties, of the difference between each
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subject’s exposure at the index time tic and a weighted average of all exposures, indexed by m, at all
times in the referent period W(tic); that is,

U(β) =
C

∑
c=1

n

∑
i=1

Uic(β) =
C

∑
c=1

n

∑
i=1

Xictic
− ∑

m ∈ W(tic )

Xicmic

exp
(

βXicmic

)
∑j ∈ W(tic )

exp
(

βXic jic

)
 (1)

A time-stratified case-crossover analysis was performed for each region and each method of
accounting for missing data. The hazard period and referent periods were linked with the block kriged
county maximum daily heat index based on the county of the patients’ billing address and the date of
medical service. Referent periods were chosen to be the same day of the week as the hazard period,
during the same month [3,12]. This controls for day of week effects and results in a maximum of four
referent periods for each case period. The Breslow method [20] was used to minimize any potential
exposure bias due to ties [21] and cubic B-splines, with 3 equally spaced knots, for fixed effects of time
are considered. Because of published reports of a lag effect of temperature [1,3,5,12], lagged-day heat
index exposures for block-kriged county daily heat index of same day (no lag), 1-day lag, 2-day lag,
and 3-day lag are considered in the analyses.

2.5. Time-Series Model

Time-series analyses are also used to investigate associations between morbidity and periods of
extreme heat [1,12]. Further, in Lu and Zeger [19], they demonstrate that when the exposure is common
to the cohort at the time (as it is here), that case-crossover approach is equivalent to a log-linear time
series analysis. Although the case-crossover analysis controls for confounding by design (through the
choice of the referent periods), the time-series approach controls bias through the model itself, i.e.,
the function of time. This means that the choice of referent intervals in the case-crossover design is
equivalent to the choice of estimator for the function of time in a time-series analysis. Let Ytc denote
the number of heat-related morbidities on day t in county c and let Xtc be the exposures within county
c, c = 1, . . . , C, on day t, t = 1, . . . , T. Stc is a nuisance function that is the log of the total population
baseline risk for county c on day t, which represents factors that affect the population as a whole
(improved public health awareness or improved medical services) as well as integrating across the
population individual baseline risks, such as demographic factors or smoking habits [19]. The number
of heat-related morbidities for each day t in each county c is modeled using log-linear regression
techniques, assuming the counts, conditional on the covariates, follow a Poisson distribution. Using
these values, the estimating equation to jointly estimate β, the coefficient to determine an association
with the exposures, and Stc is

U(β) =
T

∑
t=1

C

∑
c=1

Xtc

[
Ytc − exp(βXtc) exp

(
Ŝtc(β)

)]
=

T

∑
t=1

C

∑
c=1

Xtc [Ytc − µ̂tc(β)] (2)

In addition to the case-crossover analyses, time-series analyses were performed for each region
and each method of handling missing data. Numbers of daily heat-related morbidities in a region,
were modeled as a function of the block-kriged county maximum daily heat index, based on the county
of residence and date, and with indicator variables for the day of the week in each calendar month
and year. Similar to the case-crossover analyses, lagged-day heat index exposures for block-kriged
county daily heat index of same day (no lag), 1-day lag, 2-day lag, and 3-day lag were considered.
Cubic B-splines of time were included as fixed effects in the final time-series models. As is typical for
this type of analysis, an overdispersion parameter is added to relax the strong Poisson assumption of
equality of mean and variance.
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2.6. Zero-Inflated Models

The zero-inflated Poisson model is a mixture model composed of both binary and Poisson
processes. One process produces Poisson counts, some of which may be zero, and the other produces
zeroes based on a binary process, which may or may not be defined using parameters from the
Poisson distribution [22,23]. Let Ytc denote the number of heat-related morbidities on day t in county
c and let Xtc be the exposures within county c, c = 1, . . . , C, on day t, t = 1, . . . , T. The Poisson

process is assumed to have mean and variance µtc =
C
∑

c=1
exp(βXtc + Stc), where β is the coefficient to

determine an association with the exposures and Stc is a smooth function that represents population
baseline risk for county c on day t, factors affecting the population as a whole [19]. The number of
heat-related morbidities for each day t in each county c is modeled using mixture-model techniques
for the zero-inflated Poisson model and its log-likelihood is:

l(β) =
T

∑
t=1

C

∑
c=1

log

πtc(1− πtc) exp(−µtc) + (1− πtc) exp(−µtc)
µ

Ytc
tc

(Ytc)!

