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Abstract: Measurements of the aerosol optical depth (AOD) and the Ångström exponent were
retrieved from level 1.5 data obtained by the CE318 sun photometer at Dalian monitoring station
from April 2007 to April 2012 to characterize the aerosol spatial and temporal characteristics in this
coastal region of Northeast China. The results suggest that the highest mean ˘ SD value for the
AOD over Dalian occurred in the month of July (0.86 ˘ 0.45), whereas a lower value was observed
in the month of January (0.42 ˘ 0.31). The monthly mean Ångström exponent was at a maximum
(about 1.27) in September and October and the minimum value of about 0.60 was recorded in March.
The frequency distributions of the AOD and Ångström exponent at Dalian both presented a single
peak distribution, with peak values of 0.26 and 1.06, respectively. The scatter grams of the AOD
and Ångström exponent suggested that the aerosol size in Dalian was affected by both fine and
coarse particles in different seasons. The spectral difference in Ångström exponent wavelength
pairs between 440–675 and 675–870 nm indicate that high AOD440 nm values (>1.50) could be clearly
identified by the fine mode growth in summer and the addition of coarse mode particles in spring
over Dalian. The AOD440 nm value on a foggy day was almost 2.15 times larger than that on a day
with high levels of dust. The Ångström exponents (440–870 nm) were about 0.13 and 1.46 on the days
with high levels of dust and on the foggy days, respectively.

Keywords: aerosol optical depth; Ångström exponent; coastal regions; Northeast China

1. Introduction

Aerosols play an important part in controlling the Earth’s climate because they both absorb and
scatter solar radiation. These processes directly affect the radiation balance between the Earth’s surface
and the atmosphere and also indirectly affect the climate by their influence on the microphysical
processes that take place in clouds [1–4]. Aerosol particles contribute to various environmental
problems and can affect the health of the human population [5–7]. The effects of the optical properties
of aerosols on the Earth’s climate have been reported previously [8].

The optical properties of aerosols are important in research on the effects of aerosols on the
global climate and in predictions of global climate change [9–12]. The long-term ground-based
monitoring of aerosols is necessary to determine their optical properties [13–18]. Networks of
ground-based measurements, such as AERONET [19], PHOTONS [20], AEROCAN [21], SKYNET [22]
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and EARLINET [23] have been established worldwide, including several automated sites in China.
The China Aerosol Remote Sensing NET work (CARSNET) and the Chinese Sun Haze meter Network
(CSHNET) were established to derive the optical properties of aerosols from ground-based remote
sensing data [24–27].

The majority of the progress made in determining the optical properties of aerosols in China has
focused on cities experiencing rapid economic growth and highly polluted regions characterized
by high aerosol loads [28–35]. However, few studies have been reported using ground-based
measurements of the optical properties of aerosols over Northeast China [36–39]. Zhao [40,41]
described the distribution and variation in the optical properties of aerosols over urban sites
in Northeast China and Wang [42] analyzed the optical properties of aerosols over the regional
background in Northeast China. Wu [43,44] studied the optical properties of column aerosols at a
semi-arid rural site in Northeast China.

Studies using ground-based recordings of the optical properties of aerosols in the coastal regions
of Northeast China are sparse; analyses of the optical properties of aerosols in coastal regions have been
focused in south and southeast China [45–48]. As Figure 1 shows, Dalian is an important economic,
trade, port, industrial and tourist city on the eastern coast of China in the hinterland of Northeast
China (the Huang Bohai coast). This region is the warmest place in Northeast China, with a typical
oceanic warm temperate zone continental monsoon climate. Previous aerosol studies at Dalian have
focused on the chemical composition of aerosol particles during snow or rain [49–51]. A study of the
optical properties of aerosols in the coastal region of Northeast China will provide a comparison with
measurements from more urban areas and regions with higher levels of pollution.
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Figure 1. Geographical location of Dalian monitoring station on the southern tip of Liaodong
Peninsula, China.

