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Abstract: In recent years, frequent occurrences of significant air pollution events in China have
routinely caused panic and are a major topic of discussion by the public and air pollution experts
in government and academia. Therefore, this study proposed an efficient visualization method to
represent directly, quickly, and clearly the spatio-temporal information contained in air pollution
data. Data quality check and cleansing during a preliminary visual analysis is presented in tabular
form, heat matrix, or line chart, upon which hypotheses can be deduced. Further visualizations
were designed to verify the hypotheses and obtain useful findings. This method was tested and
validated in a year-long case study of the air quality index (AQI of PM2.5) in Beijing, China. We
found that PM2.5, PM10, and NO2 may be emitted by the same sources, and strong winds may
accelerate the spread of pollutants. The average concentration of PM2.5 in Beijing was greater than
the AQI value of 50 over the six-year study period. Furthermore, arable lands exhibited considerably
higher concentrations of air pollutants than vegetation-covered areas. The findings of this study
showed that our visualization method is intuitive and reliable through data quality checking and
information sharing with multi-perspective air pollution graphs. This method allows the data to be
easily understood by the public and inspire or aid further studies in other fields.
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1. Introduction

Since 2011, frequent occurrences of haze in China have become a cause for panic and routinely
appear as a major topic in the media and on climate websites [1,2]. Thus, considerable research
in various fields has focused on air pollution, attempting to solve the problem with different
approaches [3–8]. Nevertheless, in many instances, the methods are not completely intuitive and are
difficult for governmental officials and the general public to understand. Visual exploration [9–14] of
air pollution with spatio-temporal data is a solution that makes complex data understandable because
graphical representation is relatively intuitive.

Atmospheric particulate matter is a commonly used criterion to evaluate air quality [7,15,16]. The
degree of adverse health effects depends on the size and composition of the particles [16]. PM2.5 and
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PM10 are defined as particles with diameters of 2.5 µm or less and 10 µm or less, respectively; these
parameters are usually measured using air quality index (AQI). AQIs are calculated from the particle
concentration at monitoring stations expressed as micrograms per cubic meter [17]. According to the
technical regulation on ambient air quality index (on trial) [18], the air pollution index for PM2.5 is
divided into six levels, namely, 0–50, 51–100, 101–150, 151–200, 201–300, and greater than 300. With
these levels, we can identify the severity of air pollution.

Literature on chemical and remote-sensing fields greatly contributes to air pollution analysis.
Examining air composition with related chemometric techniques can achieve effective analysis of
pollutant sources [19], which is suitable for micro and local level analyses but is not satisfactory for
spatio-temporal pattern exploration of larger areas. Satellite remote-sensing assessment, subsequent
mapping of the spatial distribution of aerosols [4,20], and air pollution data measured by satellite-borne
sensors or ground-based monitoring stations [21,22] identified a strong relationship between PM2.5 and
PM10. However, complicated calibration and data processing are executed with professional software,
most of which are standalone and specialized and thus cannot be easily understood or shared with the
general public.

By dealing with graphical representations of complex data, conventional plots, such as scatter
plot, are used to analyze time-series data and show the correlation among various factors in air
pollution exploration [7,23]. These plots are simple and have been widely used for a long time, but they
cannot effectively express spatial relationships and are less attractive than the newer multi-perspective
visualizations and graphs. Moreover, the rapid development of web technology allows interactive
visualizations to combine various technologies [24], such as HTML for page content, CSS for aesthetics,
JavaScript for interaction, and SVG for vector graphics. These technologies render sharing intuitive
information highly convenient.

Many spatial distribution explorations and complex representations of air pollution [3,8,25]
rely on standalone or proprietary software products like ArcGIS. VIS-STAMP [26] is a software that
provides tools for users to generate self-organizing maps, parallel coordinate maps, map matrices,
and reorderable matrices (a type of heat map). This software allows users to visualize multivariate
statistical analysis intuitively, as well as explore and understand spatio-temporal and multivariate
patterns. Nevertheless, this type of exploration does not consider the extendable and sharable functions
that are important for the public to acquire multi-perspectives and latest information on air pollution.

Numerous researchers focus on systematic theories of visual exploration for spatio-temporal data.
Kraak [12] claims that graphics can reveal patterns that are not necessarily visible when conventional
map display methods are applied, demonstrating the usefulness of geovisualization. The idea of a
generic scenario extends the idea of geovisualization following the schema developed [9,13]. A general
framework was proposed then for using aggregation in visual exploration of massive movement
data [27]. Similarly, another framework [28] was discussed for spatio-temporal visualization with the
visual method space–time cube. However, these frameworks must be extended further and adapted
for the visual exploration of air pollution data considering data quality, correlations in multivariate
data, and spatio-temporal pattern analysis.

