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Abstract: In this paper, based on a sample selection rule and a Back Propagation (BP) 
neural network, a new model of forecasting daily SO2, NO2, and PM10 concentration in 
seven sites of Guangzhou was developed using data from January 2006 to April 2012. A 
meteorological similarity principle was applied in the development of the sample selection 
rule. The key meteorological factors influencing SO2, NO2, and PM10 daily concentrations 
as well as weight matrices and threshold matrices were determined. A basic model was 
then developed based on the improved BP neural network. Improving the basic model, 
identification of the factor variation consistency was added in the rule, and seven sets of 
sensitivity experiments in one of the seven sites were conducted to obtain the selected 
model. A comparison of the basic model from May 2011 to April 2012 in one site showed 
that the selected model for PM10 displayed better forecasting performance, with Mean 
Absolute Percentage Error (MAPE) values decreasing by 4% and R2 values increasing 
from 0.53 to 0.68. Evaluations conducted at the six other sites revealed a similar 
performance. On the whole, the analysis showed that the models presented here could 
provide local authorities with reliable and precise predictions and alarms about air quality 
if used at an operational scale. 
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1. Introduction 

Air quality has recently become a serious issue in several of the large cities in China. This problem 
has significant potential for adverse impacts on human health and the environment [1–3]. Therefore,  
it is extremely important to accurately forecast the concentrations of pollutants to provide guidance for 
travel advice and governmental policies. 

Forecasting the concentrations of air pollutants represents a difficult task due to the complexity of 
the physical and chemical processed involved. However, many researchers have been focusing on 
these types of forecasts [4–8]. The most common forecasting approaches are numerical models and 
statistical models. Numerical models do not require a large quantity of measured data, but they demand 
sound knowledge of pollution sources, the chemical composition of the exhaust gases, and the physical 
processes in the atmospheric boundary layer. This crucial knowledge is often limited. Thus, 
approximations and simplifications are often employed in the modeling process. 

In contrast, statistical models usually necessitate a large quantity of measurement data under a large 
variety of atmospheric conditions. By applying regression and machine learning techniques, a number 
of functions can be used to fit the pollution data in terms of selected predictors. Neural networks, a 
subset of statistical models, are usually presented as systems of interconnected neurons that can 
compute values from inputs by feeding information through the network. Unlike other statistical 
models, neural networks make no prior assumptions concerning the data distribution. They can model 
highly nonlinear functions and can be trained for accurate generalization. These features of the neural 
network make it an attractive alternative to numerical and other statistical models [9–12]. 

There have been many applications of neural networks in air quality forecasting since the 1990s, 
and researchers have obtained fairly good results [13–16]. Despite the successful applications of neural 
networks in the area of atmospheric science, the method has its own weakness and limitations. Studies 
have shown that there are three main factors that affect neural network effectiveness: network 
topology, learning algorithm, and learning samples [17,18]. Previous research mainly concentrated on 
the network structure and learning algorithm, which improved the forecasting accuracy of the  
network [19–24]. However, when improvements in the network structure and learning algorithm reach 
a certain degree, improvements in the accuracy of the air quality forecasting models plateau. 
Therefore, the selection of learning samples has become a vital factor that determines the mapping 
ability and generalization of the network. This is because the selection can ensure the 
representativeness of the learning samples and remove unnecessary interference, and thereby improve 
the forecasting accuracy of the model. Harri Niska et al. [21] used a genetic algorithm for selecting the 
inputs and designing the high-level architecture of a multi-layer perceptron model for forecasting NO2 
concentrations. Sousa et al. [22] predicted hourly ozone concentrations based on feed-forward artificial 
neural networks using principal components as inputs, and they improved the predictions of models by 
reducing their complexity and eliminating data collinearity. 
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The main objectives of this paper are to develop a sample filter method for the prediction of the 
daily NO2, SO2, and PM10 concentration in the Guangzhou Pearl River Delta region based on a 
similarity principle of weather and pollutant background concentration. During the development of the 
prediction models, the selection of parameters is conducted by means of sensitivity experiments and 
the Back Propagation (BP) neural network is used for data-driven computation. The above actions are 
all part of an integrated environmental strategy designed and run by the local authorities of 
Guangzhou, according to the demands of the Action Plan on Prevention and Control of Air Pollution. 
Currently, this action plan is the most rigorous and systematic framework for improving air quality  
in China. 

