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Abstract: By analyzing the data of urban air pollutant measurements from 2013 to 2015 in Nanjing,
East China, we found that the correlation coefficients between major atmospheric compound
pollutants PM2.5 and O3 were respectively 0.40 in hot season (June, July and August) and −0.16
in cold season (December, January and February) with both passing the confidence level of 99%.
This provides evidence for the inverse relations of ambient PM2.5 and O3 between cold and hot
seasons in an urban area of East China. To understand the interaction of PM2.5 and O3 in air
compound pollution, the underlying mechanisms on the inversion relations between cold and hot
seasons were investigated from the seasonal variations in atmospheric oxidation and radiative forcing
of PM2.5 based on three-year environmental and meteorological data. The analyses showed that the
augmentation of atmospheric oxidation could strengthen the production of secondary particles with
the contribution up to 26.76% to ambient PM2.5 levels. High O3 concentrations in a strong oxidative
air condition during hot season promoted the formation of secondary particles, which could result in
a positive correlation between PM2.5 and O3 in hot season. In cold season with weak atmospheric
oxidation, the enhanced PM2.5 levels suppressed surface solar radiation, which could weaken O3

production for decreasing ambient O3 level with the low diurnal peaks. Under the high PM2.5

level exceeding 115 µg·m−3, the surface O3 concentration dropped to 12.7 µg·m−3 at noon with a
significant inhibitory effect, leading to a negative correlation between PM2.5 and O3 in cold season.
This observational study revealed the interaction of PM2.5 and O3 in air compound pollution for
understanding the seasonal change of atmospheric environment.
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1. Introduction

With the rapid economic development and accelerating urbanization process, a lot of energy
is consumed, increasingly releasing pollutant emissions into ambient air in urban regions of
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China, where air pollution has been changing from coal-smoke to compound-polluted type.
Air compound pollution brings serious environment and health problems in urban areas of China [1,2].
As representative pollutants of air compound pollution, ozone (O3) and fine particles (PM2.5) in
ambient atmosphere, are becoming a pervasive air quality problem facing China. The urban regions in
the Yangtze River Delta of East China, Beijing-Tianjin-Hebei region of the North China Plain, the Pearl
River Delta of South China and the Sichuan Basin of Southwest China are particularly acute [3–7].
With a high density of population, the prosperity of industrial activity and transportation, Nanjing, a
major urban area in Yangtze River Delta region, has also been experiencing air compound pollution in
recent years [8–10].

Ambient O3 pollution, known as photochemical smog, is generated through a series of complex
photochemical reactions related to oxides of nitrogen (NOx) and volatile organic compounds
(VOC) under strong solar radiation. Photochemical smog and haze pollution generally take
place simultaneously with the interaction between O3 and PM2.5 for air compound pollution [11].
The interaction between O3 and PM2.5 is mainly affected by the photochemical reaction [12]. In ambient
atmosphere, O3 photolysis generates OH, and then OH oxidizes VOCs to promote NO conversion to
break the steady-state relationship. Photochemical reactions are an important source of tropospheric
O3. In addition to photochemical reactions, the heterogeneous reactions occurring on the surface of
soluble particulate matter and black carbon are also an important way for the interaction between
O3 and atmospheric particles [13–16]. Li et al., analyzed the data collected from Diffuse Reflectance
Infrared Fourier Transform Spectroscopy (DRIFTS) and reported that in the presence of O3, SO2 could
be oxidized to sulfate on the surface of CaCO3 particles [17]. Ge et al., found that high concentrations
of NOx can largely enhance the formation of nitrate in fine particles under high O3 and the favorable
meteorological conditions [18]. Secondary organic and inorganic aerosols generated from oxidation
reactions comprise a significant fraction of particulate matters with high implications for air pollution
in China [19].

