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Abstract: Hong Kong Observatory has been operating an in-house developed rainfall nowcasting
system called “Short-range Warning of Intense Rainstorms in Localized Systems (SWIRLS)” to
support rainstorm warning and rainfall nowcasting services. A crucial step in rainfall nowcasting
is the tracking of radar echoes to generate motion fields for extrapolation of rainfall areas in the
following few hours. SWIRLS adopted a correlation-based method in its first operational version
in 1999, which was subsequently replaced by optical flow algorithm in 2010 and further enhanced
in 2013. The latest optical flow algorithm employs a transformation function to enhance a selected
range of reflectivity for feature tracking. It also adopts variational optical flow computation that takes
advantage of the Horn–Schunck approach and the Lucas–Kanade method. This paper details the
three radar echo tracking algorithms, examines their performances in several significant rainstorm
cases and summaries verification results of multi-year performances. The limitations of the current
approach are discussed. Developments underway along with future research areas are also presented.
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1. Introduction

1.1. Background

Located at the southern coast of China (Figure 1), Hong Kong is affected by heavy rain and
severe weather every year. In the early flood season from March to May, surface frontal system and
monsoonal trough, in tandem with active mid-tropospheric westerly jets, induce squall lines that lead
to heavy rain, severe convective gusts and hail to Hong Kong and the Pearl River Delta (PRD) region.
In summertime, heavy rain is typically associated with southwest monsoon, tropical cyclones, as well
as the wind convergence zone between a low pressure system near Beibu Wan and a subtropical ridge
extending from the western Pacific. Tropical cyclone activities may extend well into September and
October, while land-sea breeze convergence and frontal system may also bring occasional excessive
rain to the area. A more detailed and quantitative account of the climatological rainfall can be found
in [1,2].

Over seven million people reside in this metropolitan with a landmass of just over 1100 km2,
of which 40% has been designated as country parks or natural reserves. The urban areas and satellite
towns where most people reside are very densely populated. With such a setting, even highly localized
downpour could easily affect a significant portion of the population. The potential impact of rainstorm
is complicated owing to the fact that over 70% of the landmass in Hong Kong is of hilly terrain.
Numerous buildings that are built on or next to man-made or natural slopes run into higher risk
brought by landslides. There is no dearth of events in which heavy rain and the associated weather have
ignited a chain reaction of flooding, landslides, infrastructure failures, fallen trees, traffic congestions,
accidents and the like that gravely affected livelihood of the general public. In 1972, in torrential rain
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a slope in Hong Kong failed, claiming 67 lives, injuring 20 people and destroying three buildings
nearby [3].
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1.2. Rainfall Nowcast 

To mitigate the potential impacts of rainstorms, the Hong Kong Observatory (HKO) introduced 
a color-coded rainstorm warning system in 1992, and subsequently revised it to the present 
three-tier form (amber, red and black signals) in 1998 [4]. The amber signal gives alert on potential 
heavy rain (30 mm in an hour generally over HK) that may develop into a red signal (50 mm in an 
hour) or a black signal (70 mm in an hour) situation. Key Government departments and major utility 
companies are put on alert. The red and black signals warn the public of heavy rain which is likely to 
bring about serious road flooding and traffic congestion. They will trigger response actions by 
Government departments and major transport operators and utility companies. Details of this 
rainstorm warning system can be found in [5]. 

To support the operation of the rainstorm warning system, a radar-based nowcasting system 
named “Short-range Warnings of Intense Rainstorms in Localized Systems” (SWIRLS) was 
developed in 1999 and has since been in operational use. A brief history of and an introduction to 
SWIRLS are given in [6]. 

Other meteorological services and research institutes around the world have also developed 
similar observationally based nowcasting systems, some of which with outputs from numerical 
weather prediction (NWP) models blended into nowcast. Notable operational systems in active 
service include the followings: 

a) Integrated Nowcasting through Comprehensive Analysis (INCA) by Zentralanstalt für 
Meteorologie und Geodynamik (ZAMG); 

b) Nimrod by Met Office, United Kingdom (UKMO); 
c) Spectral Prognosis (S-PROG) by (Australian) Bureau of Meteorology (BoM); 
d) Short-Term Ensemble Prediction System (STEPS) by UKMO/BoM; 
e) Auto Nowcasting System (ANC) by National Center for Atmospheric Research (NCAR); 
f) McGill Algorithm for Precipitation Nowcasting Using Semi-Lagrangian Extrapolation 

(MAPLE) by (Canadian) McGill University etc.  

A comprehensive review of nowcasting systems was conducted by Royal Meteorological 
Institute of Belgium back in 2008 [7], which includes verification results for those available. 