2. Data 

A significant quantity of observational data under a wide variety of atmospheric conditions was 
required for this study. The dataset in this paper includes meteorological parameters and pollutant 
concentrations in Guangzhou, which is located in the south central part of Guangdong Province, China 
(23°06′ N Latitude, 113°15′ E Longitude). 

Real-time monitoring meteorological parameters, including temperature, wind speed, wind 
direction, rainfall, atmospheric pressure, relative humidity, and solar radiation intensity, were obtained 
from an automatic air quality monitoring station at Sun Yat-Sen University, located in the Haizhu 
District of Guangzhou City. Forecasting meteorological data, including temperature, wind speed, wind 
direction, and rainfall, were obtained from Guangzhou Weather Forecasts [25]. All the data were 
processed into the daily mean value as needed, according to the National Ambient Air Quality Standards 
(GB 3095-2012) issued by Environment Protection Administration (EPA) of China [26]. The 
monitoring meteorological data were used as historical meteorological data in the model, and the 
forecasting meteorological data were used as the meteorological data of the forecasting day. To reduce 
the interference of different geographic locations on the monitoring meteorological data, pollutant 
concentration forecasting of seven state-controlled air quality monitoring sites in urban Guangzhou 
was performed. Thus, the applied monitoring data of the atmospheric environment were derived from 
the daily pollutant concentration data from seven state-controlled air quality monitoring sites as reported 
by the Guangzhou Environmental Protection [27]. These state-controlled air quality monitoring sites 
are the Guangya Middle School (Num. 1), the Guangzhou No. 5 Middle School (Num. 2), the 
Guangzhou Environmental Monitor Station (Num. 3), the Experimental Kindergarten of Tianhe 
Vocational School (Num. 4), Luhu Park (Num. 5), Guangdong University of Business Studies (Num. 6), 
and the Guangzhou No. 86 Middle School (Num. 7). The data span the period from January 2006 to 
April 2012, and a total of 23,195 valid samples were used for the paper. 

3. Methods 

In view of the small variation in weather during our study period, a similarity principle of weather 
and concentration parameters was applied. The multilayer selection rule for historical samples from 
Guanghzhou was then constructed. This step is very important for the development of predictive 
models. The selection of historical samples can improve the similarity between the occurrence of 
historical pollution and future pollution, and a proper selection can improve the efficiency of  
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data-driven models (e.g., BP neural networks). This is also in line with the pollution formation, where 
the main factor affecting the diffusion and transport of pollutants is the different meteorological 
parameters, and every meteorological parameter has a different influence on NO2, SO2, and  
PM10 [28,29]. Thus, the sample selection was based on meteorological similarity and the consistency 
of the variation trend. The rule was divided into two parts, namely the identification of meteorological 
parameter similarity and the consistency of the variation trend, i.e., the identification of similarity in 
background concentrations. 

First, a comprehensive correlation analysis of pollutant concentration and meteorological 
parameters was performed to determine the key factors of the selection rule, and these parameters were 
also used as inputs into the BP neural network. Next, the three-layer selection sample rule was applied. 
Finally, we utilized the improved BP neural network for data-driven computation to establish the air 
quality forecasting model of urban Guangzhou. 

3.1. Identification of the Key Factors 

A comprehensive correlation analysis of pollutant concentration and meteorological factors was 
conducted. The number of related days was set to two: the meteorology for the forecasting day and for 
the day before the forecasting day. Meanwhile, the daily mean value of pollutant concentration two 
days before the forecasting day was used as an input factor in an attempt to counteract the lack of 
pollutant emission source data. 

