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Abstract: Based on the electromagnetic fields generated by a current pulse propagating from one
point in space to another, a scenario that is frequently used to simulate return strokes in lightning
flashes, it is shown that there is a deep physical connection between the electromagnetic energy
dissipated by the system, the time over which this energy is dissipated and the charge associated with
the current. For a given current pulse, the product of the energy dissipated and the time over which
this energy is dissipated, defined as action in this paper, depends on the length of the channel, or the
path, through which the current pulse is propagating. As the length of the channel varies, the action
plotted against the length of the channel exhibits a maximum value. The location of the maximum
value depends on the ratio of the length of the channel to the characteristic length of the current pulse.
The latter is defined as the product of the duration of the current pulse and the speed of propagation
of the current pulse. The magnitude of this maximum depends on the charge associated with the
current pulse. The results show that when the charge associated with the current pulse approaches
the electronic charge, the value of this maximum reaches a value close to h/8π where h is the Plank
constant. From this result, one can deduce that the time-energy uncertainty principle is the reason for
the fact that the smallest charge that can be detected from the electromagnetic radiation is equal to
the electronic charge. Since any system that generates electromagnetic radiation can be represented
by a current pulse propagating from one point in space to another, the result is deemed valid for
electromagnetic radiation fields in general.

Keywords: lightning; electromagnetic fields; accelerating charges; return stroke models; time-energy
uncertainty principle

1. Introduction

One of the most famous mathematical models used to simulate return strokes in lightning flashes
is the transmission line model [1]. In this model, the return stroke is represented as a current pulse
that propagates from ground to cloud with constant speed and without attenuation. The model has
been used successfully in the remote sensing of the currents in lightning return strokes [2]. This model
is modified by several scientists by relaxing its simplifying assumptions. For example, in the model
introduced by Nucci et al. [3], the current amplitude decreases exponentially along the channel and in
the one introduced by Rakov and Dulzon [4], the current amplitude decreases linearly. Cooray and
Orville [5] introduced both current attenuation and dispersion while allowing the return stroke speed
to vary along the channel.
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Even though the transmission line model or the physical scenario associated with it (i.e.,
propagation of a current pulse from one point in space to another with constant speed and
without attenuation) is used mainly in lightning research, it can actually be used to represent other
electromagnetic radiation systems as well. For example, if the duration of the current pulse is much
longer than the time necessary for the current pulse to travel the length of the path, then the physical
system and the resulting radiation fields become identical to those of a short dipole [6,7]. Since the
electromagnetic radiation is created by the acceleration of charges associated with the spatial and
temporal variations of electric currents [8], this model should be able to represent any radiating system
if we relax the assumptions of constant speed and absence of attenuation of the current waveform. For
example, references given in the previous section (i.e., [3–5]) show that by introducing attenuation and
dispersion into this model, one can utilize it to model a more realistic return stroke.

In this paper, the above-mentioned model is used to study the relationship between the
electromagnetic radiation, the time over which this electromagnetic radiation is generated and the
charge associated with the current. It will be shown that the product of the magnitude of the emitted
radiation and the time over which it is emitted is deeply connected to the fact that the minimum charge
that can be transported by the current pulse is equal to the electronic charge. However, the first step of
our study is to evaluate the electromagnetic energy generated by the system under consideration. This
evaluation is conducted by utilizing the electric fields of accelerating charges as presented by Cooray
and Cooray [7,9]. The relevant field equations are given in the following sections.

2. Electromagnetic Fields Generated by A Current Pulse that Moves From One Point in Space to
Another along A Straight Line with Uniform Velocity and without Attenuation

The geometry under consideration is shown in Figure 1. A current pulse originates at point S1
and travels with uniform speed u without attenuation or dispersion towards S2. At S2, the current
is terminated. As shown by Cooray and Cooray [7,9] the total electric field at point P, generated
by this process, has five components. They are as follows: (i) the radiation field generated from S1
during the acceleration of charge when the current is initiated, (ii) the radiation field generated from S2
during the charge deceleration as the current is terminated, (iii) the electrostatic field generated by the
negative charge accumulated at S1 when the positive charge travels towards S2, (iv) the electrostatic
field generated by the accumulation of positive charge at S2, and (v) the velocity field generated as the
current pulse moves along the channel. The magnetic field generated by the current flow consists of
three terms, namely, two radiation fields generated at S1 and S2, and the velocity field generated as the
current pulse propagates along the path. Let us now write down the expressions obtained by Cooray
and Cooray [7,9] for these field components.
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2.1. The Electric Radiation Field Generated From S1