As meteorological services normally run only one nowcasting system in operation, cross system 
comparison is relatively rare. Under the auspices of World Meteorological Organization (WMO) 
World Weather Research Programme (WWRP), Forecast Demonstration Projects (FDP) were held as 
parts of the Olympic games in Sydney 2000 (S2000) and in Beijing 2008 (B08FDP), which offered 
unique opportunities to demonstrate the benefits and quantify the benefits of a real-time nowcast 
service. Keenan et al. [8,9] documents the experience gained in S2000, with verification results given 
in [10]. Wang et al. [11] reports on B08FDP with verification included. 
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1.2. Rainfall Nowcast

To mitigate the potential impacts of rainstorms, the Hong Kong Observatory (HKO) introduced a
color-coded rainstorm warning system in 1992, and subsequently revised it to the present three-tier
form (amber, red and black signals) in 1998 [4]. The amber signal gives alert on potential heavy rain
(30 mm in an hour generally over HK) that may develop into a red signal (50 mm in an hour) or a
black signal (70 mm in an hour) situation. Key Government departments and major utility companies
are put on alert. The red and black signals warn the public of heavy rain which is likely to bring
about serious road flooding and traffic congestion. They will trigger response actions by Government
departments and major transport operators and utility companies. Details of this rainstorm warning
system can be found in [5].

To support the operation of the rainstorm warning system, a radar-based nowcasting system
named “Short-range Warnings of Intense Rainstorms in Localized Systems” (SWIRLS) was developed
in 1999 and has since been in operational use. A brief history of and an introduction to SWIRLS are
given in [6].

Other meteorological services and research institutes around the world have also developed
similar observationally based nowcasting systems, some of which with outputs from numerical
weather prediction (NWP) models blended into nowcast. Notable operational systems in active service
include the followings:

a) Integrated Nowcasting through Comprehensive Analysis (INCA) by Zentralanstalt für
Meteorologie und Geodynamik (ZAMG);

b) Nimrod by Met Office, United Kingdom (UKMO);
c) Spectral Prognosis (S-PROG) by (Australian) Bureau of Meteorology (BoM);
d) Short-Term Ensemble Prediction System (STEPS) by UKMO/BoM;
e) Auto Nowcasting System (ANC) by National Center for Atmospheric Research (NCAR);
f) McGill Algorithm for Precipitation Nowcasting Using Semi-Lagrangian Extrapolation (MAPLE)

by (Canadian) McGill University etc.

A comprehensive review of nowcasting systems was conducted by Royal Meteorological Institute
of Belgium back in 2008 [7], which includes verification results for those available.

As meteorological services normally run only one nowcasting system in operation, cross system
comparison is relatively rare. Under the auspices of World Meteorological Organization (WMO) World
Weather Research Programme (WWRP), Forecast Demonstration Projects (FDP) were held as parts
of the Olympic games in Sydney 2000 (S2000) and in Beijing 2008 (B08FDP), which offered unique
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opportunities to demonstrate the benefits and quantify the benefits of a real-time nowcast service.
Keenan et al. [8,9] documents the experience gained in S2000, with verification results given in [10].
Wang et al. [11] reports on B08FDP with verification included.

SWIRLS is one of the first operational nowcasting systems with urban-scale applications. It
continues to be updated with innovative approaches, such as optical flow, from time to time. There are
other nowcasting systems that have experimented with or adopted optical flow: Peura and Hohti [12]
demonstrates the potential use of optical flow on nowcasting, while Bowler et al. [13] documents a
nowcasting algorithm based primarily on Horn and Schunck algorithm. SWIRLS currently adopts
“ROVER”, an algorithm to be elaborated in this paper that combines the global Horn and Schunck
approach and the Lucas–Kanade method. To the best of the knowledge of the authors, it is the first
if not the only nowcasting system doing so. Due to sheer amount of data collected over the years,
SWIRLS is also amongst the few nowcasting systems that have undergone long-term verification with
publishable results.

This paper elaborates on the correlation-based algorithm and two optical-flow-based algorithms
adopted for radar echo tracking in Section 2, and examines their performances through case studies as
well as seasonal and multi-year systematic verifications in Section 3. Section 4 discusses the limitations
of these tracking algorithms and highlights certain development work being made, while Section 5
concludes the paper.

2. Operational Experiment Setup

2.1. Nowcasting System

The main function of SWIRLS is to provide quantitative precipitation estimation (QPE) and
quantitative precipitation forecast (QPF) to support rainstorm warning services. QPE is computed
based on radar and rain gauge data analyzed through a variety of techniques including Barnes
analysis, co-kriging analysis and a blending of both. The application of co-kriging analysis with
performance assessment is given at [14]. QPF is computed using an algorithm based on backward
semi-Lagrangian advection scheme. For both QPE and QPF, SWIRLS employs the Z = aRb (Z − R)
relationship with the parameters a and b dynamically calibrated by comparing radar reflectivity with
rain gauge measurements in near real-time. The detailed implementation is elaborated in [15]. Quality
control on QPE is implemented as described in [16].