Air composition analysis and remote-sensing methods require complex computations and are
time consuming. Moreover, the current graphical approaches for air pollution analysis lack interactive
and sharable multi-perspective visualizations. The public urgently needs rapid and reliable knowledge
on air pollution to make daily decisions. Similarly, most of the government staff are not professionals
and need intuitive understanding of the conditions before they can execute any actions against the
increasingly serious air pollutants. Thus, a visual methodology is needed for efficient and reliable
exploration, particularly in the case of air pollution data, to improve the depth, readability, and accuracy
of data analysis. We were motivated by the idea of visual thinking and the geovisualization concept [12],
which may be well suited for the exploration of air pollution data. Building on the extensive body
of previous work, our paper presents a visualization exploration method that realizes the process of
observation–hypothesis–verification. This method was tested and validated in a year-long case study
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of the air quality index (AQI of PM2.5) in Beijing, China. The useful findings of air pollution in Beijing
show that our new method extends the existing work and fills a gap in the research, focusing on visual
exploration to support various applications, such as knowledge-based decision making and aided
research of air pollution.

2. Method and Data

Workflow for visualizing air pollution data is shown in Figure 1 and consists of five blocks,
namely, Database, Preliminary analysis, Hypotheses, Verification, and Application. Our previous
work, a Real-time Sensor Data Provision system (ReSDaP) [29–31], achieved the on-demand data
provision for the Database. Data are then checked and analyzed by the Preliminary analysis block
through various basic visual methods, such as bar charts, heat tables, and line charts. Based on these
data, hypotheses can be built and verified through further visual analytics. Finally, the findings of
previous steps can be used for applications.
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Figure 1. Visualization workflow for air pollution data.

Data accessing and storage are displayed as Step (1) in Figure 1. The backend data are acquired
from our previous work through the real-time data provision system architecture for sensor webs
(ReSDaP) [29]. Air pollution data often contain time and geographic location and can include an
AQI, a PM2.5 concentration measurement. The data may also include other information related to
air pollution, such as weather and economic development data. These data exist in various formats
and are stored based on these formats in different types of databases. Data similar to tab-separated
values, comma-separated values, spreadsheets, and other types of data tables can be directly stored
in a relational database, such as the open source database MySQL. For unstructured data, such as
text, pictures, and videos, the NoSQL (not only SQL) database can be used for storage, such as the
MongoDB open source database that can also store structured data. Through ReSDaP [29], air pollution
data are directly stored in the database, providing support for data access and storage.

The Preliminary analysis block is shown as Step (2) in Figure 1. The main goal of this layer is to
carry out an overall analysis of the data, perform basic data cleansing, and obtain several elementary
discoveries. The next block shows the Hypotheses as Step (3). Verification is shown in Step (4), which
is used to verify previously tested hypotheses. The main processes in this block include visualization
design, data preprocessing, and visual analytics to achieve visualization flexibility with various
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methods, such as heat maps, parallel coordinate plots, heat circles, and calendar views. The last step is
the application block seen as Step (5) in Figure 1. The following subsections will describe these four
blocks in detail.

2.1. Preliminary Analysis

The Preliminary analysis block allows users to perform preliminary global visualization, explore
the data to examine possible inferences, and provide clues and guides for the next block, Hypotheses.
This block enables global analysis to verify the correctness and the completeness of the data, which
permits preliminary data visualization with basic graphs, such as heat tables, line charts, and bar
graphs, for a simple and rough overview of the data. If necessary, this step can be repeated to perform
new data inspection and processing. A reliable process for data quality checking and cleaning is
needed before information extraction from the original data. An inspection of the raw data reveals
defects; thus, more reliable results can be acquired after visual support. Rearranging the rows and
columns with drag-and-drop and partially selecting some data items through check boxes are highly
convenient, which make finding missing data and logical errors in the data easier.

The Preliminary analysis block is rapid and easy with visualization tools. The complicated
algorithms for accessing data, chemical analysis [19] of air, and remote-sensing [4,20] methods require
proprietary software and knowledge to interpret the data or are time consuming and difficult to
understand. The same is true regarding the analysis of the spatio-temporal distribution of air pollution
values in space and time [3,7,23,25,26,32]. An Online interaction user interface can perform rapid basic
visualizations to find preliminary results and inspect data defects with its flexible data formatting
and special functions. Many visualization tools are free, open source, easy to acquire, and extendable.
JavaScript is one of the techniques that make it convenient for the public to access and understand
the data.

2.2. Hypotheses

Basing on basic visualization and data cleansing, possible patterns in air pollution data can be
hypothesized, such as relationships among multiple variables, time-related fluctuation of pollutant
concentrations, and spatial distributions. This part is based on adequate basic visualization to find
specific characteristics or trends shown in the charts. After proposing the hypotheses, verification is
needed as described in the succeeding section.