 (3)

2.7. Truncated Models

The negative binomial model can be written as a Gamma-Poisson mixture distribution and then
divided by 1− P(0) to derive the truncated negative binomial model [24]. Let Ytc denote the number
of heat-related morbidities on day t in county c, Ntc denote the number of those with no heat-related
morbidities on day t in county c and let Xtc be the exposures within county c, c = 1, . . . , C, on day
t, t = 1, . . . , T. The negative binomial process is assumed to have mean and variance µtc = g(βXtc),
where β is the coefficient to determine an association with the exposures. The number of heat-related
morbidities for each day t in each county c is modeled using mixture-model techniques for the truncated
negative binomial model and its log-likelihood is:

l(β) =
T

∑
t=1

C

∑
c=1

log

[(
Γ(Ytc + Ntc )

Ntc ! Γ (Ytc)

µtc

µtc + Ytc

Ntc − 1
) (

Ytc

µtc + Ytc

)Ytc
]

(4)

After comparison between the time-series analysis method and case-crossover method,
zero-inflated and truncated model analyses were also performed as a final analysis method for each
region using the spatio-temporal method for imputation. For regional analysis, numbers of heat-related
morbidities in a region, for each day, were modeled as a function of the block-kriged county maximum
daily heat index, based on the county of residence and date, and with indicator variables for the day of
the week in each calendar month and year. For statewide analyses, a region variable was added to the
model. Similar to all other analyses, lagged-day heat index exposures for block-kriged county daily
heat index of same day (no lag), 1-day lag, 2-day lag, and 3-day lag were considered.

3. Results

Case-crossover, time-series, zero-inflated, and truncated models were built for each combination
of region and missing data approach. Results for the Jacksonville (JAX) and Melbourne (MLB) NWS
regions illustrate the range of inference observed from the NWS regions and are presented to focus
the reporting and interpretation of these results to the main recommendations and findings. The JAX
region contains five FCC weather monitors within 15 counties and is located in the Northeastern part
of Florida. The MLB region contains seven FCC weather monitors within 10 counties and is located
in east-central Florida (Figure 1). For each of the four missing data approaches, regional heat waves
and thresholds are provided for the JAX and MLB regions (Table 1). Heat-related morbidity counts for
each NWS region are provided in Table 3. When multiple heat waves were observed within a region,
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as in the MLB region, the indicator variable identified whether or not the case was associated with a
heat wave and did not differentiate among heat waves.

Table 3. Morbidity counts by NWS region 1.

Region # In Heat Wave Period # In Non-Heat Wave Period

JAX 105 3891
MLB 167 5814
TAE 143 1893
TBW 81 8514

MFL/KEY 37 5391
MOB 113 1785

1 Heat wave periods are defined using spatio-temporal imputed data and are considered for each region. # denotes
the number, or frequency, of each category. Region denotes the NWS region of Florida under consideration.

For these data, inference depended both upon the missing data approach and upon the method
of analysis (Tables 4 and 5). Based on the case-crossover analysis, the effect of a heat wave
was significant for all methods of considering missing data for both the JAX and MLB regions.
However, for the time-series analysis, the main effect of heat wave was not significant with one
exception. When the temporal imputation method and time-series model were used for imputation
and analysis, respectively, the effect of heat wave was significant for the MLB region, but not for
the JAX region. The significances of the effect of the same day, 1-day, 2-day, and 3-day lagged
maximum daily heat index, as well as the interactions between heat wave and the same day and
lagged heat index, depended upon the method used to handle missing data and on the method
of analysis. Significant overdispersion was observed for all time-series analyses, an indication that
the case-crossover assumption of a stable exposure distribution is most likely violated, and not
otherwise easily checked. Thus, the over-dispersed Poisson time-series model is recommended over
the time-stratified case-crossover model.

Table 4. Case-crossover and time-series results for the JAX region using the temporal, spatial and
spatio-temporally imputed heat index data (◦F) and the method ignoring missing data a,b.