The aim of this work was to investigate the variation in the optical properties of aerosols based
on five years of continuous measurements using data from the CE-318 sun photometer at Dalian
monitoring station. A graphical method was used to characterize the growth of fine particles and the
addition of coarse particles. The results could be representative of the characteristics of aerosols for the
coastal region of Northeast China and could aid our understanding of the effects of aerosols on the
climate in Northeast China.
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2. Site, Instrument and Data

Dalian is a coastal monitoring station in Northeast China and is located in the south of Liaodong
Peninsula at (121.44–121.49˝E, 39.01–39.04˝N) (Figure 1). Measurement data obtained in this region
could be representative of the coastal aerosol loading in Northeast China because there is little effect
from urban sources of pollution such as vehicle emissions.

This study used data from the CE-318 sun photometer installed at Dalian monitoring station,
which is calibrated annually using the procedure described by Holben [19], Che [24] and Tao [52]
to verify the accuracy and reliability of the data. The CE-318 sun photometer (CIMEL Electronique,
Paris, France) in Dalian is the AERONET type of instrument and the measurements include direct
solar irradiance by the sun direct channel and the sky radiance by the sky scattering channel. The
measurements through the sun direct channel are used to calculate the aerosol optical depth (AOD)
in this paper. The level 1.5 (cloud-screened) aerosol optical depth (AOD) data obtained at different
wavelengths from April 2007 to April 2012 were processed using ASTPwin software (Cimel Ltd
Co, Paris, France) based on the work of Smirnov [53]. The Ångström exponents were derived from
instantaneous data for the AOD between 440 and 870 nm. The instantaneous data is the temporal
resolution of data about 3 min of sun direct data selected >10 times per day in this paper. The
observations were not continuous because of the effect of cloud contamination and the cloud screening.
Daily AOD data (obtained >10 times per day) were used for the statistical analysis and monthly AOD
data were obtained by averaging all the days of a given month independently of the year (Table 1).

Table 1. Observation of numbers and days of level 1.5 sun direct data for AOD and Ångström exponent.

Number of Days Number of Instantaneous Data

2007 2008 2009 2010 2011 2012 2007 2008 2009 2010 2011 2012

January 12 26 13 30 16 292 759 149 893 199
February 15 20 2 23 20 347 597 16 613 422

March 9 25 2 28 20 175 930 15 1030 337
April 6 10 22 2 22 15 304 229 863 10 810 387
May 10 6 23 12 26 313 73 894 315 727
June 14 25 20 21 192 692 732 477
July 8 22 18 11 96 383 287 218

August 11 20 14 13 121 456 370 289
September 11 20 14 16 22 154 237 167 365 713

October 5 13 19 27 14 97 185 343 870 422
November 20 17 7 22 402 453 56 524
December 18 19 17 23 6 365 442 118 466 66

The PM10 and meteorological data (wind speed, temperature and relative humidity) were
measured at Dalian monitoring station, which makes a better summary of the atmosphere in this
typical coastal site. Each year was divided into four seasons (spring, March to May; summer, June
to August; autumn, September to November; and winter, December to February) to investigate
the seasonal variation in the optical properties of aerosols in this region. The spectral difference in
Ångström exponent wavelength pairs between 440–675 and 675–870 nm was used to indicate the
effective radius of the fine aerosols [54].

3. Results and Discussion

3.1. Annual and Monthly Variations in the AOD and Ångström Exponent

Figure 2a,b show the values of the annual mean AOD440 nm and Ångström exponent (440–870
nm) from April 2007 to April 2012 at Dalian monitoring station. The annual mean ˘ SD (standard
deviation) values of the AOD440 nm were 0.58 ˘ 0.43, 0.60 ˘ 0.38, 0.69 ˘ 0.44 and 0.56 ˘ 0.39 in 2008,
2009, 2010 and 2011, respectively. The annual mean ˘ SD Ångström exponents were 1.17 ˘ 0.30,
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1.14 ˘ 0.30, 1.05 ˘ 0.33 and 1.04 ˘ 0.36 in 2008, 2009, 2010 and 2011, respectively, which suggests
that the area around the Dalian monitoring station was mainly dominated by small particles. The
multi-year average AOD440 nm at Dalian was about 0.59 ˘ 0.40, which was lower than at other coastal
sites in China, such as Tianjin (0.74), Nanjing (0.89), Hangzhou (1.01), Pudong (0.80), Panyu (0.78)
and Nanning (0.82), reported by Che [25]. The lower aerosol loading at Dalian suggests that rapid
economic development and other anthropogenic activities have less effect on this coastal region of
Northeast China than in other Chinese coastal cities, which often have serious atmospheric pollution
from particulate matter.
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Figure 2. Annual variations with mean ˘ SD in the (a) AOD and (b) Ångström exponent at Dalian
monitoring station.

