Supplementary Materials: Quantifying Light Absorption of Iron Oxides and Carbonaceous Aerosol in Seasonal Snow across Northern China

Yue Zhou, Xin Wang, Xueqin Wu, Zhiyuan Cong, Guangming Wu and Mingxia Ji

Derivation of the total absorption optical depth on a filter (τ_{tot}), the absorption Ångström exponent of non-BC components (Å_{nonBC}) and the estimated BC loading (L_{BC}^{est})

The calculation of light absorption due to different insoluble light-absorbing particles (ILAPs) is based on the optical analysis using the Integrating Sphere/Integrating Sandwich (ISSW) spectrometer, which was first introduced by Grenfell et al. [1] and readers can find more details in [1].

1. τ_{tot}

The ISSW spectrophotometer measures the absorption spectrum from 450 to 750 nm for all ILAPs collected on a filter. A set of standard filters (Monarch-71 soot) with known black carbon (BC) loading was used to calibrate the system. All amounts of ILAPs on a filter corresponds to an equivalent BC loading (L_{BC}^{equiv}), resulting from the same attenuation signal according to the calibration curve. The total absorption optical depth (AOD) at a certain wavelength λ ($\tau_{tot}(\lambda)$) on a filter can be derived from

$$\tau_{tot}(\lambda) = L_{BC}^{equiv} \cdot MAC_{BC}(\lambda) \tag{S1}$$

where MAC_{BC} represents the mass absorption coefficient of BC, which was chosen to be 6.3 m²·g⁻¹ at 550 nm, following Wang et al. [2].

2. Å_{nonBC}

Similar to the absorption Ångström exponent of all particles on the filter ($Å_{tot}$), the absorption Ångström exponent of non-BC components ($Å_{nonBC}$) can be expressed as

$$\dot{A}_{nonBC} = f_{OC} \cdot \dot{A}_{OC} + f_{Fe} \cdot \dot{A}_{Fe}$$
(S2)

where f_{OC} and f_{Fe} refer to the fractional contributions to total absorption by OC and iron oxides.

3. L_{BC}^{est}

Because we were able to determine $\mathring{A}_{tot}(\lambda_0)$ \mathring{A}_{BC} , and \mathring{A}_{nonBC} , the light absorption fraction of BC at λ_0 $f_{BC}(\lambda_0)$ can be derived using the equation transformed from Equation (6):

$$f_{BC}(\lambda_0) = \frac{\dot{A}_{tot}(\lambda_0) - \dot{A}_{nonBC}}{\dot{A}_{BC} - \dot{A}_{nonBC}}$$
(S3)

The estimated absorption optical depth of BC at $\lambda_0 \tau_{BC}^{est}(\lambda_0)$ can be represented as follows:

$$\tau_{BC}^{est}(\lambda_0) = f_{BC}(\lambda_0) \cdot \tau_{tot}(\lambda_0)$$
(S4)

and, using Equation (5), τ_{BC}^{est} can be scaled across the full spectrum (450 nm to 750 nm).

Finally, the estimated BC loading L_{BC}^{est} is as follows:

$$L_{BC}^{est} = L_{BC}^{max} \cdot f_{BC}^{650-700}$$
(S5)

where $f_{BC}^{650-700}$ is given by $f_{BC}^{650-700} = \tau_{BC}^{est}(650-700) / \tau_{tot}(650-700)$.

References

- 1. Grenfell, T.C.; Doherty, S.J.; Clarke, A.D.; Warren, S.G. Light absorption from particulate impurities in snow and ice determined by spectrophotometric analysis of filters. *Appl. Opt.* **2011**, *50*, 2037–2048.
- 2. Wang, X.; Doherty, S.J.; Huang, J. Black carbon and other light-absorbing impurities in snow across Northern China. J. Geophys. Res. Atmos. 2013, 118, 1471–1492.

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).