Imputation Model Case-Crossover Time-Series

Method Parameter Estimate Std Error p-Value < 0.05 Estimate Std Error p-Value < 0.05

Temporal

HW −36.09724 7.63681 * 6.9707 6.1156
Same Day 0.09760 0.00676 * 0.08293 0.08743
1-day lag 0.01297 0.00824 0.1680 0.1123
2-day lag 0.01019 0.00832 0.03978 0.1040
3-day lag −0.00687 0.00652 −0.1055 0.06587
HW*same 0.35036 0.11312 * 0.01754 0.08765
HW*1-day 0.23157 0.17710 −0.1514 0.1125
HW*2-day 0.02693 0.16522 −0.02827 0.1042
HW*3-day −0.26094 0.09541 * 0.09570 0.06619

Spatial

HW −49.55906 11.14881 * 12.3681 9.2374
Same Day 0.09738 0.00651 * 0.1402 0.08600
1-day lag 0.00742 0.00777 0.06895 0.07693
2-day lag 0.01635 0.00786 * 0.1029 0.07027
3-day lag −0.01011 0.00627 −0.07629 0.04889
HW*same 0.40322 0.13942 * −0.03829 0.08624
HW*1-day 0.21681 0.17253 −0.05862 0.07715
HW*2-day 0.02514 0.16321 −0.08472 0.07056
HW*3-day −0.17198 0.08663 * 0.06438 0.04919

Spatio-
temporal

HW −48.63736 11.07814 * 12.3009 9.1163
Same Day 0.09580 0.00649 * 0.1326 0.08375
1-day lag 0.01193 0.00789 0.09008 0.07143
2-day lag 0.01235 0.00798 0.09848 0.06033
3-day lag −0.00855 0.00627 −0.08740 0.04602 -
HW*same 0.40008 0.13742 * −0.03277 0.08397
HW*1-day 0.25331 0.16513 −0.07499 0.07164
HW*2-day −0.01855 0.14934 −0.08538 0.06066
HW*3-day −0.17071 0.08523 * 0.07686 0.04631 -
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Table 4. Cont.

Imputation Model Case-Crossover Time-Series

Method Parameter Estimate Std Error p-Value < 0.05 Estimate Std Error p-Value < 0.05

Ignoring
missing

data

HW −55.46407 12.94138 * 4.8761 6.6441
Same Day 0.07162 0.00613 * 0.1290 0.06761 -
1-day lag 0.00550 0.00734 0.1431 0.06996 *
2-day lag 0.00651 0.00732 −0.1671 0.06537 *
3-day lag 0.00437 0.00587 0.03772 0.04690
HW*same 0.35826 0.11432 * −0.05629 0.06785
HW*1-day 0.78536 0.17693 * −0.1367 0.07064 -
HW*2-day −0.27011 0.10823 * 0.1755 0.06610 *
HW*3-day −0.32162 0.07960 * −0.03886 0.04748

a Parameters of interest are the heat wave effect, the same day maximum daily heat index, 1-day lagged maximum
daily heat index, 2-day lagged maximum daily heat index, and 3-day lagged maximum daily heat index and their
interactions. Estimates and standard errors are provided for all parameters; b almost significant (0.05 ≥ α ≥ 0.10)
estimates are denoted by “-“; “*”significant (α ≤ 0.05) parameter estimates.

Table 5. Case-crossover and time-series results for the Melbourne (MLB) region using the temporal,
spatial and spatio-temporally imputed data and the method ignoring missing data a,b.

Imputation Model Case-Crossover Time-Series

Method Parameter Estimate Std Error p-Value < 0.05 Estimate Std Error p-Value < 0.05

Temporal

HW −72.06536 8.25492 * −15.9042 7.3207 *
Same Day 0.09817 0.00620 * −0.05374 0.06541
1-day lag 0.02570 0.00741 * −0.01489 0.04841
2-day lag −0.01377 0.00736 - −0.01615 0.05360
3-day lag 0.00295 0.00599 0.01341 0.04329
HW*same 0.49891 0.06715 * 0.1431 0.06594 *
HW*1-day 0.07196 0.05363 0.03617 0.04905
HW*2-day 0.03158 0.05295 0.000705 0.05415
HW*3-day 0.08159 0.05202 −0.02876 0.04368