Figure 3a shows the mean annual cycle of monthly variations in the mean ˘ SD values of the
AOD440 nm at Dalian monitoring station and Figure 3b shows the monthly variations in the Ångström
exponent (440–870 nm). The peak value of AOD440 nm was 0.86 ˘ 0.45 in July and the minimum
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value (0.42 ˘ 0.31) was recorded in January. The higher AOD440 nm values from June to July may
be related to the high levels of water vapor in the atmosphere in these months as a result of higher
levels of precipitation. Cao [55] indicated that the aerosol extinction in Dalian was mainly due to the
higher relative humidity. The decrease in the AOD440 nm values from November to January could be a
result of the exchange of air between urban areas and the surrounding ocean caused by an influx of
cold air, which could accelerate the diffusion of pollutants during this winter period according to the
geographical features of Dalian descript by Guo [56]. In contrast with the variation in the AOD440 nm

values, the highest monthly average Ångström exponent (440–870 nm) of about 1.27 was recorded
in September and October, indicating the dominance of fine particles. The lowest value of about
0.90 ˘ 0.37 was recorded in March and indicated the existence of larger aerosol particles derived from
dust events in this region. The results of Song [57] show that the sand dust weather process affecting
Dalian could increase the particle concentration remarkably based on the aerosol extinction coefficient
derived from Lidar observational data.
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Figure 3. Monthly variations with mean ˘ SD in the (a) AOD440 nm and (b) Ångström exponent at
Dalian monitoring station.
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3.2. Seasonal Variationsin the AOD and Ångström Exponent

Figure 4a shows the seasonal average AOD values at 440, 675, 870, and 1020 nm and Figure 4b
shows the values of the Ångström exponent (440–870 nm) measured at Dalian monitoring station.
The mean ˘ SD values of AOD440 nm were 0.64 ˘ 0.38, 0.76 ˘ 0.41, 0.54 ˘ 0.40, and 0.45 ˘ 0.34 in
spring, summer, autumn, and winter, respectively. The higher AOD recorded in summer was the same
as the result obtained for Shenyang (Figure 1), an inland urban site in Northeast China. However,
the lower AOD recorded in winter at Dalian monitoring station was different from that recorded at
Shenyang, which may due to lower levels of domestic heating in this season because of the warmer
climate [41]. The comparably higher AOD values in summer are most likely to be a result of the larger
amounts of water vapor in the atmosphere during this season. Aerosols can easily absorb moisture
and grow hygroscopically, which favors the formation of aerosols [58–60]. High temperatures can also
increase the amount of secondary organic aerosol particles by the photochemical reaction, which may
be related to the higher AOD values recorded in summer [61].

Atmosphere 2016, 7, 103 6 of 20 

 

3.2. Seasonal Variationsin the AOD and Ångström Exponent 

Figure 4a shows the seasonal average AOD values at 440, 675, 870, and 1020 nm and Figure 4b 

shows the values of the Å ngström exponent (440–870nm) measured at Dalian monitoring station. The 

mean ± SD values of AOD440nm were 0.64 ± 0.38, 0.76 ± 0.41, 0.54 ± 0.40, and 0.45 ± 0.34 in spring, 

summer, autumn, and winter, respectively. The higher AOD recorded in summer was the same as 

the result obtained for Shenyang (Figure 1), an inland urban site in Northeast China. However, the 

lower AOD recorded in winter at Dalian monitoring station was different from that recorded at 

Shenyang, which may due to lower levels of domestic heating in this season because of the warmer 

climate [41]. The comparably higher AOD values in summer are most likely to be a result of the larger 

amounts of water vapor in the atmosphere during this season. Aerosols can easily absorb moisture 

and grow hygroscopically, which favors the formation of aerosols [58–60]. High temperatures can 

also increase the amount of secondary organic aerosol particles by the photochemical reaction, which 

may be related to the higher AOD values recorded in summer [61]. 

