Supplementary Information

Joint Application of Concentration and δ^{18} O to Investigate the Global Atmospheric CO Budget. *Atmosphere* 2015, *6*, 547-578.

Keyhong Park^{1,2,*}, Louisa K. Emmons³, Zhihui Wang¹ and John E. Mak¹

- ¹ Institute for Terrestrial and Planetary Atmospheres, School of Marine and Atmospheric Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA; E-Mails: zhihuiw@gmail.com (Z.W.); john.mak@stonybrook.edu (J.E.M.)
- ² Division of Polar Ocean Environment, Korea Polar Research Institute, Incheon 406-840, South Korea
- ³ Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, CO 80301, USA; E-Mail: emmons@ucar.edu
- * Author to whom correspondence should be addressed; E-Mail: keyhongpark@kopri.re.kr; Tel.: +82-32-760-5343; Fax: +82-32-760-5399.

Academic Editor: Robert W. Talbot

Supplementary. A posteriori modeled concentration and δ¹⁸O

Since observed concentrations are expressed as (Equation 4), the relationship between the measured and optimized modeled concentrations can be expressed as:

$$\hat{y} = \mathbf{K}\hat{x} + \hat{e} \tag{A1}$$

where $\mathbf{K}\hat{x}$ the optimized concentrations (\hat{y}) and \hat{e} is a posteriori error matrix.

Updating the modeled isotope ratios with the optimized source information is more complicated because isotope ratio (δ) is the 'relative' abundances of the two isotopologues. The implementation of the *a posteriori* isotopic source signatures to the optimization of modeled [C¹⁶O] and [C¹⁸O] is shown in below.

Modeled concentrations of isotopologues are expressed as:

$$a = \sum_{j} K_{a,j} x_{a,j}, \quad b = \sum_{j} K_{b,j} x_{b,j}$$
 (A2)

where i is an index for major and minor isotope (a: major isotope, b: minor isotope) and j is an index for the sources. We assume two sources for simplification.

The abundance of major and minor isotope can linearly related by using isotopic source ratio (γ_j).

$$x_{a,j} = \gamma_j x_{b,j} \tag{A3}$$

The concentration of a and b can be rewritten in a matrix form:

$$\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} = \begin{pmatrix} \mathbf{K}_{a,1} & \mathbf{K}_{a,2} \\ \mathbf{K}_{b,1} / \gamma_1 & \mathbf{K}_{b,2} / \gamma_2 \end{pmatrix} \begin{pmatrix} \mathbf{x}_{a,1} \\ \mathbf{x}_{a,2} \end{pmatrix}$$

$$= \begin{pmatrix} \mathbf{K}_{a,1} \mathbf{x}_{a,1} & \mathbf{K}_{a,2} \mathbf{x}_{a,2} \\ \mathbf{K}_{b,1} \mathbf{x}_{a,1} / \mathbf{K}_{b,2} \mathbf{x}_{a,2} / \gamma_2 \end{pmatrix} \begin{pmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{a}_1^* & \mathbf{a}_2^* \\ \mathbf{b}_1^* & \mathbf{b}_2^* \end{pmatrix} \begin{pmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \end{pmatrix}$$
(A4)

 \mathbf{f}_1 and $\,\mathbf{f}_2$: a unit source strength factor

where, \mathbf{a}_1^* , \mathbf{a}_2^* , \mathbf{b}_1^* , and \mathbf{b}_2^* represent the modeled concentration.

The optimized f_j (\hat{f}_j) can be obtained by the inversion analysis. Then, *a posteriori a* can be expressed as:

$$\hat{a} = \sum_{j} K_{a,j} \hat{x}_{a,j} = \sum_{j} K_{a,j} x_{a,j} \hat{f}_{j}$$
(A5)

The *a posteriori* linear relation between the major and the minor isotopes is:

$$\hat{x}_{a,j} = \gamma_j^* \hat{x}_{b,j} \tag{A6}$$

Also, using the updated isotopic source ratio (γ_j^*) , *a posteriori b* can be expressed as a function of *a priori* modeled concentration $(K_{b,j}x_{b,j})$.