2.3. Verification of the Hypotheses

Specific visualization methods were designed for testing and verification of possible inferences.
To verify the hypotheses by visual analytics, a visualization design will help users determine the next
steps for further analysis. The Visual analytics with more refined visualization and analysis can be used
to verify the thoughts in the Hypotheses block. If hot spots were found in this part, more hypotheses
could be built and further verification would be needed. Thus, this can be a recursive process.

We achieved a better visual effect from multi-perspective visualization for spatio-temporal
analysis. Conventional plots, such as scatter and line plots, are usually used for the time-series
data exploration of air pollution [7] without spatial analysis and do not include the new attractive
graphs. We analyzed the characteristics of various types of graphs and found that the circular
heat map is extremely suitable to display time series data and calendar view [33] is useful for
displaying years of daily data. This method provides a new perspective on time series data and
a means to comprehensively understand the conventional line charts or matrix plots that fail to deliver
because they separate the data into several parts according to seasons or years. We also used the
geovisualization graphs to represent the spatial distribution of air pollution data clearly.
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2.4. Application Layer

Visualization highlights the regularities in the data to be verified by later statistical analysis. Both
basic visualization and visual analytics lead to discovery and provide support for applications. In
the Application layer, relevant findings are summarized from the visual analytics of the Preliminary
analysis and Verification blocks to the appropriate treatment programs. For example, if long-term
positive correlations were found between carbon dioxide concentrations and temperatures all over
the world, controlling the irregular emission of carbon dioxide may be an approach to address global
warming. Thus, the visual display of data supports decision-making by experts and non-experts alike.
However, anomalies seen in the charts that illustrate data hot spots and allow users to identify data
for further statistical analysis. At the same time, data visualization can act as aided research of other
methods in the air pollution field, and sharing interactive findings through the web. Therefore, the
application block in the workflow can be coordinated with other systems, providing a basis for a
comprehensive model of a phenomenon.

We can further stress the advantages of our method by comparing them with previous methods for
visual analytics. The simple model of visualization for visual analytics [9] was too abstract and coarse
to be used for the analysis of air pollution data with graphs. Andrienko and Andrienko [27] proposed
a general framework using aggregation in visual exploration of massive movement data. A similar
framework for spatio-temporal visualization was suitable for movement data with the visual method
space–time cube [28]. It was a problem-driven process with domain experts as users. Nevertheless,
our method contains a data-driven process with multi-perspective spatio-temporal visualization that
is easily understood by expert and non-expert users alike. Moreover, we described an efficient visual
method to check data quality and enable our method to acquire more reliable results.

Visualization value can be assessed from three viewpoints: technology, art, and empiric science [9].
Our method is efficient and extendable from the technological viewpoint and beautiful from the artistic
viewpoint. Meanwhile, it follows the “observation–hypothesis–verification” process of the scientific
method and thus complies with the demands of empirical science. In Section 3, this method will be
tested and validated in a year-long case study of the AQI of PM2.5 in Beijing, China.

2.5. Experimental Data

Two datasets are utilized for the case study of air quality in Beijing, the capital of China. The first
dataset is historical hourly PM2.5 data (2009–2014) of Beijing obtained from the US Department of State
air quality files available on its website [34] as measured at the US Embassy in Beijing. Observation
values include PM2.5 concentration, with parameter concentration units in micrograms per cubic meter
(µg/m³) transformed to AQI values for our case study. However, these data are not completely verified
or validated as indicated in the data statement. These data were used to demonstrate a practical
application of the visualization approach, as well as its feasibility and efficiency. The data are referred
to as the USE data in the rest of this paper.

The second dataset was created from the U-Air project [35] and comprises one year (8 February
2013 to 8 February 2014) of air quality data from 36 air quality monitoring stations in Beijing, all with
geographic coordinates. The stations are shown in Figure 2. The observation data include time, AQI of
PM2.5, PM10, NO2, temperature, humidity, wind speed, and weather. Notably, the original weather
data have several anomalies; thus, we decided to explore the relationship between pollution and the
rainy weather with precipitation data only [36]. These data are termed the U-Air data in the rest of
this paper.
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3. Results and Discussion

3.1. General Analysis and Hypotheses

Before original data records could be used to convey information, preliminary analyses are
necessary to evaluate data quality and find general facts in the data itself. Moreover, data-driven
hypotheses could be built to guide further analysis. In this section, we will cover these steps without
going into details. Readers can find more details in the Supplementary Materials as the main goal of
this paper is the flexible visual exploration method for air pollution. Missing data and logic errors may
occur in the original data. Therefore, rapid data inspection is needed before they can be used to acquire
reliable findings. Visual analytics is an intuitive and clear method for this purpose. Data misreads can
be avoided to some extent if these defects are found and processed through graphs. We will show how
the data quality of the original U-Air data can be verified and validated with visualization methods.

