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Abstract: An objectively trained model for tropical cyclone intensity estimation from routine satellite
infrared images over the Northwestern Pacific Ocean is presented in this paper. The intensity
is correlated to some critical signals extracted from the satellite infrared images, by training the
325 tropical cyclone cases from 1996 to 2007 typhoon seasons. To begin with, deviation angles and
radial profiles of infrared images are calculated to extract as much potential predicators for intensity
as possible. These predicators are examined strictly and included into (or excluded from) the initial
predicator pool for regression manually. Then, the “thinned” potential predicators are regressed to
the intensity by performing a stepwise regression procedure, according to their accumulated variance
contribution rates to the model. Finally, the regressed model is verified using 52 cases from 2008 to
2009 typhoon seasons. The R2 and Root Mean Square Error are 0.77 and 12.01 knot in the independent
validation tests, respectively. Analysis results demonstrate that this model performs well for strong
typhoons, but produces relatively large errors for weak tropical cyclones.
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1. Introduction

Tropical Cyclones (TCs) are some of the most damaging natural hazards [1]. The intensity
(here refers to the maximum sustained wind) is generally used as a main indicator for quantifying the
damage potential of TCs. Because it is difficult to obtain direct in-situ measurements of TC intensity [2],
satellite remote sensing, especially geostationary meteorological satellite (GMS) remote sensing,
has been heavily relied upon in related studies and operational forecasts. On the one hand, GMS has
higher temporal and spatial resolution compared to polar satellite microwave remote sensing [3–5] and
air reconnaissance [6–8]. On the other hand, GMS could cover the vast tropical ocean continually, and
thereby provide valuable datasets concerning the genesis, track, intensity and other well-concerned
information about TCs throughout their life cycles. The Northwestern Pacific Ocean (NWP), which is
characterized with frequent cyclone activities, is heavily dependent on GMS for TC intensity estimation
and forecast [3,9,10].

During the beginning years (1970s) of satellites, Dvorak summarized previous research [11,12] and
proposed a comprehensive pattern recognition technique for tropical cyclone (TC) intensity estimation
from satellite imagery, which is known as Dvorak Technique (DT) [13,14]. However, DT depends
on experts’ experience, and therefore is subjective and time intensive. Several revisions of the DT
technique were developed during the later decades. The Objective Dvorak Technique (ODT) [15]
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recognized patterns in satellite imagery using computer-based algorithm, and created a look-up table.
The shortcoming of ODT is that centers of TCs are determined either manually or with the aid of
external resources [16]. The more recently developed Advanced Dvorak technique (ADT), which
is regarded as the latest version of DT method, advances the original Dvorak technique through
modifications based on rigorous statistical and empirical analysis [17,18]. Despite the continual
development of the DT method, all versions of DT technique (except for ADT) estimate TC intensity
based on cloud features and patterns recognition.

Apart from the DT method, some other techniques have also been developed. Mueller (2006) used
geostationary IR data to estimate wind field structure of TCs through estimates of radius of maximum
wind (RMAX)and wind at 182 km (V182) with 405 cases from the 1995–2003 Atlantic and Eastern
Pacific typhoon seasons [19]. Chao (2011) made use of both IR and visible satellite images to estimate
TC rotation speed and then sought to predict TC wind intensity using estimated rotation speeds at the
130–260 km ring [10]. Fetanat (2013) proposed a new technique for TC intensity estimation using the
spatial feature analogs in satellite imagery. The technique was testified as on par with other objective
techniques [20]. Zhuge (2015) combined information from geostationary satellite infrared window
(IR) and water vapor (WV) imagery, and proposed a WV-IRW-to-IRW ratio (WIRa)-based indicator to
estimate TC intensity over NWP [3]. The results showed that the WIRa-based indicator gives a more
accurate estimation of TC intensities.

Another approach for characterizing TC cloud dynamics was initially discussed by Piñeros
(2008) [21]. In that study, the deviation angle variance (DAV) was used to describe the degree
of asymmetry and “organization” of TC cloud. This was then developed into the Deviation
Angle Technique (DAV-T) which was applied into many aspects of TC related research [16,22–24].
In particular, it has been proved that DAV-T can be a reliable tool in hurricane intensity
estimation [16,22]. The DAV-T was lately applied into estimating TC intensity over NWP. Results
showed an accurate estimation with a Root Mean Square Error (RMSE) of 14.3 knot in the 2007–2011
NWP typhoon seasons [25]. More recently, a non-dimensional TC intensity (TI) index was proposed
by combining some statistical parameters of DAVs [26]. The TI index was reported to be more suitable
for TCs with axisymmetric, non-sheared cloud systems.

Despite the aforementioned new techniques for TC intensity estimation, each with its strengths
and drawbacks, there is still need to improve the precision and accuracy of TC intensity estimation
technique making use of satellite images for the aim of better forecast. Therefore, in this research,
we seek to extract the most significant signals and parameters from IR images so as to develop an
objective technique to estimate current intensity of TCs. The objective of this paper is to provide
another reference for improving our capability of TC intensity estimation. The remaining parts of this
paper are organized as follows. Data collection and preprocessing are discussed in Section 2. Section 3
describes the procedures for developing the model. The model is tested and discussed in Section 4.
The main conclusions are summarized in Section 5.