 

 

Figure 4. Seasonal variations with mean ± SD in the (a) AOD and (b) Å ngström exponent at Dalian 

monitoring station. 
Figure 4. Seasonal variations with mean ˘ SD in the (a) AOD and (b) Ångström exponent at Dalian
monitoring station.



Atmosphere 2016, 7, 103 7 of 21

The Ångström exponents (440–870 nm) were 0.99 ˘ 0.39, 1.21 ˘ 0.27, 1.26 ˘ 0.25, and 0.94 ˘ 0.32
in spring, summer, autumn, and winter, respectively. The values of the Ångström exponent in
all four seasons were higher than in other urban cities in Northeast China, which may indicate a
dominance of fine particles in this area [41]. Wan [62] reported that the higher concentrations of SO2

and NOx in winter over Dalian may be related to the secondary production of the fine pollutants via
photochemical reactions.

3.3. Frequency Distribution of the AOD and Ångström Exponent

Figure 5a,b show the frequency distributions of the AOD440 nm and Ångström exponent
(440–870 nm), respectively, for the instantaneous data recorded at Dalian monitoring station. We used
bin intervals of 0.10 for these two parameters.
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Figure 5. Frequency of the daily values of the (a) AOD and (b) Ångström exponent at Dalian
monitoring station.

The frequency histograms for AOD440 nm and the Ångström exponent (440–870 nm) at Dalian
monitoring station both showed a clear single peak distribution. The AOD frequency distribution
can be well fitted (r2 = 0.78) to a normal distribution approximately centered at 0.26 with a standard
deviation of 0.03 and had a percentage of 15.5%. The highest frequency of AOD440 nm values occurred
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between 0.00 and 0.60 had a percentage of 69.6%, which indicates the lower aerosol burden in this
region. The geographical position of Dalian monitoring station is favorable for the formation of both
land and sea breezes and this daily variation in the local atmospheric circulation maybe conducive to
the dispersal of pollutants, resulting in less air pollution at this location [56].

The frequency distribution of the Ångström exponent (440–870 nm) was also well fitted (r2 = 0.92)
to a normal distribution approximately centered at 1.06, with a standard deviation of 0.02 and had a
percentages of 11.2%. The range for an Ångström exponent <1.00 and an Ångström exponent >1.00
had percentages of 44.7% and 55.3%, respectively.

The distribution patterns for the relatively clean AOD values and higher Ångström exponent
(440–870 nm) at Dalian are similar to those studies at Longfengshan in Northeast China (Figure 1) and
probably correspond to the local background atmospheric conditions [42]. However, these results are
different from the distribution patterns recorded in other urban and industrial region in Northeast
China, which suggest the presence of particular aerosol populations and types in this coastal region,
with different proportions of regional and anthropogenic aerosol particles [41].

3.4. Relationship between AOD, Ångström Exponent, Meteorological Conditions and PM10

Figure 6a–d are scatter grams of the AOD440 nm and Ångström exponent (440–870 nm) values
based on instantaneous data from different seasons. The open circles with error bars represent the
average AOD for the following ranges of the Ångström exponent (440–870 nm): 0.00–0.30, 0.30–0.60,
0.60–0.90, 0.90–1.20, 1.20–1.50, and 1.50–2.00.
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In spring, the increase in AOD440 nm with decreasing Ångström exponent (440–870 nm) values
(in some instances <0.50) indicates that the radii of the particles were larger in this season, which
supports the effect of dust aerosols (Figure 6a). The frequency with which dust is present in spring may
have an impact on this relatively clean city and increase the concentration of particulate matter
above the acceptable standard [58]. The scatter gram of aerosols in the summer was less clear
than in other seasons (Figure 6b). The higher AOD may be characterized by the larger Ångström
exponent (440–870 nm). Figure 6c shows that the correlation between AOD440 nm and the Ångström
exponent (440–870 nm) was different in autumn than in other seasons. Higher AOD values (all >0.5)
were observed as the Ångström exponent (440–870 nm) increased. This shows that fine particles
play an important part in the optical properties of aerosols at Dalian monitoring station in autumn.
The AOD440 nm increased with increasing values of the Ångström exponent (440–870 nm) from 0.50
to 1.50 in winter, except in the range 0.00–0.30 (Figure 6d), which also indicates an influence of the
fine particles.