Spatial

HW −65.83706 8.98039 * −8.9565 9.0176
Same Day 0.10217 0.00619 * 0.08086 0.07437
1-day lag 0.02030 0.00727 * 0.003313 0.08422
2-day lag −0.00703 0.00718 0.03986 0.08159
3-day lag −0.00109 0.00586 −0.09584 0.06411
HW*same 0.56474 0.09245 * 0.02354 0.07482
HW*1-day −0.17869 0.09797 - 0.01741 0.08468
HW*2-day 0.26210 0.11227 * −0.04712 0.08199
HW*3-day −0.02413 0.08683 0.09183 0.06436

Spatio-
temporal

HW −79.14217 10.08211 * −5.6085 8.7265
Same Day 0.10489 0.00599 * 0.09547 0.07296
1-day lag 0.01896 0.00704 * −0.02235 0.07675
2-day lag −0.00667 0.00695 0.08202 0.07622
3-day lag −0.00320 0.00568 −0.09498 0.06190
HW*same 0.59194 0.10078 * 0.01122 0.07334
HW*1-day −0.18918 0.09561 * 0.04153 0.07718
HW*2-day 0.41390 0.10546 * −0.08904 0.07661
HW*3-day −0.06403 0.09214 0.08915 0.06211

Ignoring
missing

data

HW −37.48484 4.91156 * 1.7838 6.3920
Same Day 0.08381 0.00572 * 0.03873 0.03963
1-day lag 0.00370 0.00690 −0.02473 0.05187
2-day lag −0.00351 0.00683 0.003069 0.07141
3-day lag 0.00147 0.00548 0.08361 0.05563
HW*same 0.21530 0.05171 * 0.04555 0.04016
HW*1-day −0.05177 0.05933 0.02934 0.05233
HW*2-day 0.19343 0.06165 * −0.00825 0.07172
HW*3-day 0.0001646 0.04996 −0.08687 0.05591

a Parameters of interest are the heat wave effect, the same day maximum daily heat index, 1-day lagged maximum
daily heat index, 2-day lagged maximum daily heat index, and 3-day lagged maximum daily heat index and their
interactions. Estimates and standard errors are provided for all parameters; b almost significant (0.05 ≥ α ≥ 0.10)
estimates are denoted by “-“; “*” significant (α ≤ 0.05) parameter estimates.
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However, in the model diagnostic plots of residuals against predicted values for the over-dispersed
Poisson time-series model for the NWS region, it was evident that the Poisson assumptions were
violated. In particular, the plot showed a clear separation by the number of heat events. Thus,
this method is not recommended for these data. After several alternative models were considered,
including zero-inflated Poisson (ZIP) and zero-inflated negative binomial models (ZINB), truncated
Poisson and truncated negative binomial models were used to fit the regional data (Table 6). Although
not recommended as a predictive model, the model diagnostics indicated a much better fit to the
heat-related morbidity data, compared to the overdispersed Poisson model (Table 7). Consequently,
the recommended model to assess the association between heat-related morbidity and heat waves
across Florida are the truncated models.

Table 6. Truncated Poisson model results (JAX) and truncated negative binomial results (MLB), using
the spatio-temporally imputed data for MLB and JAX region a,b.

Region Parameter Estimate Std Error Region Parameter Estimate Std Error

JAX

HW −12.4787 9.2498

MLB

HW 10.1956 13.9808
Same Day 0.05295 0.01102 Same Day 0.1058 0.01306
1-day lag 0.01709 0.01310 1-day lag 0.03180 0.01457
2-day lag 0.009037 0.01284 2-day lag −0.02199 0.01371
3-day lag 0.003789 0.01004 3-day lag −0.00837 0.01132
HW*same 0.08127 0.09195 HW * same 0.002722 0.1112
HW*1-day 0.2871 0.1226 HW * 1-day −0.03152 0.1150
HW*2-day −0.2767 0.1091 HW * 2-day 0.001751 0.1216
HW*3-day 0.03594 0.06906 HW * 3-day −0.07049 0.0998

a Parameters of interest are the heat wave effect, the same day maximum daily heat index, 1-day lagged maximum
daily heat index, 2-day lagged maximum daily heat index, and 3-day lagged maximum daily heat index and
their interactions.