2. Data Collection and Preprocessing

To date, a wide breadth of scientific measurements from in-situ, aircraft, and satellite instruments
are readily available for TC related research [27]. However, it is still difficult to gather all information
(including both images and data) that pertain to a particular TC or an ocean basin [28]. The JPL Tropical
Cyclone Information System (TCIS) includes a comprehensive set of multi-parameter observations and
model outputs that are relevant to both large-scale and storm-scale processes in the atmosphere and in
the ocean. The TCIS data archive, including AIRS, CloudSAT, MLS, AMSU-B, QuikSCAT, Argo floats,
GPS, and many others, pertains to the thermodynamic and microphysical structure of the storms,
the air-sea interaction processes and the larger-scale environment over the globe from 1999 to 2010.
Storm data are subsetted to a 2000 ˆ 2000 km2 window around the hurricane track for six geographic
regions [29].
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The region of interest in this paper covers the NWP basin from 5˝ to 45˝N and from 100˝ to
165˝E (Figure 1). The inputs include digital brightness temperatures (BTs) of the IR (10.3–11.3 um) and
water vapor (WV, 6.5–7.0 um) channel images with spatial and temporal resolution of 8 km and 3 h,
respectively. It was noted that the TCIS satellite images are actually produced by Hurricane satellite
data (HURSAT-B1, version 05) [30]. While the HURSAT-B1 covers TCs in Western Pacific Ocean from
1978 to 2009, the earliest WV data provider for NWP is GMS-5 from 1996. Therefore, satellite images
from 1996 to 2009 are used. The HURSAT-B1 images were downloaded from HURSAT and TCIS for
the years 1996–1998 and 1999–2009, respectively. All images were filtered using a low-pass filter in
order to exclude unreasonable increment or decrement in BTs. In addition, the images were screened
and preprocessed carefully to avoid introducing uncertain errors. For example, images with “missing
belt” are cubic interpolated.
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training and validation datasets, respectively. More specifically, of all the 16,126 training images, 4752 
are tropical depression (29.47%), 5513 are tropical storms (34.19%), 2444 are typhoons (15.16%), 1522 
are moderate typhoons (7.70%), 910 are severe typhoons (5.64%), 1041 are super typhoons (6.46%), 
and 252 are extreme typhoons (1.39%), as shown in Figure 1 and Table 1. 
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Figure 1. The region of interest in this paper, and tracks of the 325 cases adopted in training the model.

The selected dataset comprises 18,108 three-hourly satellite images of 377 tropical cyclone cases
from 1996 to 2009 NWP typhoon season. Of the 377 cases, 118 are tropical depression, 53 are tropical
storm, 54 are typhoons, 36 are moderate typhoons, 26 are severe typhoons, 57 are super typhoons, and
33 are extreme typhoons. The 377 cases are divided into two groups. They are, 325 (16,126 images)
from 1996 to 2007 and 52 (1982 images) from 2008 to 2009 typhoon seasons, performing as training
and validation datasets, respectively. More specifically, of all the 16,126 training images, 4752 are
tropical depression (29.47%), 5513 are tropical storms (34.19%), 2444 are typhoons (15.16%), 1522 are
moderate typhoons (7.70%), 910 are severe typhoons (5.64%), 1041 are super typhoons (6.46%), and
252 are extreme typhoons (1.39%), as shown in Figure 1 and Table 1.

Table 1. Number and percent of images in each category of tropical cyclones for training and validating
the model. The terminologies of the typhoon categories are included in the brackets behind the
category number.

Bins No. and Percent of Images in
Training Dataset

No. and Percent of Images in
Validation Dataset

Tropical Depression 4752 (29.47%) 581 (29.31%)
Tropical Storm 5513 (34.19%) 707 (35.67%)
C1 (Typhoon) 2444 (15.16%) 214 (10.80%)

C2 (Moderate Typhoon) 1522 (7.70%) 142 (7.16%)
C3 (Severe Typhoon) 910 (5.64%) 325 (5.75%)
C4 (Super Typhoon) 1041 ( 6.46%) 160 (8.07%)

C5 (Extreme Typhoon) 252 (1.39%) 46 (2.32%)
Overall 16,126 (100%) 1982 (100%)
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Among TC best-track information archives, the dataset from Joint Typhoon Warning Center
(JTWC) is one of the most broadly used ones [31], and has been proved to be more reliable compared
to other best-track datasets available for NWP basin [32–34]. JTWC best-track dataset is thus adopted
as verification. To match the three-hourly satellite images, the 6-h interval archived best-track data are
interpolated using the linear interpolation method.