SWIRLS uses data primarily from the weather radar in Tai Mo Shan (TMS), which is sited on a
hilltop at 968 m above mean sea level with unobstructed view in almost all azimuths. The radar is an
S-band radar operating at a frequency of 2.82 GHz, pulse widths of 1.0 and 2.0 µs, and antenna beam
width of 0.9◦. Another radar, at about 583 m above mean sea level on top of another hilltip named
Tate’s Cairn, serves as a backup. The Tate’s Cairn radar has a transmitter frequency of 2.92 GHz, pulse
widths of 1.0 and 2.0 µs, and antenna beam width of slightly less than 1.0◦. Basic radar data processing,
including removal of ground clutters, are handled by the IRIS software [17]. Both radars complete a
volume scan every 6 min. Radar data and imagery are generated based on a composite of the two
radars with Tai Mo Shan radar being the primary source. SWIRLS is configured to process radar data
immediately upon reception of radar data, and thus also runs once every 6 min.

The typical operational products of SWIRLS are based on 2 km CAPPI (Constant Altitude Plan
Projection Indicator) radar data covering a domain of 256 km in radius, embedded in a rectangular
grid of 480 × 480 pixels. Each pixel represents an area of approximately 1.1 km × 1.1 km. The output
QPF products maintain a grid of 480 × 480 pixels but the spacing between grids is halved, so the
output domain represents a rectangular area of 256 km × 256 km. The configuration is illustrated in
Figure 2.

SWIRLS’s products are generated to aid weather forecasters in the preparation of weather forecasts
and the operation of the rainstorm warning system. These products include hourly forecast rainfall
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map up to 6 h, a time series showing an ensemble of estimated rainfall in the next 6 h, a plot of
estimated number of rain gauges reaching user-selected thresholds, etc. (Figure 3).Atmosphere 2017, 8, 48 4 of 20 
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QPF from SWIRLS is also used to support the operation of the landslip warning in Hong Kong [18].
In addition, SWIRLS is also capable of generating forecasts for thunderstorms [19], squalls [20] and
hail. Areas with potential threats are identified through a combination of statistical means and physical
modeling. These weather phenomena are extrapolated along the motion field for up to half an hour to
generate forecasts.

In recent years, SWIRLS was extended to provide enhanced nowcasting services to the public. For
instance, an Internet web page named “Two-hour Rainfall Nowcast for Hong Kong and Pearl River
Delta” [21] that provides animation of the evolution of radar echoes for the next two hours has been in
operational use since 2007. In late 2012, a location-specific rainfall nowcast service delivered through
mobile platform was also launched, as elaborated in [22–24].
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Since 2008, SWIRLS had been deployed to several international events, including the Beijing
Olympic Games in 2008 [25], the Shanghai Expo 2010 [26], the India Commonwealth Games in 2010 [27],
and the Shenzhen Universiade 2013. As part of regional and international co-operations, SWIRLS has
been provided to meteorological services in Mainland China, India, Macao, the Philippines, Vietnam
and Thailand for research and development in radar nowcasting techniques. In 2015, a community
version of SWIRLS was developed and made available to interested National Meteorological and
Hydrological Services. Malaysian Meteorological Department and South Africa Weather Service
have successfully adopted SWIRLS for nationwide operational use and for aviation nowcast research,
respectively. Zhuhai Meteorological Bureau is also using SWIRLS operationally.

2.2. Radar Echo Tracking Algorithms

2.2.1. Tracking of Radar Echoes by Correlation (TREC)

In the first operational version of SWIRLS, the motion field of radar echoes was retrieved by
a correlation-based technique named as “Tracking Radar Echoes by Correlation (TREC)” that is
described in [15,28]. This method essentially compares two successive radar reflectivity images
and from which identifies a motion vector for each divided block of pixels through maximizing the
correlation coefficient R, defined as follows:

R =

∑
k

Z1(k)× Z2(k)− 1
N ∑

k
Z1(k)∑

k
Z2(k)√

∑
k

Z2
1(k)− NZ2

1 ×
√

∑
k

Z2
2(k)− NZ2

2

(1)

where Z1 and Z2 are the array of pixels of reflectivity in the first field and in the second field respectively,
and N denotes the number of data points within an array.

In the implementation of SWIRLS, 93 × 93 overlapping blocks, each of size 19 × 19 pixels (i.e.,
N = 19 × 19) with the centers of two successive blocks separated by five pixels, are extracted from the
480× 480 pixel reflectivity field, with each pixel representing an area of approximately 1.1 km× 1.1 km.
For each block at time T, the correlation coefficients between itself and every other block within a
searching radius of 19 pixels recorded 6 min earlier (i.e., T − 6 min) are computed. The block at
time (T − 6 min) that yields the highest correlation coefficient with the block at time T is chosen, and
the distance between the centers of these two blocks is then used to calculate the motion vector that
represent the motion of the block at (T − 6 min). Repeating the procedure for each block, a motion
field is obtained for all blocks with echoes. Cressman analysis [29] is subsequently performed to assign
motion vectors to those blocks without echoes.