$$\hat{b} = \sum_{j} K_{b,j} \hat{x}_{b,j} = \sum_{j} \frac{\gamma_j}{\gamma_j^*} K_{b,j} x_{b,j} \hat{f}_j, \text{ for fixed isotopic source signatures } \frac{\gamma_j}{\gamma_j^*} = 1$$
(7)

If isotopic source signatures are well defined, γ_j/γ_j^* should be close to 1 and no further treatment for updating *a posteriori* source signature information is necessary. For the oxygen isotopes of CO, in comparison with the fixed isotopic source ratios, *a posteriori* δ^{18} O is closer to the observation with the updated isotopic source information (Section 5, Table S6). This implies the joint inversion analysis provides more useful results if *a posteriori* source information is applied along with the optimized source strengths when isotopic source signatures contain large error.

Table S1. Estimates of the global tropospheric CO budget (TgCO/year).

Sources	Duncan <i>et al</i> . [67]	IPCC 2001
Oxidation of CH4	778-861	800
Oxidation of Isoprene	170–184	270
Oxidation of Terpene	68–71	~ 0
Oxidation of industrial NMHC	102-106	110
Oxidation of biomass NMHC	45–57	30
Oxidation of Methanol	95-103	-
Oxidation of Acetone	21	20
Vegetation	-	150
Oceans	-	50
Biomass burning	406-516	700
Fossil and domestic fuel	550-570	650
Total sources	2236-2489	2780
Sinks		
OH reaction		1500-2700

_

-

Sources	δ ¹⁸ O, ‰	δ ¹³ C, ‰	_
	+23.5 ^{a,b} , +24 ^c , +22 ^d		
Fossil fuel combustion	+25.3 ^e (gasoline)	-27.5ª	
	+15.1 ^e (diesel)		
	+16.3 ^b , +18±1 ^c		
Biomass Burning	+3~+18.4 ^f (smoldering)	-21.3 ⁱ , -24.5 ^j	
	+16.2 ~ +26.0 ^f (flaming)		
Methane oxidation	0 ^{b,d} , +15 ^c	-52.6 ^k	
NMHC oxidation	0 ^{b,d} , +14.9 ^c	-32.2°	
Biogenic	? ^g	? ^g	
Oceans	+15 ^h	-40^{h}	

Table S2. Isotope Composition of CO sources.

^a Stevens et al. [65]; ^b Brenninkmeijer [42]; ^c Stevens and Wagner [62]; ^d Brenninkmeijer and Röckmann [10]; ^e Tsunogai et al. [64]; ^f Kato et al. [83]; ^g no data has been reported; ^h Nakagawa et al. [66];

ⁱ Conny et al. [85]; ^j Conny [86]; ^k Values based on the $\delta^{13}C_{CH4}$ (-47.2 ‰ [Quay et al., [87]], and the fractionation in CH₄ + OH (5.4 ‰).

Table S3. Data avai	ilability during	the model si	imulation per	riod (April	1996–December 2004)
	2 .					/

Year	Month	model	SCO	BHD	ICE	ZEP	ALT	MLO	IZO	RPB
96	4	spin-								
	~	up								
96	10	0	0	0		0	0		0	0
	~	0	0	0		0	0		0	0
97	8	0	0	0		0	0		0	0
97	9	0		0		0	0		0	0
97	10	0				0	0		0	0
97	11	0	0			0	0		0	0
97	12	0	0	0		0	0		0	0
98	1	0	0	0		0	0		0	0
	~	0	0	0		0			0	0
98	10	0	0	0		0		0	0	0
	~	0	0	0		0		0	0	0
99	4	0	0	0		0		0	0	0
99	5	0	0	0		0		0		0
99	6	0	0	0		0		0		0
	~	0	0	0				0		0
99	12	0	0	0				0		0
	~	0		0				0		0
00	5	0		0				0		0
00	6	0		0				0		
00	7	0	0	0				0		
	~	0	0	0				0		
01	3	0	0	0				0		
	~	0	0	0						
01	12	0	0	0						

Year	Month	model	SCO	BHD	ICE	ZEP	ALT	MLO	IZO	RPB
02	1	0	0							
02	2	0	0							
02	3	0	0	0						
	~	0	0	0						
03	8	0	0	0				0		
	~	0	0	0				0		
04	1	0	0	0	0			0		
	~	0	0	0	0			0		
04	9	0	0	0	0			0		
04	10	0		0	0			0		
04	11	0		0	0			0		
04	12	0	0	0	0			0		

 Table S3. Cont.