3. Methodologies

3.1. Estimation and Development of DAV

As aforementioned in the introduction section, DAV-T is another reliable approach for TC intensity
estimation by quantifying the degree of axisymmetry and “organization” of IR brightness temperatures.
In this paper, gradient vectors of BTs are computed by performing the sobel template. For each pixel
within 300-km radius from the center pixel, the deviation angle between the gradient vector and
corresponding radial extending from the TC center is calculated, and the DAV is then determined.
Ritchie (2014) [25] relates the DAV to TC intensity via a sigmoid model. We tested that model using
the 325 cases in the training datasets. However, the R2 is only 0.36. Therefore, we endeavor to develop
the DAV-T through adding some statistical parameters.

Since the interpolated best-track information, especially the locations might be inconsistent with
satellite images, we here adopt a center region, which is assumed as the nine pixels surrounding
corresponding JTWC best-track center location on each image. The deviation angles and all
undermentioned parameters are hence computed upon the center region. Accordingly, the average
values of the center regions are determined as optimal ones in order to minimize errors caused by
inaccurate TC center positions.

The first statistical parameter, the probability density of mean deviation angle (P_MDA) proposed
by Liu (2015) [26] is included. Liu found that P_MDA is positively related with intensity. Nevertheless,
the P_MDA here is derived using accumulating probability densities between DAs´ 2

a

RMSE pDAsq
and DAs` 2

a

RMSE pDAsq, where DAs denote deviation angles. Because this could take most of
significant peaks in the histogram of the deviation angles into account, which means that the P_MDA
would not be decided solely by the probability density at the mean deviation angle which might
be an uncertain noise, and hence reduce uncertain errors. The second statistical parameter is the
interquartile range (IQR) of deviation angles. The advantage of IQR is that this could effectively
exclude unreasonable extremums and some possible noises derived from BTs.

After obtaining parameters DAV, P_MDA and IQR, we concentrate on developing a new index by
combining effects of these three. According to previous studies, a weak cyclone system is featured
with disorganized and asymmetrical cloud cluster. Therefore, gradient vectors of the brightness
temperatures would be extremely disorganized, and thereby the higher the DAV. Accordingly,
the stronger the TC, the larger the P_MDA and the smaller the IQR. That being said, we are not going
to build proportional (or reciprocal) relationships between the intensity and the three parameters,
but try to seek a mode that could improve the explanatory power of these parameters to intensity as
large as possible. After times of tests (not shown here), the new index DAO is eventually determined
as follows:

DAO “
100
IQR

ˆ p
10

log pDAVq
q

P_MDA
(1)

where the amplification factor 100 is added to raise the order of the magnitude of DAO while it does
not influence DAO’s behaviors. Here we take a weak TC as an example to clarify the mechanism of
DAO, for such a case, the DAV would be relatively large compared with those strong TC. According
to Figure 3 in Ritchie (2013) [25], large increment of DAV corresponds to small intensity change for
weak TCs, and vice versa. Therefore, the Logarithmic operation is performed on DAV to compress
changes in large DAVs and expand changes in small DAVs. The P_MDA acts as an exponent. That
is, for cases with differing intensities but possibly the same DAV, the power function distinguish the
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intensity based on the mechanism that for weaker TCs, much fewer peak deviation angles would
distribute within the vicinity of the mean deviation angle, and therefore the smaller the DAO. The
performance of DAO and the three parameters are tested individually. Results prove that the DAO
performs better than using any of the three parameters alone on the 325 cases. Specifically, by testing
the 16,126 images, the correlation coefficient between DAO and TC intensity is proved to be higher
(0.74) compared with DAV (´0.62), P_MDA (0.60) and IQR (´0.63).

3.2. Potential Predicators Extraction

Radial profiles of the IR brightness temperature (IRBT for short) form the other basis for extracting
possible predicators for TC intensity. This is achieved by converting the Cartesian latitude and
longitude gridded data into a polar coordinate system. Then, the BT data are azimuthally averaged at
4 km intervals from the TC center. Note that the radial profiles may differ slightly if they are calculated
according to different TC center locations. This could introduce uncertain errors in computing radial
profiles of the IRBTs. Therefore, as down in calculating DAVs, a mine-pixel center region is taken to
create the azimuthally averaged IRBT profiles. The mean of the nine profiles obtained in this region is
finally adopted as the optimal one. The Empirical orthogonal function (EOF) analysis is commonly
used to extract crucial information from IRBT [7,19,35]. However, here we do not correlate TC intensity
directly to IRBT profiles, because by testing the 325 cases we found that taking the EOFs as predicators
for intensity contributes very little to improving the regression. Instead, we extract critical signals from
the profiles to represent characters of satellite images.

As defined by [36–38], the core region of TC could be divided into inner core and outer core
regions (from 0˝ to 1˝ and from 1˝ to 2.5˝ radially respectively). Thus, the inner core average BT (ICBT)
and the outer core average BT (OCBT) are estimated. In addition, the minimum and the maximum BT
within the outer core region are also derived (hereinafter denoted as MIBT and MABT, respectively).
Figure 2 shows the Schematic diagram of the distribution of aforementioned parameters. In Figure 2,
the solid curve represents the mean of the 16,126 IRBT profiles.
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Figure 2. Schematic diagram of the radial profile (solid curve, calculated by averaging the radial
profiles of the 16,126 images) of the IR brightness temperature. The vertical gray dashed line divides
the core region into inner and outer core, respectively.