While TREC is successful in tracking motions of individual radar echoes, in practice it generally
captures the direction of individual rain cell instead of larger scale motion of weather system, e.g., a
squall line containing the rain cell in it. As a result, it occasionally produces a faster movement of
convective system such as squall lines in southern China in spring, leading to weaker intensity in QPF.
In fact, in typical implementation of TREC, the block size and resolution are pre-determined, making it
impractical to track motion of variable scales. To address the issues, there emerged several alternative
approaches, some are also correlation-based such as “COTREC” in [30] and “MTREC” in [31] while
others adopt variational optical flow technique, to be described in the following paragraphs.

2.2.2. Multi-Scale Optical-Flow by Variational Analysis (MOVA)

To overcome the limitation of TREC, another radar echo tracking method utilizing variational
optical flow technique, named as “Multi-scale Optical-flow by Variational Analysis (MOVA)”, was
developed in 2009 [32], then replacing TREC for operational use in SWIRLS in 2010.

Defined as the apparent motion of brightness patterns in an image, optical flow would ideally
equalize motion field barring lighting changes. Assuming that the brightness of a point of an object
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would remain unchanged along its path (i.e., “brightness constancy assumption”), the optical flow can
be derived by solving the optical flow constraint (OFC) below:

∂I
∂t

+ u
∂I
∂x

+ v
∂I
∂y

= 0 (2)

where I represents the brightness of a point projected on a two-dimensional plane.
It can be seen that with two unknowns but just one equation, at least one more constraint is

required to arrive at a unique solution. There are several approaches to tackle the issue. One of them
is proposed by [33], which applies variational method to solving OFC by minimizing the following
cost function:

J = Jo + α · JHS (3)

where

Jo =
x [

∂I
∂t

+ u
∂I
∂x

+ v
∂I
∂y

]2
dxdy (4)

and JHS is a global constraint on the smoothness of the gradient of the optical flow field:

JHS =
x (
|∇u|2 + |∇v|2

)
dxdy (5)

By assuming Lagrangian persistence for echoes over their paths, Germann and Zawadzki [34]
adopts a proposal by Wahba and Wendelberger [35] and developed an algorithm named as the
variational echo tracking (VET) [36], using a smoothness penalty function:

JWW =
s
[(

∂2u
∂x2

)2
+
(

∂2u
∂y2

)2
+ 2
(

∂2u
∂x∂y

)2
]

dxdy

+
s
[(

∂2v
∂x2

)2
+
(

∂2v
∂y2

)2
+ 2
(

∂2v
∂x∂y

)2
]

dxdy
(6)

In MOVA, seven cascading levels of various box sizes that range from 256 km down to 1.6 km are
used together with the smoothness constraint. The smoothness constants for all level is controlled by
seven parameters tuned for optimal performance, as given in Table 1:

Table 1. Parameters adopted in MOVA

No. of Boxes 1 5 10 20 40 80 160

Box Size (km) 256 51.2 25.6 12.8 6.4 3.2 1.6
Smoothing constant γ 0.0005 0.01 0.1 0.1 1 50 100

When calculating the cost function, three consecutive radar reflectivity images are used to improve
continuity of the retrieved motion field, i.e.,

Jo = Jo(T−12min to T−6min) + Jo(T−6min to T0) (7)

2.2.3. Real-Time Optical Flow by Variational Methods for Echoes of Radar (ROVER)

MOVA was put into operational use in 2010. As it will be shown, MOVA achieved improved
overall performance over TREC, though it has also been observed in operation that MOVA has a
tendency to underestimate the speed of echo motion vectors, in particular at large scale, due to
sub-optimal retrieval of echo motion in the minimization procedure. As a result, excessive rainfall was
forecast at times. With a view to addressing the issue, another variational optical flow scheme, named
as “Real-time Optical flow by Variational methods for Echoes of Radar (ROVER)”, was used instead.
In brief, ROVER is similar to MOVA but with two major enhancements: (1) having a pre-processing
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step to spatially smooth the radar reflectivity images; and (2) adoption of a variant type of optical
flow technique.

In convective systems, which dominate precipitation types in summer monsoon in Hong Kong,
rain echoes could be so jumpy in reflectivity that their partial derivatives can hardly be accurately
calculated. Stable estimates of the derivatives are only possible after the radar rain-rate fields are
highlighted. In ROVER, the reflectivity fields are transformed with the following function:

G(Z) = tan−1
(

Z− Zc

ξ

)
(8)

where Zc and ξ control the point of inflection and its sharpness.
In SWIRLS, Zc and ξ are empirically determined to be 33 dBZ and 4 dBZ, respectively [37] based

on a number of rainstorm cases in spring and summer. The transformation effectively enhances the
contrast for reflectivity values in the range of 20–40 dBZ through suppressing the most and the least
intense parts of rain bands.

The other major enhancement is the adoption of the algorithm proposed in [38,39] in lieu of VET.
This algorithm combines the global Horn and Schunck approach and the Lucas–Kanade method [40],
thus taking the advantages of both the dense flow fields of the former and the noise robustness of
the latter. Through adopting advanced numerical methods, the algorithm further speeds up the
computation such that it can be employed for real-time operational use. An open source project named
“VarFlow” provides the source codes used to implement the algorithm [41].