Generally, aerosols or atmospheric particles alter the earth’s radiation budget through aerosol
direct and indirect radiative forcing [20]. Zhu et al., and Xu et al., used a box model and a
three-dimensional regional chemical transport model to evaluate the impact of dust particles on
tropospheric photochemistry over Beijing megacity with high dust concentrations leveling down
the ambient O3 [21,22]. Feng et al., (2015) analyzed the summertime O3 formation in a megacity in
Northwest China and concluded that high concentrations of particulate matters can decrease the
photolysis frequencies significantly with reduced O3 by more than 50 µg·m−3 (around 25 ppb) [23].
However, a positive correlation between PM2.5 and O3 with a coefficient R = 0.24 is found in summer
over Hangzhou, a coastal city in East China [8]. Obviously, air pollution could be more complicated
with the interaction between PM2.5 and O3, which needs to be further investigated.

Previous studies on interaction between PM2.5 and O3 mostly focused on individual seasons
and air pollution episodes, and the comprehensive mechanism between PM2.5 and O3 in air
compound pollution has been poorly understood. Based on three-year (2013–2015) environmental
and meteorological monitoring data in Nanjing, a major urban area in East China, this study
attempted to comprehensively explore the relation of PM2.5 and O3 and its seasonal change to
deepen the understanding of air compound pollution in China with the implications on atmospheric
environment changes.

2. Environmental and Meteorological Data

Nanjing—the capital city of Jiangsu Province in East China (left panel of Figure 1) with a
population of 8.18 million—is the urban area for our study. In this study, we analyzed the hourly
environmental monitoring data from 1 January 2013 to 31 December 2015 at nine state sites covering
the urban area of Nanjing. The Environmental monitoring data included the hourly surface particle
mass concentrations of PM2.5 and PM10 as well as Ozone (O3), carbon monoxide (CO), sulfur dioxide
(SO2) and nitrogen dioxide (NO2). To analyze the interaction between PM2.5 and O3 in this study,
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the hot and cold seasons were climatologically defined from June to August and from December to the
following February respectively for the East Asian summer and winter monsoon seasons in this urban
area over East China [24].
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Figure 1. The geographic locations of 9 state controlling air sampling sites in the urban area of Nanjing
in East China (left panel) with the correlation coefficients between ambient fine particles (PM2.5) and
ozone (O3) in hot and cold seasons in the urban area of Nanjing over 2013–2015 (right panel).

The correlation coefficients between PM2.5 and O3 at the urban sites in hot and cold seasons were
presented in the right panels of Figure 1. Interestingly, the positive and negative correlations were
observed respectively in hot and cold seasons over three years of 2013–2015 (right panel of Figure 1).
Averaged over nine air sampling sites in the urban area, the correlation coefficients between PM2.5

and O3 in hot and cold seasons were respectively reaching to 0.40 and −0.16 with both passing the
confidence level of 99%, revealing the inverse relations of ambient PM2.5 and O3 between cold and hot
seasons in an urban area of East China.

The meteorological data of surface air temperature and total radiation observed at Nanjing
observatory over 2013–2015 were also used to analyze the seasonal variation of meteorological
condition in this study. Based on the environmental and meteorological data, the underlying
mechanisms of inversion relations between ambient PM2.5 and O3 in cold and hot seasons were
explored to understand the seasonal variations in air compound pollution in the following sections.

3. Analysis and Discussion

Air quality change could be complex, resulting from the interaction between PM2.5 and O3 in
air compound pollution [25]. In this section, we examined the seasonal changes of atmospheric
environment and meteorological condition to interpret the underlying mechanisms of inversion
relations of PM2.5 and O3 between cold and hot seasons for understanding on the interaction of PM2.5

and O3 in atmospheric environment change.

3.1. Seasonal Variations of Atmospheric Environment and Meteorological Conditions

Ambient PM2.5 and O3 levels are dominant in haze and photochemical air pollution for air quality
change over China [11]. In this study, the light, moderate and heavy levels of haze pollution were
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ranked with daily PM2.5 concentrations from 35 to 75 µg·m−3, from 75 to 115 µg·m−3, and exceeding
115 µg·m−3, and the light, moderate and heavy levels of photochemical air pollution were ranged
with the daily maximum O3 concentrations varying between 100 and 160 µg·m−3, between 160 and
200 µg·m−3 and higher than 200 µg·m−3. Based on the PM2.5 and O3 measurements from 2013 to 2015
over the urban area of Nanjing, we could calculate the proportions of the light, moderate and heavy
levels of haze and photochemical air pollution in cold and hot seasons during three years with the
following formula:

Proportion = N/TD × 100% (1)

with N representing the number of polluted days in each air pollution level in cold or hot seasons,
and TD standing for the total days of same air pollution level during cold and hot seasons over
2013–2015. The proportions calculated with Equation (1) could reflect the seasonal variations in
atmospheric environment connecting with PM2.5 and O3 pollution over the urban area in cold and hot
seasons (Tables 1 and 2).