According to Sanabia (2014) [39], IR profiles in the TC inner core could be represented by
four critical points which locate mainly within 100 km from the TC center. The first critical point is
the radial location of the coldest cloud top (CCT) within 200 km from the TC center. Note that here
the CCT differs from the location of MIBT. The second critical point, the radial location of the first
overshooting top (FOT hereinafter), is defined using the BT difference (TWV-IR) between water vapor
(WV) and IR brightness temperature [40]. The third and fourth critical points are selected to define
a lower and upper extent (hereinafter denoted as L45 and U45) of the inner eyewall, respectively.
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The L45 in this paper is identified as the first 45˝ downturn inflection point, which is the location at
which the orientation of the IR profile changes from vertical to the horizontal, and vice versa the U45,
because we adopted normal cartesian coordinate system without inverting the y axis as did in Sanabia
(2014). The mean location of the four critical points are plotted in Figure 2.

One of the premises for locating L45 and U45 is that the CCTs do not locate in TC centers. However,
not all images meet this criterium. Therefore, for such cases, we subjectively define L45, U45 and CCT
as the mean of those whose L45 and U45 could be identified. The other obstacle for identifying L45
and U45 is, for some cases, it is inevitable that the eye and eyewall do not exist, and therefore the
radial profile do not slope to register a 45˝ angle. For such occasions, we adjust the threshold angle to
a smaller one iteratively until finding the point where the profile changes from vertical to horizontal,
and from horizontal to vertical.Nevertheless, the minimum threshold angle for L45 and U45 cannot
be less than 35˝. As shown in Figure 2, six slopes of the IR brightness temperature between the four
critical points are calculated. These six slopes can be regarded as proxies for inner-core convections.
For example, SL45-FOT represents the slope between the locations of L45 and FOT, which is obtained by
dividing the change in IRBT between L45 and FOT by the radial distance. Finally, the mean brightness
temperature between every two critical points are calculated. Table 2 lists all the potential predicators.
All these predicators are probably relevant to TC intensity, while the significance of each one is not
determined. Note that in Table 2, all terms of the eyewall follow previous studies [39,41].

Table 2. Potential predicator pool for intensity estimation from the IR images.

Potential Predictors Description

ICBT Average BT within the inner core (0˝–1˝ radially)
OCBT Average BT within the outer core (1˝–2.5˝ radially)
MIBT Azimuthally averaged minimum BT within the outer core
MABT Azimuthally averaged maximum BT within the outer core

SL45-FOT The slope of the lower eyewall
SL45-U45 The slope of the inner eyewall
SL45-CCT The slope of the total eyewall
SFOT-U45 The slope of the middle eyewall
SFOT-CCT The slope of the mid-upper eyewall
SU45-CCT The slope of the upper eyewall
AL45-FOT The average BT within the lower eyewall
AL45-U45 The average BT within the inner eyewall
AL45-CCT The average BT within the total eyewall
AFOT-U45 The average BT within the middle eyewall
AFOT-CCT The average BT within the mid-upper eyewall
AU45-CCT The average BT within the upper eyewall

3.3. Multiple Linear Regression Model Development

Although it is encouraged to seek potential predicators as much as possible, it is unadvisable
to take all the potential predicators into the final regression, because some of them may mutually
correlated and thus provide redundant information. Therefore, it is necessary to “thin” the initial
pool of the potential predictors. Note that for the aim of training an objective method of TC intensity
estimation without knowing any information of the TC in advance, any variables that represent
TC itself are not included, they had been testified as significant in estimating TC wind structure
though [7,8,19,35].

For DAV-T related parameters, the new index DAO and the square of the DAV (DAV2) are selected.
For predicators extracted from IRBT profiles, we manually exclude those which are weakly related
to the TC intensity by testing the 325 cases. After this, the potential predicator pool initially contains
12 predicators: DAV2. DAO, ICBT, OCBT, MIBT, SL45-U45, SL45-CCT, SFOT-U45, AL45-U45, AL45-CCT,
AFOT-U45 and AU45-CCT. For ICBT and OCBT, we divide them by AL45-U45, AL45-CCT, AFOT-U45 and
AU45-CCT, respectively and introduce eight new parameters into the pool.
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The regression is performed using a stepwise regression method. In the selection procedure,
predicators are either added or removed from the multilinear model according to their statistical
significance. The initial model contains no predicators other than the constant term. From then on,
the model compares the explanatory power of incrementally larger and smaller models. At each
step, the p-value of an F-statistic is computed to test models with and without a potential predicator.
If a predicator is not currently in the model, the null hypothesis is that the predicator would have
a zero coefficient if added to the model. If there is sufficient evidence to reject the null hypothesis,
the predicator is added to the model. Conversely, if a predicator is currently in the model, the null
hypothesis is that the predicator has a zero coefficient. If there is insufficient evidence to reject the
null hypothesis, the predicator is removed from the model. The model terminates when no single
inputting predicator improves the model. Here, we set the lowest confidence level as 99.99%. That is,
we require the maximum p-value for a predicator to be added as 0.0005, and the minimum p-value for
a predicator to be removed as 0.0001.