Figure 7a–d show the correlation of AOD440 nm with wind speed, temperature, relative humidity,
and PM10, respectively, at Dalian monitoring station based on the instantaneous data. In general,
the AOD440 nm values increased at lower wind speeds with the correlation coefficient about ´0.11,
which probably indicates the effect of the wind on the optical properties of aerosols [63] (Figure 7a).
Figure 7b,c show similar variations in the AOD440 nm with changes in both temperature and relative
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humidity at Dalian monitoring station with the correlation coefficient about 0.34 and 0.51, respectively.
This probably indicates that a higher aerosol loading may be related to increases in temperature and
relative humidity, which may increase the size of aerosol particles through hygroscopic growth and
aggregation as Chen [64] and Zhang [65] have mentioned. High concentrations of PM10 corresponded
to larger values of AOD440 nm in Figure 7d, which has the similar variations in some Chinese cities
according to Guo [66] and Qu [67]. The correlation coefficient is about 0.18 between the mass
concentration of PM10 and AOD440 nm at Dalian monitoring station, which may be related to the
weather conditions and requires further study.
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Moreover, the averages of wind speed, temperature, RH and PM10 mass concentration within
the different ranges of AOD440 nm about 0.00–0.15, 0.15–0.30, 0.30–0.40, 0.40–0.70, 0.70–1.00, 1.00–1.50
and 1.50–2.00 are presented in Table 2. When the AOD440 nm is lower than 0.30, the wind speed was
almost >3.0 m/s and the average RH was less than 50% with the lower temperature about 3.0 ˝C. The
corresponding PM10 mass concentration is about 50 µg/m3 during this range. When the value of
AOD440 nm is increased, the wind speed was decreased below 3.0 m/s, while the temperature and RH
was obviously increased. The PM10 mass concentration was also increased along with the AOD440 nm,
and the higher PM10 mass concentration (73.6 ˘ 35.6 µg/m3) was observed in the range of 0.70–1.00
of AOD440 nm.
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Table 2. The average values of AOD440 nm and meteorological parameters within different ranges of
AOD440 nm.

Range of AOD440 nm AOD440 nm Wind Speed (m/s) Temperature (˝C) RH (%) PM10 (µg/m3)

0.00–0.15 0.13 ˘ 0.02 3.6 ˘ 1.2 3.1 ˘ 10.4 46 ˘ 7 44.4 ˘ 13.1
0.15–0.30 0.22 ˘ 0.04 3.2 ˘ 1.2 2.4 ˘ 10.6 49 ˘ 12 52.3 ˘ 22.3
0.30–0.40 0.34 ˘ 0.03 2.9 ˘ 1.2 8.2 ˘ 11.0 52 ˘ 16 66.1 ˘ 26.6
0.40–0.70 0.54 ˘ 0.08 2.9 ˘ 1.1 10.8 ˘ 10.5 61 ˘ 17 68.7 ˘ 31.3
0.70–1.00 0.83 ˘ 0.08 3.0 ˘ 1.1 14.4 ˘ 9.2 66 ˘ 18 73.6 ˘ 35.6
1.00–1.50 1.22 ˘ 0.13 2.8 ˘ 1.0 12.9 ˘ 10.8 77 ˘ 16 68.5 ˘ 32.2
1.50–2.00 1.63 ˘ 0.09 3.0 ˘ 1.3 15.8 ˘ 8.3 74 ˘ 20 67.7 ˘ 36.5