Table 1. The proportions of three PM2.5 levels (µg·m−3) in cold and hot seasons in the urban area of
Nanjing over 2013–2015.

Seasons 35 < PM2.5 ≤ 75 75 < PM2.5 ≤ 115 PM2.5 > 115

cold 38.1% 70.0% 91.7%
hot 61.9% 30.0% 8.3%

Table 2. The proportions of three O3 levels (µg·m−3) in cold and hot seasons in the urban area of
Nanjing over 2013–2015.

Seasons 100 < O3 ≤ 160 160 < O3 ≤ 200 O3 > 200

cold 18.4% 0.0% 0.0%
hot 81.6% 100.0% 100.0%

It is shown in Tables 1 and 2 that haze pollution occurred mostly in cold winter with high
proportions of 70.0% and 91.7% respectively in moderate and heavy PM2.5 levels over 2013–2015
(Table 1). This was extreme in the case of O3 pollution in hot summer, where the proportions of
ambient O3 levels reached up to 100% in moderate and heavy levels of photochemical air pollution
(Table 2), determining the summertime air quality change in this urban region of East China, which is
consistent with the seasonality of haze and photochemical air pollution in China [8,26].

Atmospheric environment change is generally controlled by air pollutant emissions and
meteorological conditions [27–29]. To understand the meteorological drivers in the seasonal variations
of ambient PM2.5 and O3, Figure 2 presented the diurnal changes of surface air temperature and total
radiation in cold and hot seasons averaged over 2013–2015 with the seasonal averages of surface air
temperature and total radiation (Table 3). Seasonally averaged over three years, the large difference
in total radiation existed with the diurnal peaks of 1.07 MJ·m−2 and 2.00 MJ·m−2 as well as and the
seasonal averages of 0.26 ± 0.53 MJ·m−2 and 0.66 ± 1.05 MJ·m−2 respectively in cold and hot seasons
(Figure 2; Table 3). In cold season, surface air temperature was averaged with 5.2 ◦C, while 25.6 ◦C
averaged in hot season. Strong (weak) atmospheric radiation and high (low) air temperature in hot
(cold) season could be conducive (unconducive) to photochemical reactions for high O3 production
and atmospheric oxidation for secondary particle formation. Additionally, weak atmospheric radiation
and low surface air temperature in cold season could potentially reduce the atmospheric boundary
layer height and mixing, leading to PM2.5 accumulations for increasing wintertime haze pollution in
East China [26].
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Figure 2. Diurnal changes of surface air temperature (◦C) and total radiation (MJ·m−2) in the local
time in Nanjing averaged in cold and hot seasons over 2013–2015.

Table 3. Seasonal averages (±standard deviations) of air temperature (◦C) and total radiation (MJ·m−2)
in Nanjing over 2013–2015.

Seasons Surface Air Temperature (◦C) Total Radiation (MJ·m−2)

cold 5.2 ± 4.3 0.26 ± 0.53
hot 25.6 ± 4.2 0.66 ± 1.05

3.2. Strong Atmospheric Oxidation Promoting Secondary Particle Formation

In this study, we introduced OX (OX = O3 + NO2) to characterize the atmospheric oxidation
ability [30–33]. The seasonally averaged OX concentrations in cold and hot seasons were 95.4 and
105.0 µg·m−3 respectively (Table 4), indicating high atmospheric oxidation in hot season with strong
atmospheric radiation and high air temperature (Table 3). In cold season, the correlation coefficients of
OX to NO2 and O3 were 0.68 and 0.14 respectively, and the ratio of O3/OX was 0.36, manifesting a
more important role of NO2 in atmospheric oxidation. In hot season, the correlation coefficients of
OX to O3 and NO2 were 0.95 and 0.49 with the ratio of O3/OX of 0.61, which implied that O3 could
significantly promote the level of atmospheric oxidation in hot season.