With tables or scatter plots, missing data can be easily found. As presented in Figure 3, stations
23–36 from March to October have no observations, which clearly show the missing blocks to be
handled. Moreover, logic errors could be found with this visualization type. For example, when setting
rows as months and columns as weather, the evident relationship between weather and seasons could
be observed intuitively. Beijing has a sub-humid warm temperate continental monsoon climate [37] on
the northern hemisphere; thus, it is unlikely to snow in summer.

These problems can be handled in several ways. Multi-source data fusion may supplement the
missing data and replace the part with logic errors. In this case study, the precipitation data were
integrated to determine whether rainy weather can affect pollutant concentration. Interpolation for
missing or coarse records is another commonly used method [23]. In addition, data could be divided
into parts and analyzed separately to be used for the missing data problem in this case study.

Figure 4 shows the missing data in stations 23–36 from March to October. To minimize the effect
of these missing data in the analysis, we separated the data into two parts and outlined them in Table 1.
The first strategy involves the time pattern analysis of PM2.5 for stations 01–22 for all months. This
analysis includes visualizing the average AQI of PM2.5 by month, day, and hour. The second strategy is
spatial distribution analysis of PM2.5 for observations in January, February, November, and December
because all stations in these months have complete data records. With this separated analysis, more
reliable exploration can be performed.
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Table 1. Visualized design for discovery of defects in the U-Air data.

Stations (ID) Months Mean AQI of PM2.5

Part (01–22) All months Relationship with Month, Day, Hour
All (01–36) Part (1, 2, 11, 12) Relationship with Geo-location

We performed the global visualization of data using basic charts. Based on these visualizations,
possible hypotheses were generated for the visualization design program. We used the U-Air data.
According to Table 1, the first strategy is used to determine whether a temporal pattern is evident in
the data from stations 01–22 for all months. Through basic visualization, as shown in the heat table in
Figure 4, higher PM2.5 concentrations are observed from Friday to Sunday from February to March
than during other times in this period.

The line chart shown in Figure 5 indicates that the highest mean AQI for PM2.5 was in March,
whereas the minimum was in November.
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AQI variation in March is large because heating is sometimes provided. However, heating can
be unnecessary because the weather is getting warmer. The mean AQI for PM2.5 was relatively high
during January, June, and October.

As shown in Figure 6, lines in the area chart display the same trend over four months, indicating
that contaminants had spatial distribution characteristics. Stations 01, 03–04, 06–16, and 20–22 had high
values; stations 05, 17–19, and 34–36 exhibited extremely high pollutant concentrations; and Stations
02 and 23–33 showed the lowest values among all the monitoring sites. These results demonstrate that
air pollutants have a strong spatial distribution.

A heat matrix is a representation of the correlations between the data with a color matrix. The
correlation value is a Pearson product moment correlation coefficient, r (Pearson’s r for short, with the
range of ´1 to 1), which is calculated using Equation (1) given a series of n measurements of variables
X and Y written as xi and yi, where i = 1, 2, . . . , n. This computation yields a correlation matrix in
which each i, j element is equal to the r value between the X and Y variables.
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A heat matrix can be used to intuitively discover the overall relevance of data; thus, it can be
used for preliminary analysis of the data. As shown in Figure 7, colors represent Pearson’s r, and color
ranges from red to blue by gradient. The area marked with red dotted boxes in Figure 7 indicates
several primary results. The AQIs of PM2.5, PM10, and NO2 showed strong positive correlations,
whereas the wind had a negative correlation with the AQIs of PM2.5, PM10, NO2, and humidity. When
the AQI of PM2.5 is high, high AQI of PM10 and NO2 are obtained, and the wind speed may be low.
Through the general analysis, we constructed three hypotheses and the corresponding visualization
design for the air pollution exploration. The first hypothesis is that a correlation exists among the
AQI of PM2.5, PM10, and NO2, and wind speed. This correlation can be visualized through scatter
plots that show the relationship between any two factors. The second hypothesis is that a regular time
pattern exists for air pollutants. Heat maps would be an ideal visualization method, including a circle
heat map and a calendar view. The third hypothesis is that air contaminants possess a geographical
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distribution. This distribution can be represented appropriately by geovisualization, a method suitable
for illustrating continuous spatial distributions.
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3.2. Multi-Perspective and Various Visual Analysis

We explore results in this section using multi-perspective analysis and various visual graphs. The
relationship between pollutants and weather factors is analyzed first, followed by the presentation of
temporal characteristics of PM2.5. Afterward, spatial features of air pollution are shown and studied
with stations overlaid on a satellite map. The last subsection includes the findings of air pollution
in Beijing.
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3.2.1. Relationship between Multiple Factors