After selection by the stepwise regression procedure, eventually, seven predicators are
involved into regression. They are DAV2, DAO, ICBT/AFOT-U45, ICBT/AL45-U45, OCBT/AU45-CCT,
OCBT/AL45-FOT and SL45-U45. The DAV2 is included as the first as previous studies have proved
its significance. The order by which the remaining predicators are input (Column 2 in Table 3) are
decided according to their contribution rates to the accumulated variance. Table 3 lists some statistics
produced while training the model. In order to quantify the relative contributions of all predictors
to the model, all these predicators were normalized, and the stepwise regression was performed
again. As shown in the last two columns in Table 3, the predicators ICBT/AL45-U45 and ICBT/AFOT-U45

dominate the regression (41.92% and 40.31%, respectively). This is then followed by SL45-U45 (6.28%)
and OCBT/AL45-FOT (4.26%). It is obvious that the inputting predicators in this model improves the
accuracy of the regression considerably (with a net difference of 18.42 knot and a net improvement
of 59.21%).

Table 3. Statistics related to the regression model.

Predicators Added
Order Coefficients p-Value

RMSE after
Addition of the

Predicator (Knot)

Coefficients for
Normalized
Predicators

Relative
Contribution

(%)

DAV2 1st ´6.04 ˆ 10´6 3.39 ˆ 10´61 31.11 ´22.37 1.66
DAO 2nd 44.64 4.35 ˆ 10´115 19.41 43.69 3.24

ICBT/AL45-U45 3rd ´2703.25 0 17.22 ´565.05 41.92
ICBT/AFOT-U45 4th 2730.51 0 16.46 543.39 40.31

SL45-U45 5th 12.81 4.90 ˆ 10´112 15.46 84.61 6.28
OCBT/AL45-FOT 6th ´201.98 3.46 ˆ 10´33 13.16 ´57.45 4.26
OCBT/AU45-CCT 7th 126.48 1.42 ˆ 10´16 12.69 31.34 2.32

4. Results and Discussions

4.1. Dependent Tests and Results

The final regressed model is as following:

TCI “ ´6.04ˆ 10´6 ˆDAV2 ` 44.64ˆDA0` 2730.51
ICBT

AFOT´U45
´ 2703.25

ICBT
AU45´L45

`126.48
OCBT

AU45´CCT
´ 201.98

OCBT
AL45´FOT

` 12.81ˆ Sl45´u45 ` 69.11
(2)

where TCI represents TC intensity estimated using the trained model. Figure 3a shows the scatterplot
of the model estimated vs. interpolated best-track intensities. It can be seen that for weak Tcs, the model
overestimates intensities noticeably. Figure 3b plots the distribution of the errors, which fitted a Gauss
model well (the black solid curve). From the curve, 68.26% of the errors lie within the region between
´14.69 knot and 11.69 knot, and 95.44% lie within the region between ´27.38 knot and 23.38 knot.
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Figure 3. (a) Scatterplot of model regressed vs. interpolated best-track intensities in the dependent
test. The solid line was derived by a linear regression procedure using least square method;
(b) The distribution of the errors. The solid curve represents a Gaussian model which was derived by
fitting the error distribution.