A state-wide analysis was also conducted. Leary et al. [9] recommended that a spatio-temporal
model be used to impute missing heat exposure data. Regional analyses indicated that the truncated
negative binomial (MLB) or truncated Poisson model (JAX) provides the best fit to heat-related
morbidity. In addition, zero-inflated Poisson and zero-inflated negative binomial models were
alternatively considered (Table 8). Similar to the regional analyses, the truncated negative binomial
model was determined to provide the best fit to the data.

All models with and without fixed time factors and including indicator variables for day of week,
within month and year, were compared using the Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC), which is appropriate for non-nested model selection [25]. The AIC and
BIC values were similar for the models with indicator variables, both with and without fixed time
factors. However, including these estimators for time is necessary because of the potential confounding
of the heat index exposure over time and to control for confounding by other, time-varying factors.

Within the statewide truncated negative binomial model, the association between heat-related
morbidity and same-day exposure was significant (p≤ 0.05), indicating that the heat index is associated
with morbidity on that day. The statistically significant interactions between same-day exposures
and region and between region and heat wave suggest that the effect of heat exposure on the day of
morbidity initialization varies with region in the state and that the effect of heat wave on morbidity
depends on the region. The presence of the statistically significant interactions between 3-day lagged
exposure, region, and heatwave further suggests that the effect of a 3-day lagged heat exposure on
morbidity varies with both region and heatwave. Nearly statistically significant interactions were
observed between 2-day lagged exposure and region and the 3-way interaction between region,
heat wave, and 2-day lagged exposure, indicating that further study is need to fully understand the
relationship of sustained heat exposure across region and heat wave.
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Table 7. Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC), for the Time-series (TS), Case-Crossover (CC), Zero-Inflated Poisson (ZIP),
Zero-Inflated Negative Binomial (ZINB), Truncated Poisson (TP), and Truncated Negative Binomial (TNB) studies for the JAX and MLB region.

Region Method
AIC BIC

Regional Temporal Spatial Spatio-Temporal Regional Temporal Spatial Spatio-Temporal

JAX

TS 17,156.86 16,832.57 16,838.72 16,838.72 19,955.80 19,631.51 19,665.36 19,637.66
CC 17,156.86 * 11,064.86 * 11,066.51 * 11,035.21 * 11,450.00 ˆ 11,159.25 ˆ 11,160.90 ˆ 11,129.60 ˆ

ZIP 9584.7 9559.7 9527.7 9530.4 11,487.6 11,462.6 11,430.6 11,433.3
ZINB 9584.3 9558.6 9527.1 9529.8 11,487.2 11,461.5 11,430.0 11,432.7

TP 4345.2 4230.3 4236.6 4236.5 6242.1 6127.3 6133.5 6133.4
TNB 4967.5 4890.6 2585.0 4909.8 6870.4 6793.5 4482.0 6812.7

MLB

TS 21,184.67 21,139.23 20,912.39 20,835.53 23,879.65 23,853.97 16,860.73 23,530.52
CC 17,018.44 * 16,693.32 * 16,771.18 * 16,690.40 * 17,185.85 ˆ 16,860.73 ˆ 16,905.11 ˆ 16,824.33 ˆ

ZIP 12,445.5 12,416.4 12,392.2 12,387.3 14,472.6 14,443.5 14,419.3 14,414.4
ZINB 12,444.3 12,414.0 12,392.3 12,387.1 14,477.6 14,447.3 14,425.6 14,420.4

TP 7586.5 7539.1 7458.3 7456.1 9607.3 9559.9 9479.1 9476.9
TNB 7413.1 7380.4 7326.6 7323.5 9440.2 9407.5 9353.7 9350.6

* denotes with covariate AIC value; ˆ denotes Schwartz Bayesian Criterion (SBC) value.

Table 8. AIC and BIC for the Zero-inflated Poisson (ZIP), Zero Inflated Negative Binomial (ZINB), Truncated Poisson (TP) and Truncated Negative Binomial (TNB)
using state-wide models.