A comprehensive analysis of pollutant concentration and meteorological factors was conducted for 
different pollutants, mainly through correlation analysis and weight analysis of the influencing factors 
in each pollution scenario. The analysis was intended to identify the degree of influence of each 
meteorological factor on pollutants, thus resulting in the selection of the factors with the greatest 
impact on pollutants and the allocation of the corresponding influencing weights. The correlation 
analysis started with the comparison of two typical pollution scenarios, namely, the ascending or 
descending periods of each pollutant, and the serious pollution or slight pollution periods. In this way, 
the degree of influence that the meteorological factors had on pollutants under these two situations was 
obtained. The average value of the two scenarios was calculated and multiplied with a correlation 
coefficient to obtain the comprehensive weight of the influence of each meteorological factor on 
different pollutants. 

The ascending and descending periods of each pollutant are defined as the periods when the change 
in the pollutant concentration between consecutive days exceeds 0.05 mg/m3. Serious pollution or 
slight pollution are defined as periods when the Air Pollution Index of the pollutant exceeds 100 or is 
lower than 20, respectively. 

The identification of the influencing weight of each meteorological factor under the above-mentioned 
periods was achieved using the following steps: 

(a) Obtaining the representative data for the meteorological factor 
The specific data include the average value of the ascending period iuM , the average value 

of the descending period idM , the maximum value of the analysis period maxiM , the minimum 
value miniM  of the analysis period, and the overall average value adviM . The i  represents the 
specific meteorological factor. 
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(b) Numerical normalization 
(c) Variation analysis of the meteorological factor ( iD ) 
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Finally, the comprehensive influencing weights between meteorology factors and pollutant 
concentrations were determined by the following equation: 

1 2( ) / 2= × +r R w w  (3)

where r  is the comprehensive influencing weight between the meteorology factor and the pollutant 
concentration; R  is the correlation coefficient between the meteorology factor and the pollutant 
concentration; 1w  is the influencing weight in the ascending or descending period; and 2w  is the 
influencing weight in the serious or slight pollution periods. 

3.2. A Selection Sample Rule Based on the Similarity Principle 

Multiple meteorological factors create a variety of meteorological parameter spaces that impose 
different impacts on the transport and diffusion of pollutants. During air quality forecasting, if the 
appropriate meteorological space is found, the intrinsic relationship between multiple physical 
quantities and the pollutant will have a reference. An appropriate set of samples was selected for the 
main influencing factors such that forecasting could be targeted, and the mapping ability and 
generalization of the network could be improved. Thus, three-layer sample screening principles based 
on meteorological similarity criteria were proposed. 

3.2.1. The Basic Description 

The first level of screening identifies samples where the similarity of each meteorological factor 
reaches a certain threshold value range. The screened samples should conform to the following formula: 

setjj yy ≤Δ , where, ||
samjprejj yyy −=Δ  (4)

where prejy  is the meteorological factor on the day of forecasting; samjy  is the meteorological factor of 
the sample; jyΔ  is the meteorological similarity of the meteorology factors between the sample and the 
day of forecasting; j is the specific meteorological factor; and setjy  is the threshold value screened by 
the meteorological factor, forming a primary threshold matrix Y . In this matrix, the threshold value 
can change dynamically according to the sample size demanded. 

The second level of screening applies a threshold value range for total weighted meteorological 
similarity. The screened samples should conform to the following formula: 
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setSS ≤ , where, )( j
Mnumj

j ywS Δ⋅= ∑
≤

 (5)

where S is the entire meteorological similarity; Sset is the threshold value screened by the entire 
meteorological similarity; wj is the weight of each meteorological factor, forming the weight matrix W; 
and Mnum is the number of meteorological factors. 