Table 4. OX (OX = O3 + NO2) averages and ratios of O3/OX as well as the correlations of OX to NO2

and O3 in cold and hot seasons over 2013–2015 in Nanjing.

Seasons Average OX (µg·m−3) O3/OX Ratios Correlation to NO2 Correlation to O3

cold 95.4 0.36 0.68 ** 0.14 *
hot 105.0 0.61 0.49 ** 0.95 **

* passing the significant levels p < 0.05; ** passing the significant levels p < 0.01.

The daily maximum concentration O3-max could usually be used to quantify the role of secondary
particles in air quality change due to the close relation between secondary particle formation and
photochemical activities through atmospheric oxidation [34–37]. CO could be regarded as a proxy of
primary particles, and O3-max as photochemical activity index [38]. We adopted the method [38] to
assess the contribution of secondary particle formation in different levels of atmospheric oxidation



Atmosphere 2017, 8, 59 6 of 12

based on daily O3-max concentrations from 2013 to 2015. In order to distinguish the effects of
various degrees of photochemical activities, similarly to Table 2, the daily O3-max concentrations were
categorized into three levels between 100 and 160 µg·m−3, between 160 and 200 µg·m−3, and greater
than 200 µg·m−3. Under the low photochemical activities with daily O3-max < 100 µg·m−3 for clean
air, the observed hourly values of PM2.5/CO could be referred to a representative ratio of primary
PM2.5 particles for all scenarios with (PM2.5/CO)p,L,h, where p, L and h respectively denoted primary
particles, low photochemical activities with daily O3-max < 100 µg·m−3, and daytime in hours. Based on
the ratio of (PM2.5/CO)p,L,h and the hourly PM2.5 and CO concentrations for light, moderate and heavy
levels of photochemical activities, the mass concentrations of primary particles could be estimated
with the following formulae:

(PM2.5) p,LH,h = COLH,h×(PM2.5/CO) p,L,h (2)

(PM2.5) p,M,h = COM,h×(PM2.5/CO) p,L,h (3)

(PM2.5) p,H,h = COH,h×(PM2.5/CO) p,L,h (4)

where LH, M and H represented respectively the light, moderate and heavy levels of photochemical
pollution ranked with 100 µg·m−3 < O3-max ≤ 160 µg·m−3, 160 µg·m−3 < O3-max ≤ 200 µg·m−3,
and O3-max > 200 µg·m−3 (Table 2).

The secondary particle concentrations in PM2.5 could be estimated with the differences between
the observed PM2.5 concentrations and the primary PM2.5 calculated with Equations (2)–(4) in each
level of photochemical pollution as follows:

(PM2.5) sec,LH,h = (PM2.5) obs,LH,h−(PM2.5) p,LH,h (5)

(PM2.5) sec,M,h = (PM2.5) obs,M,h−(PM2.5) p,M,h (6)

(PM2.5) sec,H,h = (PM2.5) obs,H,h−(PM2.5) p,H,h (7)

where (PM2.5) sec,LH,h, (PM2.5) sec,M,h and (PM2.5) sec,H,h were the estimated mass concentrations of
secondary particles in light, moderate and heavy levels of photochemical pollution.

By employing the hourly observation data of PM2.5, CO and O3 in the urban area of Nanjing
over 2013–2015, we estimated the mass concentrations of primary and secondary PM2.5 particles with
Equations (2)–(7) to assess the contributions of secondary PM2.5 particles to ambient PM2.5 in the
light, moderate and heavy levels of photochemical pollution classified with 100 µg·m−3 < O3-max≤ 160
µg·m−3, 160 µg·m−3 < O3-max≤ 200 µg·m−3, and O3-max > 200 µg·m−3, which was illustrated with the
three-year averages over both cold and hot seasons in Figure 3. Under the light, moderate and heavy
levels of photochemical air pollution, the secondary PM2.5 particles could contribute 6.82%, 12.26% to
26.76% mass concentrations to ambient PM2.5 particles. Considering the strong atmospheric radiation
and high air temperature enhancing atmospheric oxidation in hot summer with high proportions of O3

pollution reaching up to 100% in moderate and heavy levels (Figure 2; Tables 2–4), the augmentation
of atmospheric oxidation could strengthen the production of secondary particles with the contribution
up to 26.76% to ambient PM2.5 levels. High O3 concentrations in strong oxidative air condition during
hot season promoted the formation of secondary particles, which could result in a positive correlation
between PM2.5 and O3 in hot season.