Let us assume that the current pulse leaving S1 can be represented by i(t). The radiation field
generated due to the acceleration of charges at point P is given by Cooray and Cooray [7,9].

erad,S1 “
ipt´ r1{cqusinθ1

4πεoc2r1

1
„

1´
ucosθ1

c

 aθ1 (1)

2.2. The Electric Radiation Field Generated From S2

The radiation field generated due to the deceleration of charges at S2 is given by

erad,S2 “ ´
ipt´ l{u´ r2{cqusinθ2

4πεoc2r2

1
„

1´
ucosθ2

c

 aθ2 (2)

2.3. The Static Field Generated by the Accumulation of Negative Charge at S1

The negative charge accumulation at S1 is equal to the integral of the current, and the field
component generated by the charges is given by

estat,S1 “ ´

t
ş

t´r1{c
ipξqdξ

4πεor2
1

ar1 t ą r1{c (3)

2.4. The Static Field Generated by the Accumulation of Positive Charge at S2

The component of the static field generated by the accumulation of positive charge at S2 is given
by

estat,S1 “

t
ş

t´l{u´r2{c
ipξqdξ

4πεor2
2

ar2 t ą l{u` r2{c (4)

2.5. The Velocity Field Generated as the Current Pulse Propagates along the Channel Element

The component attributable to the velocity field generated as the current pulse propagates along
the channel can be written as [7,9].

evel “

l
ż

0

ipt´ ξ{u´ r{cq
"

1´
u2

c2

*

4πεor2
”

1´
u
c

cosθ
ı2

”ar

u
´

az

c

ı

dξ (5)

Since the vector ar varies as one moves along the channel, the above equation can be decomposed
into components along vertical (z-direction) and horizontal (ρ-direction) as follows:

evel “

l
ż

0

ipt´ ξ{u´ r{cq
"

1´
u2

c2

*

4πεor2
”

1´
u
c

cosθ
ı2

„

cosθaz

u
`

sinθaρ

u
´

az

c



dξ (6)
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2.6. Magnetic Radiation Field Generated from S1

The magnetic radiation field generated from S1 is given by

brad,S1 “
ipt´ r1{cqusinθ1

4πεoc3r1

1
„

1´
ucosθ1

c

 aϕ (7)

Note that the magnetic field is in the azimuthal direction.

2.7. Magnetic Radiation Field Generated from S2

The magnetic radiation field generated from S2 is given by

brad,S2 “ ´
ipt´ l{u´ r2{cqusinθ2

4πεoc3r2

1
„

1´
ucosθ2

c

 aϕ (8)

2.8. Magnetic Velocity Field Generated as the Current Pulse Propagate along the Channel Element

The magnetic velocity field generated as the current pulse propagates along the channel is given by

bvel “

l
ż

0

ipt´ ξ{u´ r{cq
"

1´
u2

c2

*

sinθ

4πεor2c2
”

1´
u
c

cosθ
ı2 aϕdl (9)

The field components given by Equations (1)–(9) provide a complete description of the
electric and magnetic fields generated by the current pulse propagating with uniform velocity and
without attenuation.

The set of equations given above can be utilized in various applications in physics and lightning
research. Even though the equations are given for a pulse propagating with uniform speed without
attenuation, they can be utilized to estimate electromagnetic fields in situations where the attenuation
and dispersion of the current pulse take place. In such cases, the channel can be divided into small
sections and in each section the pulse is assumed to propagate with uniform speed and without
distortion. By summing up the contribution from all the elements, one can calculate the electromagnetic
fields from any event where the speed, current amplitude and the current shape vary in time and space.
As one can see from the equations, when the current pulse is propagating at the speed of light, the
fields become pure radiation, except for the close static fields associated with the charge accumulated
at the ends of the channel. Let us now consider a specific example and illustrate the features of the
radiation fields generated by the above physical system. We will consider a current pulse propagating
with speed u along a channel of length l. We assume that the current waveform injected into the
channel has the form of a half sine wave with a duration τ. That is, the injected current waveform is
given by

iptq “ I0sinpπt{τq t ď τ (10)