3.5. Aerosol Classification by AOD, Ångström Exponent and Ångström Exponent Difference (δα)

This graphic method can be used to separate the coarse mode aerosol growth from cloud
contamination and the dominance of fine mode aerosols to the total AOD440 nm according to the
spectral variation of Ångström exponent as Gobbi [54] and Schuster [68] depicted. The spectral
difference in the Ångström exponent (α), defined as δα = α440–675 nm ´ α675–870 nm, was used to
distinguish aerosol growth from cloud contamination and to examine aerosol humidification using
instantaneous observational data. In this framework, Rf is the modal radius of the smaller mode of the
size distribution, η is defined as the fractional contribution of fine mode aerosol to total AOD440 nm.
The AOD440 nm data are represented by different colors in Figure 8. The black solid lines represent a
fixed size of the fine mode Rf, and the dashed blue lines represent a fixed fraction contribution η of the
fine mode to the total AOD440 nm. The Ångström difference is presented as a function of the Ångström
exponent (440–870 nm) and the AOD440 nm values for bimodal log-normal size distributions with
refractive indices of m = 1.40–0.001i based on Gobbi [54].The climatology of Dubovik [15] also indicates
that this refractive index (m = 1.40–0.001i) is typical of urban and industrial aerosols compared with the
mineral dust aerosols (m = 1.53–0.003i) and plus water droplets (m = 1.33–0.000i). Gobbi [54] illustrates
that there is a weaker sensitivity of the η curves than the Rf with the refractive index in the different
classification scheme, and the scheme is robust enough to provide an operational classification of
the aerosol properties or size distribution parameters within this level of indetermination. A cloud
contamination or a contribution of coarse aerosols to the AOD of more than 90% will be located at
δα ~0. In the opposite direction, hydration leads to an increase in fine mode aerosols (Rf) and an
increase in the fractional contribution (η) of the fine mode aerosols to the total AOD440 nm.
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Figure 8. Ångström exponent difference (δα, α440–670 nm ´ α670–870 nm) as a function of the Ångström
exponent440–870 nm and AOD440 nm. Only cloud-screened data with AOD > 0.15 were used. (a) Spring;
(b) summer; (c) autumn; and (d) winter.
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Figure 8a shows that higher AOD440 nm values (>1.50) were associated with coarse mode particles
(δα ~0, η < 20%) in some typical examples, which were mainly a result of the dust events that occurred
in spring. While in summer, the high AOD440 nm values were mainly due to the fine mode particle
growth corresponding to the increasing contribution of the fine fraction (Rf~0.15–0.25µm, η ~70%–99%)
(Figure 8b).The extension of the measurement data from Dalian monitoring station to higher AOD440 nm

values in summer was mainly a result of the humidification and coagulation (aging) of fine mode
aerosols. There was a weaker growth of the fine mode particles in autumn (Figure 8c) (Rf~0.15 µm,
η ~70%–90%), together with a lower water vapor content in the atmosphere. The winter plot for Dalian
monitoring station shows that the coarse mode contamination and fine mode growth were the two
major factors affecting the optical properties of the aerosols in this region.

Although these results do not have distinct clusters in the figures, the seasonal trend is similar
compared to those found in the regional background at Longfengshan and Xinglong station [42,69].
These characteristics demonstrate that the extinction seen at Dalian monitoring station was not as high
as that seen in urban areas in China. The Cimel photometer at Dalian is not part of AERONET, and
the deriving of coarse and fine mode fraction of aerosol is underway which will be discussed further
more. Moreover, there is no available Lidar or ceilometer measurement in this site, and this gap of the
present situation would be filled to distinguish the aerosols at the surface or is the average of several
layers containing different aerosol types in the future.

3.6.Variations in AOD and Ångström Exponent Values under Dust and Fog Conditions

Two typical examples of days with dust (12 May 2011) and fog (5 July 2011) conditions were
selected based on satellite data and back-trajectory calculations to study the variations in the AOD and
Ångström exponent values as well as the PM10 concentration during these weather events. The Terra
satellite overpass at 10:30 (local time) and the Aqua satellite overpass at 13:30 (local time), respectively.