The third level of screening identifies the n samples with the highest meteorological similarity.  
The screened samples should conform to the following formula: 

nQnum ≤  (6)

where Qnum is the number of samples in the sequenced sample column, and n is the number of  
samples needed. 

Among these criteria, the selection of the weight matrices and the threshold matrices is key to 
obtaining high quality samples. Hence, the following identification approaches for weight matrices and 
threshold matrices were adopted. 

3.2.2. Identification of wj 

The establishment of the weight matrix wj was integrated with the selection of model input factors, 
and a comprehensive correlation analysis of pollutant concentration and meteorological factors was 
performed. While choosing the input parameters of the neural network, the weight matrix of the 
selection sample rule was also established. 

3.2.3. Identification of setjy  

The establishment of the threshold matrix setjy  was accomplished via the orthogonal test method, 
which is a highly efficient experimental design method used for the arrangement of multi-factor 
experiments and the search for optimal horizontal combinations [30]. For the different pollutants, we 
set different levels of factors and selected some representative experimental points (horizontally 
mixed) for the experiments. The optimal horizontal combination was selected to generate the threshold 
matrix of the selection sample rule [31]. 

Based on the results of the above weight matrix jw , the tested experimental factors were identified. 
In accordance with prior knowledge, the level of each experimental factor was confirmed. The 
minimum absolute error of the forecasting model was adopted as the experimental objective to seek the 
optimal combination and finally identify the sample optimization threshold matrix. 

3.3. Identification of the Variation Trend Consistency 

There will be some scenarios in which wind speed decreases in history but increases on the 
prediction day compared with the previous day, based on the selection rule stated above in Section 3.2. 
Such a scenario will lead to an error in the prediction model for use in the BP neural network. 
Therefore, it is necessary to identify the variation trend consistency. 

The factors considered were deduced according to the weight matrix of the selection rule (see  
Section 3.1) and the principles of the pollution formation. The chosen factors were rainfall, wind speed, 
and background concentration. However, sensibility experiments were still needed to determine the key 
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factor for NO2, PM10, and SO2. The details of the experimental results will be introduced in the 
following section. 

3.3.1. Variation Trend Consistency for Wind Speed 

Because wind speed is a vector, wind speed is described as xw , yw . 

cos( )= ⋅x s dw w w  and sin( )= ⋅y s dw w w  

where sw  is the recorded wind speed and dw  is the recorded wind direction. 
Thus, the steps for the identification of the variation trend consistency for wind speed are  

as follows: 

(1) Calculate the variation between the forecasting day and the day before. 

( ) ( ) ( ) ( ) ( )2 2 2 22
1 1 1x p y p x p y pws w w w w− − − − − −

⎡ ⎤ ⎡ ⎤Δ = + − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (7)

where ( )2
1wsΔ  is the difference between the squared values of wind speed on the day of 

forecasting and the day before; x pw −  and y pw −  are the two wind vectors on the day of 
forecasting; and 1x pw − −  and 1y pw − −  represent the two wind vectors before the day of forecasting. 

(2) Calculate the variation between the two adjacent days in the samples selected in Section 3.1, 

( ) ( ) ( ) ( ) ( )2 22 2 2
2 1 1x t y t x t y tws w w w w− − − − − −

⎡ ⎤ ⎡ ⎤Δ = + − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (8)

where ( )2
2wsΔ  is the difference between the squared values of wind speed on the forecasting 

day and the day before; x tw −  and y tw −  are the two wind vectors on the forecasting day; and 

1x tw − −  and 1y tw − −  are the two wind vectors on the day before the forecasting day. 

(3) Identify whether the wind speed in the forecasting data shows the same tendency of ascending 
or descending as that in the selected samples. If the tendency is the same, the samples are 
reserved; otherwise, the samples are removed. 