It should be pointed out that the contributions of secondary PM2.5 particles to air pollution
were qualified by adopting the assessment approach of Chang et al. [38] to understand the positive
correlation between PM2.5 and O3 during hot season in this study, which could reflect the role of
atmospheric oxidation in secondary particle formation with the discrepancies from previous studies
on other urban regions [19,39]. A complete understanding of the physical and chemical processes of
secondary particle formation in the atmosphere, especially heterogeneous reactions on atmospheric
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particles in changing meteorology, could improve the assessment on the contribution of secondary
particles in air compound pollution.Atmosphere 2017, 8, 59 7 of 12 
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Figure 3. The contributions of secondary PM2.5 particles to ambient PM2.5 concentrations under
photochemical activities ranged with 100 µg·m−3 < O3-max ≤ 160 µg·m−3, 160 µg·m−3 < O3-max ≤
200 µg·m−3, and O3-max > 200 µg·m−3 estimated from the three-year environmental observation in the
urban area of Nanjing.

3.3. High PM2.5 Concentrations Suppressing Solar Radiation and O3 Production

Major chemical components of PM2.5 such as sulfate, nitrate, organic matter and elemental carbon
all have strong ability of extinction [40,41]. Atmospheric particles can scatter and absorb ultraviolet
radiation directly, altering the intensity of incident ultraviolet radiation to impact atmospheric
oxidation and O3 generation [42,43]. Atmospheric particulates could also affect atmospheric oxidation
and O3 formation by modifying cloud physical processes with the effective radius and concentrations
of cloud droplets as well as the optical thickness of clouds [44–46].

In order to examine the effect of PM2.5 on atmospheric radiation in the urban area of East China,
the diurnal changes of total radiation were analyzed under light, moderate and heavy levels of PM2.5

pollution ranged with daily PM2.5 concentrations from 35 to 75 µg·m−3, from 75 to 115 µg·m−3

and exceeding 115 µg·m−3 (Table 1), based on the meteorological and environmental observations
over 2013–2015. Figure 4 presented the daily changes of the atmospheric total radiation averaged
over the three years under the light, moderate and heavy levels of PM2.5 mass concentrations. It is
remarkable in Figure 4 that the magnitudes of total radiation were generally lower from light, moderate
and heavy levels of PM2.5 pollution; especially around noon, with the more significant decreases in
total radiation, the total radiation peaks dropped from 1.823 MJ·m−2 in the light PM2.5 pollution
(35 µg·m−3 < PM2.5 < 75 µg·m−3), 1.303 MJ·m−2 in the moderate PM2.5 pollution (35 µg·m−3 < PM2.5

< 75 µg·m−3) to 1.159 MJ·m−2 in the heavy PM2.5 pollution (PM2.5 > 115 µg·m−3), which confirmed
that the enhancing PM2.5 levels could significantly reduce solar radiation in ambient atmosphere with
strong radiative forcing.
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Figure 4. Diurnal changes of total radiation in local time under three PM2.5 levels over 35–75 µg·m−3

and 75–115 µg·m−3 as well as exceeding 115 µg·m−3 during 2013–2015 in Nanjing.

The O3 change rate could be estimated with the hourly difference of O3 concentrations by using
the hourly data of ambient O3 measurements over the urban sites of Nanjing. To investigate the
inhibitory effect of ambient PM2.5 concentrations on O3 generation by reducing solar total radiation in
PM2.5 polluted air (Figure 4), we averaged the O3 change rates in the same levels to Figure 4 ranked
with light PM2.5 pollution (35 µg·m−3 < PM2.5 ≤ 75 µg·m−3), moderate PM2.5 pollution (75 µg·m−3