The charge transported by the current waveform, q, is

q “

τ
ż

0

I0sinpπt{τqdt (11)

After performing this integration we obtain

q “
2I0τ

π
(12)
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Thus, the expression for the current waveform can also be given as

iptq “
qπ

2τ
sinpπt{τq t ď τ (13)

Now, in order to illustrate the radiation fields let us consider the case u = c where c is the speed
of light in free space and the duration of the current pulse τ is equal to l/c. The problem under
consideration is depicted pictorially in Figure 2. The current pulse starts at point S1 and after travelling
the length l it is absorbed at S2. The radiation field generated by the initiation of the current pulse at
point S1 and the absorption of the current pulse at S2 at a distant location P where the distance r is
much greater than the channel length l is given by (the relevant geometry is shown in Figure 3).

Erad “
sinθ

4πεocr1

I0

r1´ cosθs

´

sin
πc
l
pt´ r{cq

¯

aθ r{c ă t ă r{c` l{c (14)

Erad “
sinθ

4πεocr1

I0

r1´ cosθs

´

sin
πc
l
pt´ r{cq ´ sin

πc
l
pt´ r{c´ l{cq

¯

aθ t ą r{c` l{c (15)
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Figure 2. The figure illustrates pictorially the propagation of a current pulse in the shape of a half sine
wave with a duration l/c propagating along the channel of length l with speed c. Note that t is the time
and t1 < t2 < t3. Note that the duration of the current is the same as the time required for the current
front to traverse the channel.
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Figure 3. The geometry relevant to the Equations (14) and (15).

The field given in Equation (14) (and the first term in 15) is generated during the initiation of
the current at S1 and the second term in 15 is generated during the termination of the current at S2.
From these expressions, one can see that the shape of the radiation field is a function of the angle θ.
The radiation field at a distance of 100 km for a channel length of 1.5 km is shown in Figure 4. In
this example I0 = 30 kA. Note how the shape of the radiation field becomes narrower as the angle θ

increases. This shows that the high frequency content of the radiation field increases with decreasing
angle of elevation.
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Figure 4. Electric radiation field for r = 100 km for three values of angle θ. The angle θ and distance r
are defined in Figure 3. The peak current associated with the pulse, I0, is equal to 30 kA.

3. Energy Dissipated by A Current Pulse that Moves from One Point in Space to Another along A
Straight Line with Uniform Velocity and without Attenuation

Consider the example of a current pulse moving from S1 to S2 with constant speed u without
attenuation (Figure 1). As before, let us denote the distance between S1 and S2 by l. The electric
radiation fields generated by this physical system are given in Equations (1), (2), (14) and (15). At
far distances the parameters r1 and r2 can be replaced by r, and θ1 and θ2 can be replaced by θ (see
Figure 3). The Poynting vector associated with these fields are given by

Spθ, tq “
ipt´ r{cq2u2sin2θ

p4πq2 ε0c3r2

1
”

1´
u
c

cosθ
ı2 ar for r{c ă t ă r{c` l{u (16)

Spθ, tq “
u2sin2θ

p4πq2 ε0c3r2

ript´ r{cq ´ ipt´ r{c´ l{uqs
”

1´
u
c

cosθ
ı2

2
ar for t ą r{c` l{u (17)

These expressions are identical to those derived by Krider [10]. The power dissipated by the
system is then given by

Pptq “

2π
ż

0

π
ż

0

Spθ, tqr2sinθ dθ dφ (18)

Since the system is located symmetrically with respect to the variable ϕ, this can be written as

Pptq “ 2π

π
ż

0

Spθ, tqr2sinθ dθ (19)

The total energy dissipated is then given by

U “

8
ż

0

Pptqdt (20)

Let us again consider the current waveform described by Equation (10). Note that since the power
dissipation is proportional to I0

2 from Equation (12) we find that the power is proportional to q2.
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Actually, one can show that this is true for any current waveform. This is the case since for any given
current waveform the amplitude is proportional to the total charge associated with the current. Thus,
the total energy dissipated by the current pulse is also proportional to q2. We can write therefore that

U “ q2Fpτ, l, uq (21)

In the above equation F(τ, l, u) is a function of the parameters τ, l and u. In order to illustrate the
effect of velocity of propagation on the energy dissipated by the propagating current, let us consider the
same current waveform as given by Equation (10) with a duration equal to 100 µs. In our calculation
we consider l = 5 km. Furthermore, we select the peak amplitude of the current waveform in such a
way that the total charge carried by the current waveform is 5 C (i.e., I0 = qπ/2τ with q = 5C). These
parameters are typical for a lightning return stroke.