3.3.2. The Variation Trend Consistency Identification of Rainfall 

The variation in the rainfall levels in the forecasting data was calculated using the following formula: 

1 1p pRF RF RF −Δ = −  (9)

The variation in the historical rainfall levels was calculated using the following formula: 

2 1t tRF RF RF −Δ = −  (10)

We then identified whether the rainfall level in the forecasting data showed the same tendency of 
ascending or descending as that in the sample data. If similar, the samples are reserved; otherwise, the 
samples are removed. 
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3.3.3. Similarity Identification of Background Concentration 

The following steps were used to conduct the similarity identification of the background concentration: 

(1) The background concentration on the day of forecasting is calculated as follows: 

1 -1 -2=0.6 +0.4P PBC BC BC  (11)

(2) The background concentration in the sample data is calculated as follows: 

2 t-1 t-2=0.6 +0.4BC BC BC  (12)
(3) Identify whether the background concentration in the forecasting data and the absolute 

difference of the background concentration on the day of forecasting is in the range of the 
threshold value. If they are in the range, the samples are reserved; otherwise, they are removed. 

( 1- 2)<=ABS BC BC Set  (13)

3.4. Improvements in BP Neural Network 

Due to its strong learning and generalization ability, a BP neural network was used as the  
data-driven computation method [32]. In this paper, a BP neural network with three layers was applied 
to predict the daily concentrations of NO2, PM10, and SO2. The layers included an input layer, a hidden 
layer, and an output layer. The data described in Section 2 were divided into training, validation and 
test sets. The training and validation sets were from January 2006 to April 2011 in seven air quality 
monitoring sites, of which 80% of these data were randomly selected for the training set; the remaining 
20% of the data comprised the validation set. In addition, the data from May 2011 to April 2012 were 
used for the test set, aiming to test and compare the model performance in seven air quality monitoring 
sites. There are two main components affecting pollutant concentration: emission sources and pollutant 
transmission and diffusion conditions. The key factor that affects pollutant transmission and diffusion 
in a city is the meteorological conditions. Therefore, the meteorological factors identified in  
Section 3.1 were considered as the major input factors for the BP neural network. According to the 
conclusions in the literature [33,34], the daily concentrations of NO2, PM10, and SO2 for the two days 
before the forecasting day were also used as input factors for the BP neural network to reduce the 
influencefor lacking emissions data. The final number of variables used in the input layer (NInput) in 
each forecast model is shown in Table 1. 

The neuron number of the hidden layer is half that of the input layer [35]. Different neural network 
structures were established for NO2, PM10, and SO2. The neuron in the output layer was regarded as 
the forecasted daily concentration of NO2, PM10, and SO2. 

The training termination conditions in the BP neural network were also changed to improve the 
overall accuracy of the forecasting model. When the average relative error of all training samples 
reached a specified error value, the training would cease. The specified error value was determined by 
experiments for different error. For NO2, PM10, and SO2, the optimal specified error values were 0.5, 
0.4, and 0.35, respectively. Every group training sample was processed five times, which means that 
five groups of models were developed. The model with the least average relative error was selected as 
the prediction model, reducing the randomness of the BP neural network. 
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Table 1. Forecasting results of the seven groups of sensitivity experiments. 

Pollutants Experiments 
N 

Input 
Mean 

(mg/m3)
MAE 

(mg/m3)
MAPE R TFA Ef Af 

SO2 

Basic (Group 1) 10 0.027 0.009 37.4 0.422 0500 −0.322 1.513 
RF * (Group 2) 10 0.027 0.009 36.6 0.510 0.536 0.010 1.543 
WS (Group 3) 10 0.027 0.010 43.2 0.304 0.464 −0.583 1.693 
BC (Group 4) 10 0.027 0.009 40.3 0.345 0.483 −0.937 1.577 

RF + WS 
(Group 5) 

10 0.027 0.009 38.5 0.430 0.482 −0.192 1.501 

RF + BC 
(Group 6) 

10 0.027 0.011 49.7 0.118 0.464 −1.726 1.575 

WS + BC 
(Group 7) 