Fit Measure ZIP ZINB TP TNB

AIC 97,839.3 97,394.6 32,376.7 32,010.4
BIC 101,589 101,154 35,282.6 34,924.1
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4. Discussion

Similar to past research, this regional analyses indicated no association between heat wave and
heat-related morbidity. However, statewide analyses indicated a regional effect on the association
between heat-related morbidity and heat waves. Regional and statewide results from this study
indicate differences in public health conclusions when different approaches for missing exposure data
and model choice are compared. Recommendations based on these results are to use spatio-temporal
methods to impute missing exposure data and to model these data using truncated models to
investigate 2005–2012 heat-related morbidity across Florida.

In this study, exposures to heat are defined as county-level maximum daily heat index and
are linked to each resident within a county. However, this measure of heat index may not reflect
true exposure because residents may spend time indoors during the hottest portion of a day or
may travel between counties, a limitation of this study. Although the focus here is the association
between an individual’s exposure to extreme heat and heat-related morbidity, the analyses are based
on the average county-level exposure and the number of heat-related morbidity cases in a county.
Accordingly, drawing inference about individuals using these types of aggregated data can lead to
ecological bias [26].

Heat-related morbidity, using the CDC definition, was considered in this study to identify those
health events which are directly related to extreme heat; this health outcome is specific and chosen
to focus on health effects with clear causation and for comparison with other heat-related morbidity
studies. With respect to estimation and modeling, the daily frequency of heat-related morbidity could
affect overdispersion in the models, although a more general health outcome may have a smaller effect,
this may not uniformly be the case. For these reasons, overdisperion must be considered in analyses
for health outcomes.

Each missing heat index value was imputed once. Because the imputed value was then treated as
if it were observed, the standard errors are biased downward, and the p-values associated with the
tests of effects in the models are also biased downward. This is a limitation of this study.

In addition, use of air-conditioning (AC) is a mitigating factor for heat-related illness, and AC use
is abundant throughout Florida. However, state-wide data that would allow the frequency and level
of air-conditioning utilization/usage to be determined are not available so cannot be included in these
analyses. Warm and humid weather is not uncommon in Florida, and it is possible that residents may
have adapted to such extreme conditions, using additional methods beyond AC use.

Although other factors are important in case-crossover analyses, bias has been shown to
be more of a factor for proper estimation, compared to statistical precision [27]. To mitigate
bias, the case-crossover model must appropriately account for the changes in time that confound
exposures [28]. The overdispersion observed for all time-series analyses conducted indicates that,
among other issues, the influence of unmeasured time-varying factors is not accounted for by the
assumed case-crossover model [28]. Failing to account for this overdispersion tends to result in
standard errors that are biased downwards and, consequently, inflated test statistics. This may be part
of the reason that more significant results were obtained for the case-crossover analysis compared to the
time-series analysis. As these models are mathematically equivalent, violations in model assumptions
is the most likely contributor to differences in results, particularly for the case-crossover method as the
assumptions are difficult to assess. Previous studies specific to Florida have concluded that there is no
statistically significant increase in mortality during periods of high summertime temperatures [29].
However, no other study has investigated the effects of heat on heat-specific morbidity for Florida.
Statewide truncated negative binomial model results indicated statistically significant associations
between heat-related morbidity and regional effects of heat index.

5. Conclusions

This study clearly demonstrates that conclusions about the relationship between public health
and environmental factors (here heat effects) can depend on how missing data are accounted for and
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the choice of model used for analysis. Accounting for both spatial and temporal effects when imputing
missing exposure data allowed heat waves to be more accurately determined; ignoring missing data
and considering only spatial effects were not acceptable approaches. Here the truncated Poisson and
truncated negative binomial models were the only ones that provided an adequate fit of heat-related
morbidity to the exposure data. Therefore, to ensure that public health practice is properly informed,
the method of imputation and the choice of model should be carefully determined. If valid inference is
to be drawn, the fit of the selected model should be carefully evaluated to ensure that it is adequate.

Heat illness is an important public health consideration, especially in Florida, as almost 37% of
the total population in Florida is 50 years of age or older. Currently, people 50 and older constitute the
largest population demographic [30] and the biggest economic base in the state [31]. Adaptation to
changing climate—such as increased use of air-conditioning or change in behaviors and the effects of
heat on this large, heat-vulnerable population—may not only have important public health implications
but also important economic implications for Florida.
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