The energy transmitted radially across a unit area located at a distance of 100 km as a function
of the elevation angle is shown in Figure 5. The data show that for a given angle of elevation, the
energy transmitted increases with increasing speed of the current pulse. For a given speed, the energy
transmitted increases as the elevation angle increases, reaches a peak, and then starts to decrease with
the angle. The angle at which the transmitted energy reaches a peak moves towards smaller elevation
angles as the return stroke speed increases. The total energy radiated by the system as a function of
the charge carried by the current and the speed of propagation of the current are shown in Figure 6
(plot a). For comparison purposes, the electromagnetic energy generated by a current pulse that can
be represented by the equation i(t) = i0e´t{τ (with τ = 50 µs), which is a better approximation for the
return stroke current, is also shown in the figure (plot b). Note again that the total energy dissipated
increases with increasing charge and with increasing speed of propagation. Results show that for q = 5
C and u = 108 m/s, the radiated energy is about 5 ˆ 105 J. The values used in the calculation represent
typical charge and speed of return strokes in lightning flashes
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Figure 5. The energy transmitted radially across a unit area at different elevation angles at a distance
of 100 km by a half sinusoidal current waveform carrying a charge of 5 C. The results are shown for
three current propagation speeds. (1) u = 1.0 ˆ 108 m/s. (2) u = 1.5 ˆ 108 m/s. (3) u = 2.0 ˆ 108 m/s.
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Figure 6. The total energy radiated by the current pulse as a function of the associated charge. The
results are shown for three speeds of propagation. Plot (a) corresponds to half sine waveform and plot;
(b) corresponding to exponential current. (1) u = 1.0 ˆ 108 m/s; (2) u = 1.5 ˆ 108 m/s; (3) u = 2.0 ˆ 108 m/s.

4. The Connection between the Energy Emitted by a Current Pulse that Moves from One Point in
Space to Another along A Straight Line with Uniform Velocity and without Attenuation and the
Time of Emission of Radiation

The next step of our investigation is to study the energy radiated by the current pulse as a function
of the duration of the current and the charge associated with it. In order to make the analysis as broad
as possible, we will consider the duration of the current pulse as a variable parameter. This is done as
follows. Since the highest radiation for a given charge is produced when the speed of propagation is
equal to the speed of light in free space, we assume that the current pulse propagates at this speed.
Now, the time of travel of the current pulse from S1 to S2 is given by l/c. We assume that the duration
of the current pulse is given by kl/c where k is a positive constant. As k varies from +0 to infinity, the
duration of the current pulse will take all possible values pertinent to the system under consideration.
The example where k = 1 is shown in Figure 2 for one particular current waveform having a half sine
wave shape (defined by Equation (10)). By changing the value of k, one would be able to study the
effect of current pulses of different durations on the emitted radiation. When k is much smaller than 1,
the current duration is much shorter than the time necessary for the current pulse to propagate along
the path and when k is much larger than 1 the current duration is much longer than this time. First, we
will obtain results pertinent to a current waveform having the shape of a half sine wave. Later, we will
study the effect of changing the current wave shape on the results.