The MODIS satellite images in Figure 9a,b clearly show dust at Dalian monitoring station.
The images in Figure 9c,d show fog either over or near to Dalian monitoring station. Figure 10a,b
illustrate the transport of aerosol particles based on the NOAA HYSPLIT back-trajectory model
analysis [70] of the dust and fog events, respectively.
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Figure 9. MODIS satellite images at the time of the Terra satellite overpass at 10:30 (local time) and
the Aqua satellite overpass at 13:30 (local time), respectively over Dalian monitoring station for dust
events on 12 May 2011 of (a) Terra images and (b) Aqua images and for fog events on 5 July 2011 of
(c) Terra images and (d) Aqua images.
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Figure 10. HYSPLIT back-trajectories on Dalian monitoring station for (a) dust and (b) fog events.

The daily average values of AOD, Ångström exponent and PM10 for these two days are shown
in Figure 11a,b. During the dust (12 May 2011) and fog (5 July 2011) events, the daily average AODs
were 0.54, 0.56, 0.57, and 0.61 (dust) and 0.37, 0.48, 0.71, and 1.31 (fog) at 1020, 870, 675, and 440nm,
respectively. The AOD440 nm values on the foggy day were nearly 2.15 times larger than the values
on the day with high levels of dust, which indicates a higher aerosol loading under foggy conditions.
The Ångström exponent (440–870 nm) was about 0.13 on the day with high levels of dust and 1.46 on
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the foggy day. These values suggest that particles on the day with high levels of dust were dominated
by coarse mode aerosols, whereas the fraction of fine mode particles was larger on the foggy day.
The daily PM10 concentration was about 231 µg/m3 on the day with high levels of dust and 131 µg/m3

on the foggy day, which further suggests that coarse mode particles were dominant on the day with
high levels of dust and exceeded China’s national ambient air quality standards [71] (150 µg/m3)
(NAAQS, GB3095-2012) by 1.54 times.
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4. Summary

This work analyzed the variations in the AOD and Ångström exponent retrieved from CE318
sun photometer data from April 2007 to April 2012 over the coastal area of Dalian in Northeast China.
The results indicate that there is a lower aerosol loading and the particle size was smaller over Dalian
compared with more urban regions of China.

The annual mean˘ SD values of AOD440 nm and Ångström exponent (440–870 nm) at Dalian were
about 0.58˘ 0.43, 0.60˘ 0.38, 0.69˘ 0.44, 0.56˘ 0.39 and 1.17˘ 0.30, 1.14˘ 0.30, 1.05˘ 0.33, 1.04 ˘ 0.36
in the years 2008, 2009, 2010, and 2011, respectively. The monthly mean ˘ SD values of AOD440 nm

were higher in July (0.86 ˘ 0.45) and lower in January (0.42 ˘ 0.31). The monthly mean Ångström
exponent (440–870 nm) increased from June to October and decreased to March. The variations in the
AOD440 nm were higher in summer (0.76 ˘ 0.41) and lower in winter (0.45 ˘ 0.34). The fluctuation in
the seasonal variations in the Ångström exponent (440–870 nm) showed a dominance of fine particles
in the range 0.94–1.26 in this area. The frequency distributions of the AOD and Ångström exponent can
be fitted to normal distributions with single peak values of about 0.26 and 1.06, respectively. The scatter
grams of the instantaneous AOD and Ångström exponent at Dalian suggest different aerosol sizes in
the spring and autumn, which are mostly populated with coarse and fine mode particles, respectively.
The Ångström exponent curvature demonstrating the high extinction at Dalian shows that higher
AOD (>1.00) values are associated with the addition of coarse mode particles (δα ~0, η < 20%) during
dust events in spring and fine mode growth particles (δα < 0, η ~70%–99%) related to humidification
and the growth of fine mode particles in summer by coagulation.

In this paper, there are also many other factors need further exploring as follows: (1) The
coastal site Dalian is influenced by fogzcloud greatly which need the long term observation; (2) The
observation of Lidar is needed to understand the vertical structure of aerosols; (3) The implementation
of ceilometers is needed to assess the columnar aerosol measurements according to Wiegner [72];
(4) The water vapor absorption information in a spectral channel around 930–940 nm will be used to
better understand the retrieved aerosol properties. Therefore, more works still need to be studied.
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