The algorithm requires users to specify six parameters to control the Gaussian convolutions that
spatially smooth radar images and motion fields to ensure tracking of the most critical features and to
reduce jumpiness, to regularize smoothness constraints, to define the finest and coarsest levels, and to
set the time intervals. The meanings of the parameters and the empirically determined parameters in
ROVER are listed in Table 2.

Table 2. Optical flow parameters adopted in ROVER.

Parameter Significance Value in ROVER

σ Gaussian convolution for image smoothing 9
ρ Gaussian convolution for local vector field smoothing 1.5
α Regularization parameters in the energy function 2000
Lf The finest spatial scale 1 pixel
Lc The coarsest spatial scale 7 pixels
Tr The time interval for tracking radar echoes 6 min

As the choice of parameters would affect the quality of the motion field, the performance of the
variational optical flow algorithm naturally depends on the parameters adopted. While it might be
possible to derive a set of optimal parameters for a particular geographical setting, such a work would
require a rich data archive and tremendous computational power to experiment with and explore all
the dimensional space. It renders optimisation of parameters difficult if not impractical in practice. In
our four years of operational experience, this set of parameters worked reasonably well in most of the
time. Readers interested in implementing ROVER may consider adopting this set of parameters for
initial trial, and fine tune the parameters as and when situation warrants.

3. Results

3.1. Case Analyses

The performance of the three radar echo tracking algorithms are compared using four rainstorms
in Hong Kong during 2013 and 2014. The latter two involved torrential rain with rainfall intensity
exceeding 70 mm·h−1 generally over Hong Kong.
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In the following discussion, the motion fields computed with the three radar echo motion tracking
algorithms together with forecast reflectivity images are shown in order. The actual radar reflectivity
images are provided at the bottom row for comparison.

3.1.1. Rainstorm on 5 April 2013

The first case is illustrated in Figure 4. In the morning of 5 April 2013, a surface trough
lingered over the southern coast of China. Coupled with a moist and active westerly jet in the
lower troposphere, a squall line located to the west of Hong Kong steadily approached the territory at
around 07:00 HKT (Hong Kong Time; HKT = UTC + 8 h). While the individual echo tracked largely
northeastward along the squall line, the squall line itself traversed primarily eastward towards Hong
Kong. The correlation-based algorithm TREC captured the motion of individual echo well but not
that of the squall line, the latter is what is required to project accurately the future rainfall condition.
As the motion vectors computed by TREC pointed to the northeast, after two hours of extrapolation
the squall line was predicted to move to Shenzhen (Figure 4) to the north of Hong Kong. There was
hardly any echo predicted within the territory of Hong Kong, and the corresponding QPF was rather
inaccurate as a result.
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Figure 4. Reflectivity and motion fields based at 07:00 (HKT/UTC + 8) on 5 April 2013 (base time).
(a) Reflectivity and motion field of TREC at base time; (b) Forecast reflectivity of TREC at 2 h from the
base time; (c) Reflectivity and motion field of MOVA at base time; (d) Forecast reflectivity of MOVA at
2 h from the base time; (e) Reflectivity and motion field of ROVER at base time; (f) Forecast reflectivity
of ROVER at 2 h from the base time; (g) Actual radar reflectivity at base time; and (h) Actual radar
reflectivity at 2 h from the base time.

Suggested from its name, MOVA is capable of capturing larger scale motion. The direction of the
motion vectors was correct in terms of predicting eastward movement, but the speed was a bit slow.
Consequently, it predicted that the squall line would be way to the west of Hong Kong.

In comparison, ROVER managed to capture both the direction and speed of motion of the squall
line relatively well, and was successful in predicting that the squall line would have reached the
territory in two hours, though the squall line still lagged behind the actual slightly. It demonstrated a
significant improvement of ROVER over both TREC and MOVA.

3.1.2. Rainstorm on 26 July 2013

On 26 July 2013, active southerlies in a broad trough of low pressure affected the south China
coast. At 07:30 HKT, a line of nearly north–south oriented intense echoes moved across Hong Kong
from the south.

As shown in Figure 5, unlike the previous case the motion of individual echoes and that of the
convective cell were largely aligned towards the predominately northward direction. Both TREC and
ROVER predicted that the line of intense echoes would move to the north of Hong Kong, which was
largely correct in direction but slightly slower in terms of speed. MOVA exhibited even slower speed
of movement and as a result incorrectly forecast that the line of echoes would still affect Hong Kong.

As it turned out, two other patches (marked A and B) of intense echoes came from the south, one
of which traceable to a relatively small patch of echoes about 120 km away (marked A), bringing rain
to the Hong Kong Islands and the eastern part of the New Territories by 09:30 HKT. This underlines
a major limitation of nowcasting system that works by extrapolating radar echoes, in dealing with
growth and decay of storms. No radar echo tracking algorithm could have produced a perfect forecast
unless the storm cell remains unchanged in shape, size and intensity, which is usually not the case.
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As it turned out, two other patches (marked A and B) of intense echoes came from the south, 
one of which traceable to a relatively small patch of echoes about 120 km away (marked A), bringing 
rain to the Hong Kong Islands and the eastern part of the New Territories by 09:30 HKT. This 
underlines a major limitation of nowcasting system that works by extrapolating radar echoes, in 
dealing with growth and decay of storms. No radar echo tracking algorithm could have produced a 
perfect forecast unless the storm cell remains unchanged in shape, size and intensity, which is 
usually not the case. 