The model is validated several times to justify its accuracy. First of all, we adopted the n-fold
cross validation method to examine the accuracy of the model for individual TCs. To begin with,
the 16,126 images are divided into mutually exclusive 325 individual TC groups. Then, the validation
are performed 325 times. For each time, we leave one case out and train the model using the remaining
324 cases iteratively. After that, the trained model is validated using the one which was not included
into training the model. Note although this produced 325 models, the differences among these
325 models are quite small (not shown here for avoiding redundancy) and are similar with the
one showed above. In each validation process, the distribution of the mean absolute error (MAE),
the RMSE and the mean absolute relative error (MARE) are calculated (Figure 4). Figure 4a plots the
distribution of the errors which is obtained by an accumulating procedure of the 16,126 images. It can
be seen that 50%, 75% and 90% of the model estimated intensities are with the MAE less than 7, 13,
and 20 knot, respectively. Figure 4b shows the average of RMSE for individual TCs. For the 325 cases
in the dependent test, well over 75% of their intensities are estimated with a mean RMSE less than
12 knot, while only 18 TCs over 15 knot. The averaged RMSE is 18.52 knot for the overall 325 cases.
Figure 4c,d plots the averaged MARE and averaged bias (defined as the average differences between
the estimated intensity and the best-track intensity) for the 325 cases, respectively. The mean MARE is
19.91% and the mean bias is ´0.56 knot (while the mean absolute bias is 4.47 knot).
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Figure 4. N-fold cross validation of the model using the 325 cases in the northwestern pacific Ocean
during the time period from 1996 to 2007. (a) The cumulative distribution of the absolute errors;
(b) The root mean square error for each left out case; (c) The absolute relative error for each left out
case; (d) The bias for each left out case.
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In order to examine whether the performance of the model relies on the category of the TC
intensity, the 16,126 images are divided into every 5 knot bins. Figure 5a shows the counts of TCs in
each intensity bins in the dependent tests. Figure 5b shows that the mean RMSE generally increases
with intensity but for intense typhoons (ě130 Knot). However, from Figure 5c, the MARE, it can be
found that the absolute relative error is not significant (ď15%) for TCs stronger than 60 knot, which
means that although more errors could be expected for intense typhoons, the relative error is quite
small. From Figure 5d, the model generates noticeable (absolute bias > 10 Knot) overestimation in
cases of weak systems (ď25 knot) and underestimation in cases of intense (ě150 knot).
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Figure 5. Results of the dependent tests by intensities bins. (a) The frequency distribution of the
cyclones by intensity in the dependent tests; The average: (b) root mean square error; (c) absolute
relative error; and (d) bias for each intensity bin.

To facilitate further analysis, the 16,126 images are then divided into seven groupsaccording to
Saffir–Simpson Scale. The RMSE and MARE are calculated for each group. Table 4 shows the results.
In general, the error increases with intensity, with the RMSE 10.52, 12.94, 15.68, 17.49 and 18.93 knot for
category 1–5 typhoons, respectively. However, from the MARE (last column in Table 4), it can be found
that the model performs well but for tropical depressions and storms (also see Figures 3 and 5) which
has the highest proportion of samples (63.66%). The MARE between the regressed and the interpolated
best-track intensities for tropical depressions is as high as 30.35% although the RMSE is relatively small
(7.77 knot). Figures 3a and 5d, Table 4 all suggest that this is due to an overestimate (96.74%) for this
category, while for category 1–5 typhoons, the model tends to produce underestimations. As a whole,
for all the 16,126 images, 57.76% (9314) are overestimated while 42.24% (6812) are underestimated. The
overall RMSE is 12.69 knot (also see Table 4 and Figure 3a). Meanwhile, the overall MARE is 19.78%
which is resulted primarily from tropical storms and depressions, when they are removed from the
dependent tests, the overall MARE deceases to 12.55% for all category 1–5 typhoons.
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Table 4. Dependent tests of the model by dividing the cyclones into seven groups according to
Saffir–Simpson Scale. The number and ratio of underestimated or overestimated images are listed in
the table.

Bins No. of
Samples (%)

No. of
Overestimated (%)

No. of
Underestimated (%)

RMSE
(Knot) MARE (%)

Tropical Depression 4752 (29.47) 4597(96.74) 155 (3.26) 7.77 30.35
Tropical Storm 5513 (34.19) 3575 (64.85) 1938 (35.15) 9.95 18.46
C1 (Typhoon) 2444 (15.16) 766 (31.34) 1678 (68.66) 10.52 12.71

C2 (Moderate Typhoon) 1242 (7.70) 397 (31.96) 845 (68.04) 12.94 14.79
C3 (Severe Typhoon) 910 (5.64) 247 (27.14) 663 (72.86) 15.68 14.26
C4 (Super Typhoon) 1041 (6.46) 391 (37.56) 650 (62.44) 17.49 11.82

C5 (Extreme Typhoon) 224 (1.39) 107 (47.76) 117 (52.24) 18.93 10.69
Overall 16,126 (100) 9314 (57.76) 6812 (42.24) 12.69 19.78

4.2. Independent Tests Results

The developed model is run on 52 cases (see Figure 6 and Table 1 for detail number and percent
of images in each group) from the 2008 to 2009 typhoon season for validation. Of the 52 cases,
five are tropical depressions, 23 are tropical storms, five are typhoons, six are moderate typhoons,
three are severe typhoons, five are super typhoons, and fvie are extreme typhoons. Because this 52 cases
are not included in training the model, the results of the independent tests are indicative of what we
can expect when this model is applied into real-time estimation process. For the aim of comparison
among groups with approximately same size. The 52 cases are divided into three groups by thresholds
<60 knot, 60 to 120 knot and ě120 to <100 knot, and 100 to 130 knot and ě130 knot, according to their
maximum intensity (hereinafter denoted as G1, G2 and G3, respectively), producing 690, 689 and
603 images in each group, respectively. After that, validations are performed independently. Figure 7
shows the accuracy of the model in estimating intensity of the 52 cases in three groups. Comparing
to best-track intensities, the results indicate a high accuracy, especially for intense typhoons (G3).
As shown, for G1 (Figure 7a), more errors exist as there are more images on which TCs are weak and
the model tends to overestimate their intensities. For G2 (Figure 7b), the model performs better with
an R2 of 0.66, while for G3 (Figure 7c), in which the typhoons are quite strong, the model can estimate
intensities with a much higher accuracy (R2 of 0.84). Table 5 lists statistics produced in testing the three
groups. The mean of RMSE, MAE, bias, MARE and R2 are 12.01 knot, 9.50 knot, 2.00 knot, 21.67%, and
0.77 for the overall cases, respectively.
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Figure 7. Scatterplots of the model estimated vs. best-track intensities for groups in which the maximum
intensity: (a) <60 knot; (b) 60–120; and (c) >120 knot in the independent tests. The solid lines indicates
the goodness of the regression of the scatterplot, which are obtained using the least square method.