Section 2.2 introduces the hypothesis that a relationship exists among pollutants and wind speed.
In this section, plots are used to visualize and explore the relationships between the pollutants and
weather using the U-Air data. Figure 8 shows that the three pollutants are strongly positively correlated
because the Pearson’s r values are rather high. However, wind speed has a negative correlation with
PM2.5, PM10, and NO2, which have high negative r values. Precipitation exhibits an extremely weak
negative correlation with the pollutants. The strong positive correlation between PM2.5 and PM10

shown in Figure 8 verifies the findings in [7]. Because PM2.5 and PM10 are defined as particles
with diameters of 2.5 µm or less and 10 µm or less, respectively, the relationship reveals that the
particle density distributed stably according to their sizes. The positive correlation between pollutants
indicates that PM2.5, PM10, and NO2 may be emitted by the same sources, or one may be emitted
by the transformation of another through some type of chemical mechanism [38]. To determine the
specific reasons, a combined physical and chemical analysis of pollutants is desirable [19].
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Figure 8. Scatter plots showing relationships among PM2.5, PM10, NO2, wind, and precipitation.
Different colors represent four seasons, where r is the correlation coefficient of two factors. Red circle
marks a special point that is markedly different from the others.

The red circle marked in Figure 8 shows a different record in spring, which is far from the main
cluster. This data item was found on 9 March 2013. The AQI of PM10 exhibited an extremely high
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value of 189.28, whereas that of PM2.5 had a low value of 66.95. At that time, Beijing was experiencing
a sandstorm caused by the northerly wind. Moreover, a sandstorm contains particles with large sizes
that may lead to high concentrations of PM10 despite the consistency of PM2.5 [39]. This point is
different from that of the others. Figure 8 also shows that pollutants and wind speed are negatively
correlated; that is, larger wind speed results in lower pollutant concentration. Strong winds will
accelerate the spread of pollutants, and a mixture of fresh air may decrease pollutant concentration.
Moreover, precipitation has a weak negative correlation with the pollutants. Precipitation can wash the
PM2.5, which can be replenished very soon in Beijing. Summer and autumn have strong precipitation
but there is extremely light rainfall in spring and autumn; this conforms to the sub-humid, warm,
temperate, and continental monsoon climate in Beijing [37].

3.2.2. Temporal Characteristics

The USE data, which had long-term observations, were used in this section to determine the
temporal characteristics of the mean AQI values of PM2.5. The average AQI of PM2.5 in five years
is visualized through two circular heat maps; one map is a monthly variation and the other is an
hourly variation. A daily concentration of PM2.5 is presented as a calendar map, which is useful for an
intuitive inspection of the severity of pollutants. As shown in Figure 9, pollutant concentrations are
extremely high from 2010 to 2014. Figure 9a shows a circular heat map with average AQI for every
month in selected years, whereas Figure 9b represents 24-h periods for selected years. Basing on the
charts, AQIs of not less than 150 apparently occurred in January and February, whereas AQIs of more
than 100 occurred in September, October, January, and February. Moreover, the AQIs of more than 100
were concentrated from 6:00 p.m. to 4:00 a.m. during the selected years.Atmosphere 2016, 7, 35 11 of 19 
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Spatial distribution of the mean AQI of PM2.5 is analyzed in this section. Observations of the 36 
stations from November 2013 to February 2014 are used. We first interpolate the AQI surface through 
the values of those stations by Ordinary Kriging (OK) [40], which is a geostatistical method where 
the weights for interpolation are computed by the neighboring values called “semivariances” (γ). In 
Equation (2), n is the number of pairs of sample points z separated by distance h, and ߛො(ℎ) is the 
semivariogram which is a function of distance [41]. 

Figure 9. Circular heat maps from 2010 to 2014 are selected: (a) year and month circular heat map
showing the monthly air pollution concentration; and (b) year and hour circular heat map showing the
daily air pollution concentration.

As shown in the calendar view (Figure 10), days with a mean AQI of PM2.5 greater than 200
(heavily polluted) were concentrated from January to March and October to December. No significant
difference was observed in PM2.5 between weekdays and weekends, as shown in Figure 10. These
graphs of temporal characteristic show that the average concentration of PM2.5 in Beijing was greater
than the AQI value of 50 over the six-year study period; therefore, the residents suffer from long-term
moderate pollution. The concentrations are more serious from October to March and from 6:00 p.m. to
4:00 a.m. on average. People are advised to stay indoors during those time periods.
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3.2.3. Spatial Characteristics