3.1.3. Rainstorm on 22 May 2013 

Starting from the small hours of 22 May 2013, a band of heavy rain spread from west to east 
across the Pearl River Estuary. Weather in Hong Kong deteriorated with torrential rain and intense 
thunderstorms. More than 150 mm of rain were recorded in many places over the territory. A few 
districts even recorded over 200 mm. The heavy downpour caused a number of landslides and 
flooding in Hong Kong. 

In this heavy rainfall case, we take a look at one hour forecast. As shown in Figure 6, the motion 
field and reflectivity field from TREC and ROVER are quite similar, and both correctly predicted 
heavy rain over the whole territory. MOVA again exhibited a slow bias and as a result forecast 
intense rainfall covering the western part of the territory only. 

Figure 5. Reflectivity and motion fields based at 07:30 (HKT/UTC + 8) on 26 July 2013 (base time).
(a) Reflectivity and motion field of TREC at base time; (b) Forecast reflectivity of TREC at 2 h from the
base time; (c) Reflectivity and motion field of MOVA at base time; (d) Forecast reflectivity of MOVA at
2 h from the base time; (e) Reflectivity and motion field of ROVER at base time; (f) Forecast reflectivity
of ROVER at 2 h from the base time; (g) Actual radar reflectivity at base time; and (h) Actual radar
reflectivity at 2 h from the base time.

3.1.3. Rainstorm on 22 May 2013

Starting from the small hours of 22 May 2013, a band of heavy rain spread from west to east
across the Pearl River Estuary. Weather in Hong Kong deteriorated with torrential rain and intense
thunderstorms. More than 150 mm of rain were recorded in many places over the territory. A few
districts even recorded over 200 mm. The heavy downpour caused a number of landslides and flooding
in Hong Kong.

In this heavy rainfall case, we take a look at one hour forecast. As shown in Figure 6, the motion
field and reflectivity field from TREC and ROVER are quite similar, and both correctly predicted heavy
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rain over the whole territory. MOVA again exhibited a slow bias and as a result forecast intense rainfall
covering the western part of the territory only.
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3.1.4. Rainstorm on 30 March 2014 

An episode of heavy rain came on 30 March 2014. Over the course of 3 to 4 h that evening, more 
than 100 mm of rainfall were recorded generally in the territory and in certain districts precipitation 
even exceeded 150 mm. The rainstorm was accompanied by intense thunderstorms, widespread hail, 
severe squalls and floods, resulting in injuries and inflicting critical damages to a crucial 
cross-border railway link under construction. 

Figure 6. Reflectivity and motion fields based at 02:00 (HKT/UTC + 8) on 22 May 2013 (base time).
(a) Reflectivity and motion field of TREC at base time; (b) Forecast reflectivity of TREC at 1 h from the
base time; (c) Reflectivity and motion field of MOVA at base time; (d) Forecast reflectivity of MOVA at
1 h from the base time; (e) Reflectivity and motion field of ROVER at base time; (f) Forecast reflectivity
of ROVER at 1 h from the base time; (g) Actual radar reflectivity at base time; and (h) Actual radar
reflectivity at 1 h from the base time.

3.1.4. Rainstorm on 30 March 2014

An episode of heavy rain came on 30 March 2014. Over the course of 3 to 4 h that evening, more
than 100 mm of rainfall were recorded generally in the territory and in certain districts precipitation
even exceeded 150 mm. The rainstorm was accompanied by intense thunderstorms, widespread hail,
severe squalls and floods, resulting in injuries and inflicting critical damages to a crucial cross-border
railway link under construction.
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Figure 7 shows a highly organized northeast-southwest oriented line of echoes edging towards
the territory from the west at 1900 HKT. In this case, TREC tracked the smaller scale motion of echoes
and gave a predominately northeastward motion field. The intense echoes were predicted to move to
Shenzhen to the north of Hong Kong, hence grossly underestimating the precipitation in Hong Kong.
MOVA generated a motion field that was relatively more accurate in direction but was again slow in
speed, resulting in a rain band lying over the western part of the territory and still failed to capture the
heaviest rainfall areas. ROVER was, amongst the three, the most accurate algorithm in this case.
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Figure 7. Reflectivity and motion field based at 19:00 (HKT/UTC + 8) on 30 March 2014 (base time).
(a) Reflectivity and motion field of TREC at base time; (b) Forecast reflectivity of TREC at 1 h from the
base time; (c) Reflectivity and motion field of MOVA at base time; (d) Forecast reflectivity of MOVA at
1 h from the base time; (e) Reflectivity and motion field of ROVER at base time; (f) Forecast reflectivity
of ROVER at 1 h from the base time; (g) Actual radar reflectivity at base time; and (h) Actual radar
reflectivity at 1 h from the base time.
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3.2. Comparison of Tracking Algorithms

The performance of ROVER for springtime squall lines in Hong Kong is described in [42].
A system to compare the performances of the three algorithms has been developed for continuous
verification. In this system, the QPF at each grid point is verified against radar QPE.