Table 5. Statistics produced in the independent tests.

<60 Knot 60–120 Knot ě120 Knot Overall

RMSE (knot) 6.47 11.22 12.29 12.01
MAE (knot) 8.30 8.92 9.47 9.50

Mean Bias (knot) 7.30 0.01 0.73 2.00
MARE (%) 26.34 18.76 15.16 21.67

R2 0.47 0.66 0.84 0.77

Figure 8 shows the intensity sequences of TCs in the three groups. The model estimated intensities
sequence for G3 (Figure 8c) shows high consistence with the best-track over time. Meanwhile, more
errors could be found for weak typhoons TCs as expected (top panel in Figure 8 for G1). Figure 8 also
indicates that variations of the BTs in satellite images do not necessarily produce changes in intensities.
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Figure 8. The sequences of the intensity of the 52 typhoons divided into three groups. The gray line
indicates the best-track intensities and the black line represents the model estimated ones.
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4.3. Case Analysis of Extreme Typhoon Melor (No. 202009)

For investigating factors that could be attributed as the source of errors, the extreme typhoon
Melor—No. 202009—is selected to analyze further as it is the strongest case in the independent
validation tests. Typhoon Melor (2009), known as Typhoon Quedan in the Philippines, was the
second category 5 typhoon in 2009. It reached 150 knot (central pressure 911 hPa) at 12:00 p.m. UTC
4 October. Figure 9a shows an image of Melor (2009) reaching the peak intensity, and Figure 9b shows
the intensity sequence estimated using the model. In addition, the model estimated intensity curve
was 12-h smoothed (black solid line). The smoothed curve is consistent with the best-track curve
(R2 of 0.91).Atmosphere 2016, 7, 40 12 of 16 
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Figure 9. (a) IR image of typhoon Melor (2009) at 12:00 p.m. UTC 4 October, the arrow indicates the
typhoon center derived from JTWC best-track dataset; (b) The intensity sequence estimated using the
model developed in this paper (gray solid curve), the curve that is 12-h smoothed (black solid curve),
and that from best-track (black dashed curve).

The model underestimates intensity of Melor (mean bias of ´3.66 Knot) in most cases while the
peak intensity and intensities in the following 48 h are slightly overestimated. By examing the images
within this 48-h time interval, we found that there is no L45 or U45 points on the radial profiles of most
images. We doubt that assuming the location of L45 and U45 as the average values might introduce
errors but further examination is in need. As described in the data section, since the existence of the
“missing belt” in the Satellite images, which is filled by interpolation, we doubt that this also results in
uncertain errors as it produces considerable errors in computing gradient vectors of the brightness
temperatures. Nonetheless, further improvements are needed to perfect the model developed in this
study. In addition, the patterns of these images are similar within the core region but vary substantially
outside the core. Since the fixed radius (300 km) was adopted in computing deviation angle related
parameters, it is possible that errors could be introduced by this fixed radius.

From best-track intensity curve, it is clear that typhoon Melor experienced a time period
(approximately from 2 October to 4 October) of stable intensities. However, from the model estimated
curve, the intensity see an steadily rising trend. Meanwhile, the intensities within this time period
are observably underestimated. By examing both the best-track and the model estimated intensities,
we found the intensity of Melor did remain stable from 0:00 UTC 2 Oct to 6:00 UTC 3 October as
recorded by the original JTWC best-track, but it increased to 120 knot at 12:00 UTC Oct. 03 and later
to 130 knot. Therefore, it is likely that the interpolation process of the best-track data produced such
errors. To test this, the original best-track intensities and the IR images of corresponding time are used
to perform the regression again. The comparison of statistics of the errors between the model regressed
using the interpolated best-track and the original intensities are listed in Table 6. It is clear that results
derived using the original best-track intensities are much better than that using the interpolated ones.
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Therefore, we are confident that the accuracy of the model could be improved if accurate and high
temporal resolution historical typhoon intensities could be provided.

Table 6. Comparison of the regressed model between using the original and interpolated
best-track intensities.