Spatial distribution of the mean AQI of PM2.5 is analyzed in this section. Observations of the 36
stations from November 2013 to February 2014 are used. We first interpolate the AQI surface through
the values of those stations by Ordinary Kriging (OK) [40], which is a geostatistical method where
the weights for interpolation are computed by the neighboring values called “semivariances” (γ). In
Equation (2), n is the number of pairs of sample points z separated by distance h, and γ̂ phq is the
semivariogram which is a function of distance [41].
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With Equations (2) and (3), provided by Clark [42], we created the Geovisualization heatmap of
Beijing air pollution shown in Figure 11. The interpolation heatmap presents higher concentrations
of pollutants in red, and lower concentrations in blue. It can be observed that air pollution has an
increasing trend from north to south. From the land use figure of the year 2011 [43], it can be found
that the north area in Beijing is mainly wood and orchard land, the center area is urban land, and the
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south is mainly arable land with a few residential areas. This could be further inspected through the
satellite map of this area.
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areas. Figures 6 and 11 present that the central area (03–04, 06–16, and 20–22) has average air pollution 
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Stations 34–36 in the south end of Beijing, a major part of which is arable land, show the highest 

Figure 11. Average AQI Heatmap of PM2.5 from November 2013 to February 2014 in Beijing.

A satellite map with 36 overlaid monitoring stations is shown in Figure 12. Stations 30, 31, and
32 are found in areas covered with vegetation. These stations showed lower concentrations of PM2.5

compared with the other sites. The north and west of Beijing have higher terrain, are densely covered
by vegetation, and are sparsely populated. Station 32 had the lowest pollutant concentration (Figure 6).
As shown in Figure 12a, station 32 is surrounded by mountains and a lake and is far from residential
areas. Figures 6 and 11 present that the central area (03–04, 06–16, and 20–22) has average air pollution
concentrations. The southern areas of Beijing have a mix of arable and residential lands, and the air
pollution concentrations in the corresponding stations (IDs 05, 17–19) have relatively higher AQIs.
Stations 34–36 in the south end of Beijing, a major part of which is arable land, show the highest
concentrations among other areas of the city. Figures in this section suggest that air pollutants exhibit
strong spatial distribution. Vegetation, terrain, and land use influence air contamination. Vegetation
can reduce the diffusion of atmospheric pollutants and absorb some pollutants. Arable lands have
considerably higher air pollutant concentrations than vegetation-covered areas.
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Figure 12. Distribution of monitoring stations (labels are IDs) overlaid on a satellite map. Three
areas are enlarged to show the conditions of the corresponding land surface. (a) The lowest average
observation was in station 32; (b) The highest one was in station 36; (c) The central area is also enlarged
to show the locations of stations and the US Embassy, which is marked in yellow.

4. Conclusions

A visual exploration method was proposed to analyze air pollution data, which enables
rapid processing and multi-perspective exploration of air pollution data to reveal spatio-temporal
patterns and basic relationships among multiple variables. The developed method follows the
observation–hypothesis–verification process of the scientific method and thus complies with the
demands of empirical science. The proposed visual exploration method achieved rapid processing and
accurate air pollution results for Beijing to guide the daily lives of residents and government decisions.
Based on a series of multi-perspective visualizations of PM2.5 data for Beijing, we conclude that the
following propositions are suitable topics for further empirical study:

(1) A strong correlation existed between pollutants and wind speed. The positive correlation
between pollutants indicates that PM2.5, PM10, and NO2 may be emitted by the same sources, or
one may be produced by the transformation of another through some type of chemical mechanism.
Pollutants and wind speed were negatively correlated because wind accelerated the spread of
pollutants and a mixture of fresh air may reduce pollutant concentration.

(2) Temporal characteristics were found through visual analytics. The average concentration
of PM2.5 in Beijing was greater than the AQI value of 50 over the six-year study period; therefore,
residents suffer from long-term moderate pollution. The concentrations are more serious from October
to March and from 6:00 p.m. to 4:00 a.m. on average. People should stay indoors during these
time periods.

(3) Spatial distribution of air pollutants was also determined through geovisualization. Vegetation,
terrain, and land use influenced air contamination. Vegetation could reduce the diffusion of
atmospheric pollutants and absorb some pollutants. Arable lands had considerably higher
concentrations of air pollutants than vegetation-covered areas.
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The findings obtained in this study can be used as reference for further statistical analysis. By
incorporating remote-sensing data, AQI data can be used to evaluate air quality at a regional or
global extent. With the hot spots identified by our method, the severely polluted periods could be
easily determined for air composition and transformation analysis from the physical and chemical
perspectives; thus, the emission source could be more easily confirmed. Our future work will combine
passive remote sensing and Mie/Raman LiDAR and incorporate extra models for more comprehensive
analysis based on our previous studies [44]. Moreover, our method can be extended to visual analyses
in other domains, such as soil pollution, climate change, and urban sprawl.
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Appendix A. Open source visualization tools

The open source tools were used to realize the visualization in the paper. Because open source
software is free, it is easily accessible by researchers in developing countries or young scientists who
may not have enough funds to support their studies. In addition, the open codes are modifiable and
extendable for custom usage. Moreover, open communities like Github, provide an abundance of
example plots, which are updated in real-time for multi-perspective spatio-temporal visualization
exploration. Therefore, it is reasonable and suitable to use those tools for visual analytics. In this
appendix, we introduce two tools used for our paper: PivotTable.js and D3.js.