The ROVER algorithm started operational trial in mid-May 2012. In this verification, data over
a period of two full years, i.e., from 1 June 2012 to 31 May 2014 inclusive, are considered. A total of
2.1 billion data pairs are available for each radar echo tracking algorithm. Each forecast is paired with
the corresponding actual value and the outcome is determined with reference to Table 3.

Table 3. Contingency matrix for systematic verification.

Forecast
Observation

Yes No

Yes Hit False alarm
No Miss Correct negative

The performance is then benchmarked in terms of critical success index (CSI), also known as
Threat Score (TS), Probability of Detection (POD) and False Alarm Ratio (FAR). CSI(TS), POD and FAR
are defined as follows:

CSI(TS) =
hit

hit + miss + false alarm
(9)

POD =
hit

hit + miss
(10)

FAR =
false alarm

hit + false alarm
(11)

The intensity thresholds of 0.5 mm·h−1, 5 mm·h−1 and 30 mm·h−1, generally representing light,
medium and heavy rainfall, respectively, within the forecast range of 1 to 6 h are examined in the
following discussion. Forecast rainfall is accumulated hourly in the following results. High intensity
rainfall is usually associated with tropical cyclones or convective development in highly unstable
atmosphere, which is typically on smaller scale and thus less predictable than low intensity rainfall.

The performances of the various algorithms at 0.5 mm·h−1 threshold, a threshold that is adopted
to distinguish between rain and no rain situations, are compared in Figure 8a. ROVER showed
minor improvement over TREC for the first two hours of forecast. The improvement becomes more
prominent beyond the third hour. For forecast hours of 4–6 h, the performance of ROVER and MOVA
is comparable, both outperforming TREC by a significant margin.

At higher rainfall threshold, say, 5 mm·h−1, the performance advantage of ROVER is more
obvious even for the first couple of forecast hours, as shown from Figure 8b. Both ROVER and MOVA
performed considerably better than TREC for the forecast range of 4–6 h, for which MOVA performs
slightly better than ROVER.

Figure 8c further compares the performance of the algorithms in predicting rainstorm as
benchmarked against 30 mm·h−1 rainfall threshold, chosen for it being the threshold for the Amber
rainstorm warning in Hong Kong. ROVER performs better than MOVA, which in turns outperforms
TREC for the first three hour of forecast. Beyond the fourth hour, MOVA performed better than
ROVER and both MOVA and ROVER outperformed TREC, though their respective CSIs are rather low,
suggesting limiting skill of extrapolation-based QPF in predicting heavy rain at these forecast hours.
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A seasonal comparison is also conducted. Figure 9a shows the seasonal results for sixth hour
nowcast (i.e., from T + 5 h to T + 6 h) with 0.5 mm·h−1 threshold. In this case, MOVA outperforms
ROVER and both perform substantially better than TREC for all seasons.

Figure 9b reveals the performance at 5 mm·h−1 threshold. Here, the second hour forecasts
(i.e., from T + 1 h to T + 2 h) are compared due to lower skill at higher threshold that renders the
sixth hour forecast at 5 mm·h−1 not having much utility in operation. As shown, the performance
advantage of ROVER over the other two algorithms is the most significant in springtime, a season
in which precipitation is dominated by persistent squall lines induced by mid-tropospheric westerly
waves. In summer, showers are often brought by monsoon troughs, active southwest monsoon and
occasionally tropical cyclones. The first two types of precipitation are intensely convective in nature,
often undergoing rapid growth and decay and even back-building occasionally, which goes beyond
the limit of radar-based nowcasting system that works by extrapolating radar echoes. In autumn,
precipitation from tropical cyclones, northeast monsoon and land sea breeze fronts are more predictable
and the skills recovers, though still lower than that in spring. In winter, the occurrence of 5 mm·h−1 is
relatively rare and so is the number of hits, while at the same time there are still occasional false alarms
due to radar noise caused by land clutter, sea clutter, anomalous propagation, etc., which explains the
lower CSI compared with other seasons.

Figure 9c further compares the schemes for first hour nowcast with 30 mm·h−1 threshold, which
is critical for operating the rainstorm warning in Hong Kong. The result shows that ROVER is more
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skillful than MOVA, which in turn outperforms TREC. All schemes achieve the highest CSI in spring
with the advantage of ROVER over the others the most obvious, as explained earlier.
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3.3. Operational Verification of ROVER

In view of the superior performance of ROVER, SWIRLS adopted it as the operational echo
tracking algorithm from June 2013. The performance of SWIRLS based on ROVER continues to be
verified operationally, as given below.