10 0.027 0.012 52.8 0.178 0.393 −1.174 1.716 

PM10 

basic(Group 1) 7 0.105 0.025 26.6 0.536 0.492 0.210 1.297 
RF (Group 2) 7 0.105 0.026 28.8 0.476 0.433 0.108 1.319 
WS (Group 3) 7 0.105 0.025 26.2 0.527 0.483 0.190 1.289 
BC (Group 4) 7 0.105 0.024 24.6 0.563 0.500 0.225 1.280 

RF + WS 
(Group 5) 

7 0.105 0.025 27.8 0.479 0.417 0.159 1.315 

RF + BC * 
(Group 6) 

7 0.105 0.023 22.7 0.672 0.550 0.348 1.269 

WS + BC 
(Group 7) 

7 0.105 0.024 26.9 0.581 0.417 0.317 1.290 

NO2 

Basic (Group 1) 10 0.073 0.020 25.0 0.680 0.550 0.261 1.340 
RF (Group 2) 10 0.073 0.020 24.1 0.660 0.533 0.199 1.345 
WS (Group 3) 10 0.073 0.018 22.7 0.702 0.533 0.352 1.291 
BC (Group 4) 10 0.073 0.019 23.7 0.715 0.517 0.337 1.315 

RF + WS 
(Group 5) 

10 0.073 0.018 23.7 0.723 0.617 0.386 1.298 

RF + BC 
(Group 6) 

10 0.073 0.019 24.3 0.716 0.483 0.380 1.306 

WS + BC * 
(Group 7) 

10 0.073 0.018 22.5 0.688 0.567 0.397 1.271 

Note: * the Selected Model determined by making experiments. 

3.5. Indices of Model Evaluation 

We used the following indicators to evaluate the models: Mean absolute error (MAE), Mean 
Absolute Percentage Error (MAPE), Correlation coefficient (R), tendency forecasting accuracy (TFA), 
Nash–Sutcliffe coefficient of efficiency (Ef), and Accuracy factor (Af) [36]. The TFA is the forecasting 
accuracy rate determination for the upward or downward trend of pollutant concentrations over two 
consecutive days on the basis of monitoring results. Ef, an indicator of the model fit, is a normalized 
measure (−∞ to 1) that compares the mean square error generated by a particular model simulation to 
the variance of the target output sequence. An Ef value closer to 1 indicates better model performance; 
an Ef value of zero indicates that the model is, on average, performing only as good as the use of the 
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mean target value for prediction, and an Ef value < 0 indicates an altogether questionable choice of the 
model. Af is a simple multiplicative factor indicating the spread of the results around the prediction. 
The larger the Af value, the less accurate the average estimate. 

The MAE, MAPE, TFA, Af and Ef are defined as follows: 
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where prey  and mony  are the predicted and measured values, respectively, and mony  is the mean of  
the measured values of the response variable. N  is the total number of the observations. A is the 
number of correct forecasts for the upward or downward trend of pollutant concentrations over two 
consecutive days. 

4. Results and Discussion 

4.1. The Results of the Sensitivity Experiments in Guangzhou No. 5 Middle School (Num. 2) 

As described in Section 3.3, sensitivity experiments were performed to determine the key factors.  
The data were obtained from the Guangzhou No. 5 Middle School site. Seven group experiments were 
performed for SO2, PM10, and NO2. The first experiment (called “Group 1”) was made by the model 
based on the selection rules described in Section 3.2. That is to say, Group 1 was run using the Basic 
Model. Besides these selection rules, the second to fourth experiments were conducted based on the 
variation trend consistency identification of rainfall (RF), wind speed (WS), and background 
concentration (BC), while the fifth to seventh experiments were considerations of RF + WS, RF + BC, 
and WS + BC. These experiments were referred to as Group 2, Group 3, Group 4, Group 5, Group 6, 
and Group 7, respectively. Table 1 summarizes the results of the seven groups of sensitivity 
experiments. The models with the best performance were selected (termed the Selected Models). 