PivotTable.js

PivotTable.js [45] is an open source JavaScript library with drag-and-drop functionality based on
jQuery and jQueryUI. PivotTable's core function is to import structured data as a summary table that
displays specific attribute data with a drag-and-drop interface. The summary table can be rendered into
various charts, transforming the table directly into figures. PivotTable has the following characteristics.

First, it is open source and lightweight. The core code is just a single file that compiles down to
6.3 kb of minified JavaScript that can run anywhere as long as jQuery and jQueryUI work.

Second, it can be used for formatted data extraction. Through PivotTable, the function
$.pivotUtilities.derivers.dateFormat can reformat complicated date or date-time values into day, hour,
minute, week, month values. Thus, time data can be easily extracted; for example, the time data format,
"2/8/2013 9:10:30 PM", can be reformatted as shown in Table A1. This is a very useful function when
working with temporal data. Derived attributes can be created on the fly based on the whole input
record by passing it through a function.

Third, it is an efficient and intuitive basic visual analysis tool that includes the capacity to create
heat maps and bar, line, and pie charts using interactive drag-and-drop operations.

Finally, users can easily use PivotTable to perform basic statistical analysis, such as calculating
mean, sum and median. If necessary, customized TSV data can be outputted as data for inputting into
the next layer for further visualization and analysis.

Figure A1 is the PivotTable GUI, showing its basic function areas. As seen in the figure, A and
B are drop-down boxes that display options for users. A is the renderer, used to select the type of
visualization, such as table, heat map, and line chart. B is the aggregator, used for selecting data for
display, like mean AQI of PM2.5. C is the container for the attributes, and D is the Row attribute. E
is the Column, to which attributes are dragged from C for visualization. The attribute data can be
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selected for analysis; for example, we can choose January from the ‘month’ attribute for analysis. F is
the Data Visualization area, where the renderer builds an appropriate visualization.

PivotTable has data preprocessing capabilities. A global analysis visualization program can be
used to preprocess data. By dragging and dropping attributes to the rows and columns and selecting
TSV output in the renderer, the corresponding data are shown in the Data Visualization Area. This
custom function makes it very easy and efficient to export data that can be directly used for further
analysis applications.

Table A1. Formatting parameters and corresponding return values.

Parameter Interpolation Return Value

%y: date.getFullYear () 2013
%m: zeroPad (date.getMonth () +1) 2
%n: mthNames (date.getMonth ()) Feb

%d: zeroPad (date.getDate ()) 8
%w: dayNames (date.getDay ()) Fri

%x: date.getDay () 5 (Sunday is Zero)
%H: zeroPad (date.getHours ()) 21 ("PM" is auto-computed)

%M: zeroPad (date.getMinutes ()) 10
%S: zeroPad (date.getSeconds ()) 30
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mean, sum and median. If necessary, customized TSV data can be outputted as data for inputting 
into the next layer for further visualization and analysis. 

 

Figure A1. PivotTable Graphical User Interface (GUI). A to F represent function areas 

Figure A1 is the PivotTable GUI, showing its basic function areas. As seen in the figure, A and 
B are drop-down boxes that display options for users. A is the renderer, used to select the type of 
visualization, such as table, heat map, and line chart. B is the aggregator, used for selecting data for 
display, like mean AQI of PM2.5. C is the container for the attributes, and D is the Row attribute. E is 
the Column, to which attributes are dragged from C for visualization. The attribute data can be 
selected for analysis; for example, we can choose January from the ‘month’ attribute for analysis. F is 
the Data Visualization area, where the renderer builds an appropriate visualization.  

PivotTable has data preprocessing capabilities. A global analysis visualization program can be 
used to preprocess data. By dragging and dropping attributes to the rows and columns and selecting 
TSV output in the renderer, the corresponding data are shown in the Data Visualization Area. This 
custom function makes it very easy and efficient to export data that can be directly used for further 
analysis applications. 

D3.js 

Data-Driven Documents (D3) [46] is a JavaScript library that uses HTML, SVG and CSS 
techniques to visualize data. Similar to PivotTable, it is a lightweight library with a core functionality 
file size less than 150 kb. It is data-driven for data inspections and operations based on the Document 
Object Model (DOM). D3 has detailed API documentation and an abundance of examples, and its 
maintenance and updating frequency is high. Thus, D3 is very suitable for statistical visualization.  