Figure 7 shows the energy dissipated by the current pulses having a half sine wave shape carrying
different charges as a function of the parameter k. Note how the energy dissipated varies with k. For a
given charge the dissipated energy increases as the duration of the current pulse decreases. As one
can see from Figure 4, the radiation appears as two bursts, one caused by the initiation of the current
pulse and the other by the termination of the current at the opposite channel end. In some regions
of space these two pulses appear separately and in other regions they merge into each other. As the
duration of the current pulse decreases, the spatial region where the radiation field appears as two
bursts increases. The duration of each burst is equal to the duration of the current pulse. Thus, the
duration of the emitted radiation, ∆t, is about 2kl/c. Now, the product of the energy radiated by the
system and the duration over which it is emitted has the units of action. Let us call this parameter the
“action”. The action associated with the emitted radiation, A, is given by

A “ U
2kl
c

(22)
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Figure 7. Energy dissipated by current pulses having a half sine wave shape carrying different charges
as a function of the parameter k. (1) q = 1e; (2) q = 100e; (3) q = 1000e. Here e is the electronic charge.

The action, as a function of k, for different values of charges is shown in Figure 8. Observe
that the action has a maximum value close to the value k = 1. Recall that at k = 1, the duration of
the current pulse matches the time of travel along the path. The value of this maximum decreases
with decreasing charge and the lowest value corresponds to the lowest possible charge in the current
waveform, namely, the electronic charge. The question is whether the presence of this maximum is
unique to the particular current waveform used in the calculation or whether it is a general result. In
order to check this point, the calculation is repeated with several other shapes for the current waveform
and the results were observed to hold irrespective of the shape of the current waveform. The results
obtained for the following two current waveshapes are presented as an example here.

iptq “ i0expp´t{τ1q (23)

iptq “ i0texpp´t{τ2q (24)
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Figure 8. The action, as a function of k, for different values of charges. The current used in the
calculation has the half sine waveshape. (1) q = 1e; (2) q = 100e; (3) q = 1000e. Note that e is the
electronic charge.
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The values of τ1 and τ2 were selected in such a way so that the total duration of these current
waveforms, i.e., the time over which the current waveform decays to 99% of its peak amplitude, is
equal to kl/c. The results obtained are shown in Figures 9a and 9b. The most interesting observation
that is valid for all the current waveforms is the fact that there is a maximum in the action for a given
charge when the duration of the current waveform almost matches the time of propagation. This
maximum value varies only slightly from one current waveform to another. Since one electron is the
minimum charge that can be associated with the current pulse, the maximum value associated with
the curve corresponding to one electron is the smallest maximum that can occur in nature. We have
studied the magnitude of this maximum and found out that it is in some way connected to the Plank’s
constant. For example, the curves corresponding to one electronic charge depicted in Figures 8 and 9
were re-plotted in Figure 10 by dividing the numbers on the y-axis by h/8π. Note that the maximum
value of the action when the charge in the current waveform is of the order of an electron is of the
order of magnitude of h/8π. As we can see from the data presented, the result is more or less the same
irrespective of what current waveform is used in the analysis. This forced us to conclude that the result
is a general one and is independent (as far as order of magnitude is concerned) of the shape of the
current waveform. This result seems to indicate that when the charge that is being associated with the
propagation current pulse approaches that of an electron, even the classical fields show some features
that are connected to the quantum nature. The result can also be interpreted as follows. First, note that
electronic charge is the minimum that can occur in nature. Therefore, in order to generate an action
that is larger than or equal to h/8π, the charge associated with any current pulse has to be larger than
or equal to that of an electron. In other words, one can write

U∆t ě
h

8π
ñ q ě e (25)

where q is the charge associated with the current pulse, ∆t is the duration of radiation emission and
e is the electronic charge. Note that the reciprocal of this relationship is not valid because a charge
larger than e can still generate an action that is less than h/8π depending on the duration of the current
waveform. This can be seen very clearly from the data depicted in Figures 8 and 9.

The physical system that we have considered is very general and therefore one can consider
the above result also to be a general condition valid for classical electromagnetic fields. This result
shows that the radiation fields that have been utilized to study the lightning return strokes can reveal
fundamental information that is important both in physics and in systems when the charges involved
are close to the electronic charge.