Table S4. Influence of emissions (FF, BF, BB) of each hemisphere at each station. For each source, the first two rows show the fraction of the SH emission of the source and the total concentration and the last two rows show the fraction of the NH's.

Station	ALT	ZEP	ICE	IZO	MLO	RPB	BHD	SCO
SH-[CO]ff/total-[CO]ff	0.3%	0.2%	0.2%	0.9%	1.9%	1.4%	66.0%	60.4%
SH-[CO]ff/total-[CO]	0.1%	0.1%	0.1%	0.2%	0.3%	0.2%	98.3%	98.3%
NH-[CO]ff/total-[CO]ff	99.7%	99.8%	99.8%	99.1%	98.1%	98.6%	34.0%	39.6%
NH-[CO]ff/total-[CO]	99.9%	99.9%	99.9%	99.8%	99.7%	99.8%	1.7%	1.7%
SH-[CO]bf/total-[CO]bf	1.6%	1.4%	1.6%	3.5%	3.9%	5.2%	47.3%	47.2%
SH-[CO]bf/total-[CO]	0.1%	0.1%	0.1%	0.4%	0.5%	0.5%	98.1%	98.0%
NH-[CO]bf/total-[CO]bf	98.4%	98.6%	98.4%	96.5%	96.1%	94.8%	52.7%	52.8%
NH-[CO]bf/total-[CO]	99.9%	99.9%	99.9%	99.6%	99.5%	99.5%	1.9%	2.0%
SH-[CO]bb/total-[CO]bb	8.1%	7.7%	8.9%	19.1%	21.3%	26.0%	83.7%	82.4%
SH-[CO]bb/total-[CO]	0.8%	0.8%	0.8%	1.9%	2.3%	2.9%	97.9%	97.7%
NH-[CO]bb/total-[CO]bb	91.9%	92.3%	91.1%	80.9%	78.7%	74.0%	16.3%	17.6%
NH-[CO]bb/total-[CO]	99.2%	99.2%	99.2%	98.1%	97.7%	97.1%	2.1%	2.3%

Table S5. Model-observation difference, correlation and chi-square of each station (forward model results).

<u> </u>	T (1)	Differ	ence	Corre	lation	Chi-s	quare
Station	Latitude	[CO]	δ ¹⁸ Ο	[CO]	δ ¹⁸ Ο	[CO]	δ ¹⁸ Ο
Alert	82° 27' N	14.973	1.034	0.933	0.978	0.391	0.129
Spitzbergen	78° 54' N	12.220	0.986	0.917	0.961	0.226	0.123
Iceland	63º 15' N	9.028	1.929	0.926	0.929	0.171	0.709
Izaña	28° 18' N	13.555	1.321	0.921	0.928	0.561	0.364
Mauna Loa	19º 32' N	12.017	4.832	0.694	0.656	0.730	5.109
Barbados	13º 10' N	18.140	4.621	0.721	0.704	1.655	4.576
Baring Head	41º 18' S	6.400	3.253	0.789	0.555	0.831	5.299
Scott Base	77º 51' S	6.195	2.491	0.843	0.728	0.606	1.976