Appendix B. Data quality check of the U-Air data  

It has been noted in the paper that the U-Air data used in the cased study has some defects. This 
supplement file is to strengthen the idea and give more inspection to the original data. We use another 
visualization to show the data missing and a table to present the anomaly weather data in it. 
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Figure A1. PivotTable Graphical User Interface (GUI). A to F represent function areas.

D3.js

Data-Driven Documents (D3) [46] is a JavaScript library that uses HTML, SVG and CSS techniques
to visualize data. Similar to PivotTable, it is a lightweight library with a core functionality file size less
than 150 kb. It is data-driven for data inspections and operations based on the Document Object Model
(DOM). D3 has detailed API documentation and an abundance of examples, and its maintenance and
updating frequency is high. Thus, D3 is very suitable for statistical visualization.

Appendix B. Data quality check of the U-Air data

It has been noted in the paper that the U-Air data used in the cased study has some defects. This
supplement file is to strengthen the idea and give more inspection to the original data. We use another
visualization to show the data missing and a table to present the anomaly weather data in it.
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Figure A2. A scatterplot for 12 months and 36 stations 

In Figure A2, the red dot rectangle marks the missing data area. The black line is the regression 
line of the observations. The scatter plot is another kind of visual methods for missing data check. It 
confirms the results shown in Figure 3 in Section 3.1, identifying that data are missing from some 
stations from March to October. 

As seen in Figure A3, snowy weather occurred from April to June, showing incorrect records 
because this is impossible in Beijing (39.92N, 116.44E); there was no sunny weather from June to 
October, also suggesting data anomalies. Considering the defects identified in this figure, we decided 
to replace the weather records in the U-Air data. 

 
Figure A3. The average AQI of PM2.5 as shown in PivotTable; rows represents months, and columns 
contain the weather data. With PivotTable.js, this table can be reproduced by making the row as 
“month name”, and the column with “weather name”. 

Appendix C. Data processing 

This part focuses on the design for visualization and data preprocessing. Through the, we 
developed three hypotheses and a corresponding visualized design and implementation tools to test 
these propositions. Data preprocessing is also considered. 
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Figure A2. A scatterplot for 12 months and 36 stations.

In Figure A2, the red dot rectangle marks the missing data area. The black line is the regression
line of the observations. The scatter plot is another kind of visual methods for missing data check.
It confirms the results shown in Figure 3 in Section 3.1, identifying that data are missing from some
stations from March to October.

As seen in Figure A3, snowy weather occurred from April to June, showing incorrect records
because this is impossible in Beijing (39.92N, 116.44E); there was no sunny weather from June to
October, also suggesting data anomalies. Considering the defects identified in this figure, we decided
to replace the weather records in the U-Air data.
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Appendix C. Data processing

This part focuses on the design for visualization and data preprocessing. Through the, we
developed three hypotheses and a corresponding visualized design and implementation tools to test
these propositions. Data preprocessing is also considered.

Table A2. Hypothesis and visualization project design for verification.

Hypotheses Plots type Visualization tools Data Preprocessing

Relationship exists among
pollutants and wind speed Scatter plots D3.js

By PivotTable.js
There are some regular

patterns in time
Heat maps (Circular heat

chart, Calendar view) D3.js

Concentration distributionof
pollutants in space Geovisualization Openlayers

Three hypotheses are shown in Table A2. The first hypothesis is that there is a correlation
among the AQI of PM2.5, PM10, NO2 and wind speed. This can be visualized by scatterplots showing
the relationship between any two factors. The second is that there is a regular time pattern for air
pollutants. Heat maps would be an ideal visualization method, including a circle heat map, calendar
view, and heat matrix, as generated using D3. The third hypothesis is that air contaminants have a
geographical distribution. This can be represented appropriately by geovisualization, a method suitable
for illustrating continuous spatial distributions. There are different ways to achieve Geovisualization
with D3 or OpenLayers.

Data preprocessing precedes visualization. Data pretreatment in PivotTable is efficient because of
its built-in deriver generators. After preprocessing, data can be used for visualization. As analyzed in
Appendix B, weather data has some anomalies, so we replace that part with rainy weather in which
the precipitation in mm [36]. With this correction, we can analyze the correlation between the severity
of air pollution and the precipitation.

The data production for Figures 9 and 10 in the paper is by PivotTable with USE data. The
Figure 9a is produced by setting rows with “Year” and “Month”, while Figure 9b is produced by
setting rows with “Year” and “Hour”, both choosing “TSV Export” in the Aggregator of PivotTable.
Then the data in Tab separated values (TSV) form can be easily visualized by D3.js without additional
data processing.
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