For PM10, the value of Ef and Af of Group 6 were much closer to 1.0 compared with the other 
models. Compared with Group 1, the Mean Absolute Percentage Error (MAPE) of Group 6 was 4% 
lower (0.227), R increased by almost 14%, and TFA increased by nearly 6% (0.550). For NO2,  
Group 7 had the best results with an MAPE of only 0.225, an R value of 0.688, and a TFA value of 
0.567. The Ef and Af of Group 7 were 0.397 and 1.271, respectively, which were much closer to 1.0 
than the other experiments. Group 2 had the most ideal experimental results for SO2; the MAPE was 
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PM10, and NO2 were observed in February, where the daily concentrations were almost the highest due 
to the bad weather; the BP neural network is not sensitive to extremely high or low values [33,34]. 
However, the MAPE of the SO2, PM10, and NO2 models were 0.383, 0.353, and 0.290, respectively. 
These MAPE values are acceptable for operational forecasts. 

 

Figure 2. MAPE of models for Num. 2 from May 2011 to April 2012. 

4.3. Errors in the Selected Models for Others Sites 

The selected model for SO2, NO2, and PM10 was tested in the remaining six sites (detailed 
description in Section 2) in the urban district of Guangzhou, and a comparison was made between the 
Selected Model and the Basic Model. The results are shown in Table 2. On the whole, the Selected 
Model was equal to or better than the Basic Model for SO2, NO2, and PM10. As for SO2, the MAPE of 
the Selected Model decreased from 0.417 to 0.377, the correlation increased from 0.409 to 0.477, the 
TFA increased from 0.490 to 0.517. In addition, the Ef and Af were closer to 1 compared with the 
Basic Model. Adding the sample optimization rules to the variation tendency identification of the 
rainfall level changes improved the forecast accuracy of the different pollutants to different degrees at 
every site. For PM10, the MAPE of the Selected Model was 0.250 for the six sites, which was almost 
0.10 lower than that of the Basic model. The correlation was greater than 0.7, and the TFA increased 
by 24%, from 0.421 to 0.523. Adding the variation tendency identification of the rainfall level changes 
and the similarity identification of the background concentrations to the model resulted in an effective 
improvement of the forecast accuracy of PM10. Regarding NO2, adding the variation tendency 
identification of the wind speed changes and the similarity identification of the background 
concentrations did not greatly improve the forecast results. The Selected Model is useful for the six 
sites, and the errors of the model are acceptable for application purposes. 
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Table 2. Comparisons between the Selected and Basic Model in the remaining six sites. 