Dependent Tests Independent Tests

Interpolated
(16,126 Images)

Original
(8652 Images)

Interpolated
(1982 Images)

Original
(931 Images)

R2 0.77 0.78 0.77 0.81
RMSE (Knot) 12.69 9.88 12.01 9.48

MARE (%) 19.78 14.93 21.67 15.55

Finally, Following Fetanat (2013) [20], a short comparison of statistics produced in validations
of existing algorithms for estimating TC intensity was made, the technique introduced by Kossin
(2007) [42], the improved DAV-T developed by Ritchie (2014) [25], the feature analogs in satellite
imagery (FASI) proposed by Fetanat (2013) [20], and the developed TI index [26] are considered. The
overall RMSE produced both in the dependent and independent tests of our models which were
developed using the three-hourly interpolated and the original six-hourly archived intensities are
used to compare with these techniques, results are listed in Table 7. It is noteworthy that in this
paper we use the largest set of tropical cyclone cases into developing the model compared with the
aforementioned techniques. The accuracy of our model, however, is on par with these techniques.
Furthermore, it is obvious that the retrained model using the original three-hourly archived best-track
intensities performs even better.

Table 7. Comparison of the model estimated typhoon intensities with previous developed technique
using the statistics RMSE.

Technique RMSE (Knot)

Kossin et al. (2007) 13.20
Improved DAV-T 12.90

TI index 9.34
FASI 12.70

Dependent test Interpolated intensity 12.69
Original intensity 9.88

Independent test Interpolated intensity 12.01
Original intensity 9.48

5. Conclusions

Cloud-top brightness temperatures have long been correlated with surface wind structure of
tropical cyclones [7,8,10,19,43]. More recently, several new techniques have been developed to
estimate TC intensity from satellite measured brightness temperature in the northwestern pacific
basin [3,16,20,25]. This paper presents an objective model for tropical cyclone intensity estimation over
northwestern pacific Ocean using geostationary IR data.

The final obtained model is developed using tropical cyclone cases (16,126 three-hourly images)
from the 1996 to 2009 Northwestern Pacific typhoon seasons, with a multiple linear regression
technique. The independent validations are performed on 52 cases from 2008 to 2009 typhoon season.
Before regression, significant signals and parameters of satellite IR images are extracted by several
steps (as described in Section 3). The predicators that are eventually involved in the model include
the square of deviation angle variance (DAV2), the new developed index DAO, the inner core mean
brightness temperature (ICBT), the outer core brightness temperature (OCBT), the mean brightness
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temperature between FOT and U45 (AFOT-U45), the mean brightness temperature between CCT and
U45 (AU45-CCT), the mean brightness temperature between L45 and FOT (AFOT-U45), and the slope
between L45 and U45 (Sl45-u45).

The regressed model is shown in Section 4.1. Various tests are performed to statistically justify
the accuracy of the developed model. From the dependent test, the model could perform with a
reasonable accuracy (with a mean RMSE of 12.69 knot and mean absolute relative errors of 19.78% for
the overall cases). However, the model generally overestimates weak cyclones while underestimates
intense typhoons. In the independent tests, it is proven that the model could be regarded as a reference
in determining TC intensities in real-time, especially for intense typhoons. By dividing the 52 cases in
the independent tests into three groups of approximately equal size, we show that there more errors
could be expected when the model is applied into deterring intensities of weak systems. In short, the
model can estimate tropical cyclone intensities relatively accurate in the independent tests (a RMSE of
12.01 Knot).

In order to quantify the influence of the interpolation of the best-track intensities on the
performance of the model, the original best-track intensities are adopted to perform the regression
again (results are listed in Tables 6 and 7). Noticeable improvements could be seen using original
best-track intensities. Specifically, this produces a decrease in RMSE of around 2 Knot. Therefore,
we have confidence that this model could be improved, providing an accurate and high temporal
resolution historical intensity dataset. Many factors may be attributed as error sources and further
studies are in need to improve the model.

In conclusion, the model developed in this paper provides another reference for tropical cyclone
intensity estimation over North Western Pacific Ocean. Future works will focus mainly on the
improvement of the model and the application of the model in estimating surface wind structure of
typhoons from satellite images.
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Abbreviations

The following abbreviations are used in this manuscript:

TC Tropical Cyclone
BT Brightness Temperature
NWP Northwestern Pacific Ocean
TCIS The JPL Tropical Cyclone Information System
GMS Geostationary Meteorological Satellite
IRBT Infrared Brightness Temperature
MSW Maximum Sustained Wind
JTWC National Joint Typhoon Warning Center
DAV The Variance of Deviation Angles
DAV-T The Deviation-Angle Variance Technique
P_MDA The Probability Density of Mean Deviation Angle
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IQR Interquartile Range of the DAs
ICBT The Inner Core Average BT
OCBT The Outer Core Average BT
MIBT (MABT) Azimuthally Averaged Minimum (Maximum) BT within the Outer Core
CCT The Radial Location of the Coldest Cloud
FOT The Radial Location of the First Overshooting Top
L45 (U45) The Lower (Upper) Extent of the Inner Eyewall
MAE Mean Absolute Error
RMSE Root Mean Square Error
MARE Mean Absolute Relative Error
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