< PM2.5 ≤ 115 µg·m−3) and heavy PM2.5 pollution (PM2.5 > 115 µg·m−3) over 2013–2015. Figure 5
presented the diurnal distribution of O3 change rates in light, moderate and heavy PM2.5 pollution
levels, where the positive and negative O3 change rates respectively indicated O3 generation and loss
in ambient air. As shown in Figure 5, the daytime O3 change rates decreased gradually, especially
more significantly around noon with PM2.5 pollution worsening from light, moderate and heavy
levels. In accompany with light, moderate to heavy air pollution, daytime O3 generation rates peaked
respectively with 16.4 µg·m−3 h−1 at 11 a.m., 15.0 µg·m−3 h−1 at 12 a.m. to 12.7 µg·m−3 h−1 at 1 p.m.
(Figure 5). The peaks of daytime O3 change rates were lowered in the time delay of about one hour
with enhancing PM2.5 levels in the urban atmosphere. The increases of PM2.5 concentrations could
exert a significant inhibitory effect on ambient O3 levels.
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Figure 5. Diurnal distribution in local time of O3 change rates under three PM2.5 levels over
35−75 µg·m−3 and 75–115 µg·m−3 as well as exceeding 115 µg·m−3 during 2013–2015 in Nanjing.

High PM2.5 pollution occurred mostly in cold season with the large proportions of 70.0%
and 91.7% in the moderate (75 µg·m−3 < PM2.5 ≤ 115 µg·m−3) and heavy (PM2.5 > 115 µg·m−3)
levels over 2013–2015 (Table 1), which could reduce solar total radiation and suppress O3

production (Figures 4 and 5). Furthermore, the wintertime climate in Nanjing was featured with
weak atmospheric radiation and low air temperature inhibiting photochemical reactions (Tables 3
and 4). The environmental and meteorological conditions could lead to a negative correlation between
PM2.5 and O3 in seasonal air quality change. Wintertime PM2.5 pollution could suppress ambient O3

levels with reduction of atmospheric radiation, which dominated the interaction of PM2.5 and O3 in
cold season.

4. Conclusions

Previous studies on interaction between PM2.5 and O3 were concentrated on individual seasons
and air pollution events. This study analyzed the three-year (2013–2015) environmental and
meteorological monitoring data in Nanjing, a major urban area in East China, and investigated
the seasonal change in interaction of PM2.5 and O3 and the underlying mechanisms to
comprehensively understand air compound pollution in China with the implications on atmospheric
environment changes.

The inverse relations of ambient PM2.5 and O3 in atmospheric compound pollution between
cold and hot seasons were evidenced in this study with three-year environmental observation in an
urban area of East China. By analyzing the three-year observations of environment and meteorology,
the underlying mechanisms on interaction of PM2.5 and O3 in atmospheric compound pollution were
revealed with two processes (Figure 6): (1) high O3 concentrations with strong atmospheric oxidation
could promote the secondary particle formation enhancing ambient PM2.5 levels; and (2) enhanced
PM2.5 concentrations could suppress ambient O3 levels with reduction of atmospheric radiation.
Processes 1 and 2 could build a cycle of interaction between air compound pollutants PM2.5 and
O3. Under the different environmental and meteorological conditions in cold and hot seasons,
processes 1 and 2 could respectively play a dominating role in interaction of PM2.5 and O3 during hot
and cold seasons (Figure 6). Strong atmospheric oxidation promotes secondary particle formation
in hot season, and high PM2.5 concentrations suppresses solar radiation and O3 production in cold
season, which could lead to the negative and positive relations between ambient PM2.5 and O3 in
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cold and hot seasons. The seasonal variation of air compound pollution could be determined by the
seasonally changing interaction of PM2.5 and O3 in atmospheric environment.
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This study revealed the interaction of PM2.5 and O3 in air compound pollution, based on
the three-year data from environmental and meteorological measurements over an urban area
of East China. It should be emphasized that heterogeneous reactions occurring on particulate
matters are an important means of interaction between O3 and PM2.5. The seasonal variations in
meteorology (e.g., winds, atmospheric mixing conditions and precipitation) and air pollutant emissions,
especially biogenic VOC emissions, could also influence the interaction of O3 and PM2.5, which could
be important issues in further study on atmospheric environment change.
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