The same methodology as described in Section 3.2 is adopted for verification. For the year 2016,
data are up to 30 September. Performance in terms of CSI is shown in Figure 10.
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The verification shows that, while performance vary across years, possibly as a result of different
rainfall types and climatological anomalies, the general performances remains largely unchanged.
The CSI for the first hour forecast ranges from 49% to 57% at 0.5 mm·h−1 threshold, and remain around
40% at 5 mm·h−1 threshold. This illustrates the robustness of ROVER in the first hour of forecast.

Forecast skills are also measured in terms of POD and FAR. The POD and FAR of ROVER are
examined based on four full years of data from 1 October 2012 to 30 September 2016, both dates
inclusive and are given in Figure 11.
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Generally speaking, a forecast is considered operationally useful when POD exceeds FAR. This
can be said for up to 2 h at 0.5 mm·h−1 threshold, and slightly longer than 1 h for 5 mm·h−1 threshold.

Besides, the Heidke Skill Score (HSS) is also used to gauge the measure of skill in forecasts.
A positive HSS indicates that a forecast is better than a random based forecast. The formula for
calculating HSS is given in [43], copied below:

HSS =
2 (hit·correct negative−miss·false alarm)

miss2+false.alarm2+2·hit·correct negative+(miss+false alarm) (hit+correct negative)
(12)

As shown in Figure 12, verification with multi-year data shows that ROVER provides skillful
forecasts for thresholds at 0.5 mm·h−1 and 5 mm·h−1. In both cases, the skill decreases with
forecast hours.
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4. Discussion

4.1. Limitations

In the current implementation of SWIRLS, the motion field is generated from the two latest radar
images and is taken to remain the same throughout the six-hour forecast period. In practice, the motion
field could vary according to changes in the synoptic situation, such as passage of westerly wave or
passage of tropical cyclones. Hence, errors occur due to the assumed invariability of the motion field.
Woo et al. [44] describes a method to separate the motion of a tropical cyclone (TC) in the computation
of motion field, and found it capable of better preserving TC rain bands and achieving improvement in
skills. The same concept may also apply to other weather systems, such as mid-tropospheric troughs,
that traverse Hong Kong at known and constant speed. A suitable blending of numerical weather
prediction models may also help mitigate the problem. The STEPS nowcasting system by UKMO
demonstrates the benefits of blending radar-based forecasts with NWP forecasts [45].

The parameters adopted in ROVER are currently empirically determined. It may be possible to
further improve its performance through optimizing these parameters based on climatological data,
ideally specific to the synoptic pattern of the precipitation, or alternatively dynamically determined
based on the latest parameter fit. An experimental project to generate probabilistic rainfall nowcast
through perturbing optical flow parameters is being pursued.

Despite improvements in the radar echo tracking algorithm, the SWIRLS nowcasting system
still bears the common limitation of radar-based nowcasting system in failing to predict growth
and decay of radar echoes. Nor does SWIRLS take into account the effect orographic enhancements
of precipitation. Mesoscale analyses, application of statistical methods and advanced techniques
in blending with NWP models may prove useful in this development area, as assessed in [46,47].
The detection of convective initiation, a precursor to the intensification of precipitation, using the next
generation satellite Himawari-8 data, is covered in [48]. The potential to predict convective initiation
and growth based on real-time reanalysis data is demonstrated in [49].

4.2. Developments in Progress

Due to uncertainties inherent in observation, radar-based advection and the limitations discussed
above, the latest development of SWIRLS is put on moving from deterministic to probabilistic nowcast.
A SWIRLS Ensemble Rainfall Nowcast (SERN) based on 36 members with slightly perturbed optical
flow parameters was setup for experimental trial. Preliminary results given in [50,51] show that such
probabilistic rainfall nowcast products are generally reliable but tend to be over-confident for high
intensity thresholds.

Rainfall nowcast really boils down to the prediction of the evolution of radar images given
a sequence of recent past images. A novel approach to tackle the problem with convolutional
Long-Short-Term-Memory (LSTM) network, a machine learning method, was developed and verified
to provide better performance at 0.5 mm·h−1 threshold [52]. Experiments are being conducted to
assess its performance at higher intensity thresholds and its suitability for operational use.

Forecasts are typically verified against gridded QPE or rain gauge records. It is equally, if not
more, important that the final products and guidance provided to forecasters are rigorously verified as
well. This is, however, a challenging task given the much smaller sample and the fact that rainstorm
warnings are subject to random errors. A progressive verification scheme to verify rainstorm warnings
had since been developed. It was employed to verify automatic warning guidance given by SWIRLS.
Based on five years of back-tested data, about 70% of amber rainstorm guidance warnings automatically
generated by SWIRLS were considered effective [53].

5. Conclusions

ROVER, a variational optical flow technique to track radar echo motion, has been employed
in the SWIRLS nowcasting system of HKO. Case analysis and systematic verification with two-year
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data demonstrate its advantages over the correlation-based algorithm TREC and the previous optical
flow algorithm MOVA in general. Its limitations are discussed and potential future development
opportunities are presented.
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