Pollutant Site Model Mean (mg/m3) MAE (mg/m3) MAPE R TFA Ef Af 

SO2 

Num. 1 
Basic 0.024 0.008 36.8 0.525 0.506 0.159 1.459

Selected 0.024 0.008 34.9 0.614 0.525 0.237 1.451

Num. 3 
Basic 0.027 0.010 43.6 0.418 0.511 −0.164 1.539

Selected 0.027 0.010 40.4 0.409 0.475 −0.181 1.548

Num. 4 
Basic 0.023 0.009 44.2 0.394 0.509 −0.301 1.567

Selected 0.023 0.009 41.3 0.456 0.527 −0.332 1.541

Num. 5 
basic 0.022 0.007 35.6 0.441 0.455 −0.019 1.468

Selected 0.022 0.007 31.6 0.472 0.515 0.059 1.408

Num. 6 
Basic 0.027 0.011 42.8 0.355 0.466 0.055 1.587

Selected 0.027 0.010 39.6 0.451 0.508 0.019 1.551

Num. 7 
basic 0.036 0.015 47.8 0.298 0.527 −0.580 1.662

Selected 0.036 0.013 41.2 0.422 0.561 −0.239 1.563

PM10 

Num. 1 
Basic 0.083 0.023 26.2 0.656 0.438 0.348 1.328

Selected 0.083 0.022 24.9 0.713 0.509 0.397 1.335

Num. 3 
Basic 0.067 0.018 32.1 0.604 0.132 0.348 1.354

Selected 0.067 0.018 26.8 0.694 0.542 0.459 1.322

Num. 4 
basic 0.061 0.017 31.6 0.680 0.493 0.454 1.350

Selected 0.061 0.017 26.4 0.741 0.506 0.523 1.317

Num. 5 
basic 0.067 0.016 24.7 0.742 0.465 0.537 1.268

Selected 0.067 0.016 22.7 0.729 0.531 0.487 1.267

Num. 6 
Basic 0.063 0.018 30.4 0.583 0.493 0.301 1.358

Selected 0.063 0.019 29.2 0.589 0.492 0.247 1.390

Num. 7 
basic 0.087 0.022 25.4 0.682 0.467 0.408 1.308

Selected 0.087 0.022 23.3 0.717 0.525 0.431 1.288

NO2 

Num. 1 
basic 0.061 0.013 20.9 0.688 0.483 0.392 1.248

Selected 0.061 0.013 20.5 0.715 0.500 0.448 1.243

Num. 3 
Basic 0.068 0.016 22.2 0.596 0.463 0.226 1.272

Selected 0.068 0.015 21.5 0.676 0.557 0.320 1.266

Num. 4 
Basic 0.052 0.010 21.9 0.685 0.511 0.456 1.232

Selected 0.052 0.010 19.3 0.722 0.541 0.502 1.215

Num. 5 
Basic 0.038 0.009 25.8 0.613 0.454 0.363 1.285

Selected 0.038 0.009 23.0 0.599 0.462 0.308 1.267

Num. 6 
Basic 0.053 0.014 26.8 0.757 0.497 0.405 1.337

Selected 0.053 0.015 24.6 0.728 0.528 0.310 1.334

Num. 7 
Basic 0.041 0.010 27.4 0.668 0.476 0.435 1.305

Selected 0.041 0.009 23.1 0.700 0.505 0.465 1.269

5. Conclusions 

In this paper, based on a selection sample rule and BP neural network, a new model of forecasting 
daily SO2, NO2, and PM10 concentrations in seven Guangzhou sites was developed. 

(1) A meteorological similarity principle was applied in the development of the selection sample 
rule. Key meteorological factors influencing the daily SO2, NO2, and PM10 concentrations were 
determined and weight matrices and threshold matrices were generated. A basic model was 
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then developed based on the improved BP neural network. The selection sample rule consisted 
of three layers. 

(2) In improving the basic model, identification of the variation consistency of some factors was 
added in the rule, and seven sets of sensitivity experiments (one in each of the seven sites) were 
conducted to obtain the selected model. These experiments determined that the variation 
consistency of the rainfall level added to the SO2 forecast model, the rainfall level variation 
tendency and the background concentration similarity identification added to the PM10 forecast 
model, while wind speed variation identification and background concentration similarity 
identification added to the NO2 forecast model. The improved BP neural network was also used 
for data-driven computation. 

(3) Evaluations in the site by comparison of the basic model from May 2011 to April 2012 showed 
the selected model for PM10 displayed better forecasting performance, with MAPE values 
decreasing by 4% and R2 values increasing from 0.53 to 0.68. The selected model for NO2 had 
little improvements compared with the basic model, while the MAPE values of the selected 
model for SO2 were as high as 36.6% with R2 values of 0.51. 

(4) Evaluations conducted at the six other sites revealed similar performances. The MAPE values 
of the selected models for SO2, PM10, and NO2 were 37.7%, 25.0%, and 22.0%, respectively.  
Of course, the above results showed that the SO2 model may be further improved in future 
research, by developing a combined model or by considering the interaction of atmospheric 
pollutants. 
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