In the derivation given earlier we assumed that the speed of propagation of the current pulses
is equal to the speed of light. As we have seen before, the energy radiated by the system increases
with increasing speed and it reaches its peak value when the speed is equal to the speed of light. Since
the speed of light is the maximum speed that can be achieved by the propagating current pulse, the
condition given by Equation (25) remains valid even for lower speeds. In our derivation we have
also assumed that the current waveform propagates along the path without attenuation. At distances
where the field is pure radiation, the dimension of the source can be neglected in comparison to the
distance to the observation point. That means the source appears as a point source from the observation
point. Even in this case, whether the current attenuates stepwise along the channel or whether it
attenuates suddenly at the end of the channel will make a difference to the total energy radiated by the
current. One can show that the effect of attenuation is to reduce the magnitude of the radiated energy.
Therefore, this assumption does not change the results obtained either. These considerations show that
the case that we have considered is a very general one and the relationship given by Equation (25) can
be considered generally valid for classical radiation fields.
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Figure 9. Same as Figure 8 except that the current waveform is given by (a) Equation (23); (b) Equation (24).
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Figure 10. The value of the maximum observed in Figures 8 and 9 as a function of the charge associated
with the current.

5. Discussion

In this paper we have used the parameter that we have called ‘action’ to study the connection
between the electromagnetic energy dissipated by the system, the duration of its emission and the
electric charge associated with the current. As pointed out by one of the referees of this paper, it is of
interest to study whether this parameter could also be used to characterize lightning return strokes
and correlate the action to the effects of the return stroke electromagnetic fields on electrical systems.
One interesting fact that we have observed in this paper is that the action is maximum when the
duration of the current waveform matches the time required for the current waveform to propagate
along the channel. Further studies are needed to correlate the effects of electromagnetic fields, such as
induced voltages in power systems, with the action of the electromagnetic fields. Another area that the
concept of action is of interest is the interaction of electromagnetic fields with the upper atmosphere.
In this case too, the influence of the charge particles in the ionosphere by the electromagnetic fields
may depend on the action of the electromagnetic fields. Of course one need not limit oneself to return
strokes in applying this concept to study the effects of electromagnetic fields. This concept could
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also be used to study the effect of electric and magnetic fields caused by electrostatic discharges on
miniature electronic circuits.

The main result that we have obtained in this paper is summarized in Equation (25). In order to
show its physical significance, let us continue as follows. It is a known fact that the electric charge
is quantized and the smallest charge freely available in nature is the electronic charge. Consider an
experiment where an attempt is made to measure the charge transported by the current from the
dissipated energy using Equation (21). Under the best conditions, the measurement of charge can be
performed to an accuracy of one electron. When the charge associated with the current approaches that
of an electron (i.e., e) the uncertainty in the measurement of the charge, say ∆e, becomes comparable
to the charge e itself. Thus, for the electronic charge the relationship given in Equation (25) can be
written as

e∆eFpτ, l, cq∆t “
h

8π
(26)

where we have substituted for U from Equation (21) and replaced e2 by e∆e (note that in this case q = e).
In the case of charges larger than the electronic charge, q > e and ∆q ě e (note that ∆q is the uncertainty
in measurement), the above equation can be written as

q∆qFpτ, l, cq∆t ě
h

8π
(27)

From Equation (21) one can also see that ∆U = 2q ∆q F(τ,l,c) and the above equation can be
written as

∆U∆t ě
h

4π
(28)

In this equation ∆U is the uncertainty in the electromagnetic energy and ∆t is the duration of
the emission of the radiation. Interestingly, the above equation is identical to the earliest proposed
version of the time-energy uncertainty principle [11]. This shows that the time-energy uncertainty
principle is governing the fact that the smallest charge that can be detected from the electromagnetic
radiation is equal to the electronic charge. One can also conclude that the application of time-energy
uncertainty principle to the electromagnetic radiation leads to the fact that the smallest detectable
charge in nature is the electronic charge. Of course, the calculations presented in this paper are based
purely on the classical electromagnetic fields and it is of interest to look at the same problem from a
quantum mechanical point of view.

6. Conclusions

The expressions for the electromagnetic fields generated by a current pulse moving from one
point in space to another are utilized to extract important information concerning the physical nature
of the ‘action’ of the electromagnetic fields defined as the product of the emitted energy and the time
of emission. For currents transporting charges on the order of an electron, the action has a maximum
whose magnitude is on the order of h/8π where h is the Plank constant. From this result one can
come to the conclusion that the time-energy uncertainty principle is closely related to the fact that the
smallest observed charge in nature is the electronic charge. Since the source of the radiation fields
used in the study is very general, one can infer that the results presented here are valid for any system
radiating in free space.
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