RPB		1997	1998	2004
[CO]	Observation			
	Modeled	15.35	27.60	
	Optimized ([CO] only)	8.93	17.46	
	Optimized (Joint Simultaneous)	8.40	17.45	
	Optimized (Joint Sequential)	8.54	17.42	
d18O	Observation			
	Modeled	3.71	4.88	
	Optimized (Joint Simultaneous)-adjusted isotopic source ratio	1.79	3.08	
	Optimized (Joint Sequential)-adjusted isotopic source ratio	2.02	4.52	
	Optimized (Joint Simultaneous)-fixed isotopic source ratio	2.33	5.41	
	Optimized (Joint Sequential)-fixed isotopic source ratio	2.27	5.32	
IZO		1997	1998	2004
[CO]	Observation			
	Modeled	10.39	17.85	
	Optimized ([CO] only)	8.85	4.86	
	Optimized (Joint Simultaneous)	9.03	4.71	
	Optimized (Joint Sequential)	9.09	4.69	
d180	Observation			
	Modeled	1.73	1.18	
	Optimized (Joint Simultaneous)-adjusted isotopic source ratio	1.04	0.56	
	Optimized (Joint Sequential)-adjusted isotopic source ratio	1.11	0.94	
	Optimized (Joint Simultaneous)-fixed isotopic source ratio	1.29	1.79	
	Optimized (Joint Sequential)-fixed isotopic source ratio	1.30	1.70	
MLO		1997	1998	2004
[CO]	Observation			
	Modeled			12.72
	Optimized ([CO] only)			11.97
	Optimized (Joint Simultaneous)			11.67
	Optimized (Joint Sequential)			11.76
d18O	Observation			
	Modeled			4.90
	Optimized (Joint Simultaneous)-adjusted isotopic source ratio			2.52
	Optimized (Joint Sequential)-adjusted isotopic source ratio			4.00
	Optimized (Joint Simultaneous)-fixed isotopic source ratio			5.01
	Optimized (Joint Sequential)-fixed isotopic source ratio			4.96

Table S6. A priori (modeled) and a posteriori (optimized) model-observation difference (ppbv).

ZEP		1997	1998	2004
[CO]	Observation			
	Modeled	15.65	13.53	
	Optimized ([CO] only)	9.17	8.11	
	Optimized (Joint Simultaneous)	8.86	7.26	
	Optimized (Joint Sequential)	8.60	6.78	
d180	Observation			
	Modeled	0.76	1.24	
	Optimized (Joint Simultaneous)-adjusted isotopic source ratio	0.84	0.90	
	Optimized (Joint Sequential)-adjusted isotopic source ratio	1.74	0.70	
	Optimized (Joint Simultaneous)-fixed isotopic source ratio	1.43	0.97	
	Optimized (Joint Sequential)-fixed isotopic source ratio	1.46	0.94	
ALT		1997	1998	2004
[CO]	Observation			
	Modeled	16.91		
	Optimized ([CO] only)	7.87		
	Optimized (Joint Simultaneous)	7.83		
	Optimized (Joint Sequential)	8.01		
d180	Observation			
	Modeled	1.47		
	Optimized (Joint Simultaneous)-adjusted isotopic source ratio	0.78		
	Optimized (Joint Sequential)-adjusted isotopic source ratio	0.75		
	Optimized (Joint Simultaneous)-fixed isotopic source ratio	1.14		
	Optimized (Joint Sequential)-fixed isotopic source ratio	1.14		
ICE		1997	1998	2004
[CO]	Observation			
	Modeled			9.74
	Optimized ([CO] only)			8.27
	Optimized (Joint Simultaneous)			7.72
	Optimized (Joint Sequential)			7.51
d180	Observation			
	Modeled			1.94
	Optimized (Joint Simultaneous)-adjusted isotopic source ratio			0.92
	Optimized (Joint Sequential)-adjusted isotopic source ratio			1.52
	Optimized (Joint Simultaneous)-fixed isotopic source ratio			2.41
	Optimized (Joint Sequential)-fixed isotopic source ratio			2.35

Table S6. Cont.

BHD		1997	1998	2004
[CO]	Observation			
	Modeled	9.71	5.83	9.54
	Optimized ([CO] only)	4.84	4.00	3.06
	Optimized (Joint Simultaneous)	4.92	4.01	3.09
	Optimized (Joint Sequential)	4.88	4.23	3.17
d180	Observation			
	Modeled	4.93	3.53	2.48
	Optimized (Joint Simultaneous)-adjusted isotopic source ratio	1.34	0.86	0.63
	Optimized (Joint Sequential)-adjusted isotopic source ratio	3.04	1.92	0.63
	Optimized (Joint Simultaneous)-fixed isotopic source ratio	4.50	3.65	1.90
	Optimized (Joint Sequential)-fixed isotopic source ratio	4.50	3.60	1.94
SCO		1997	1998	2004
[CO]	Observation			
	Modeled	5.34	5.66	7.74
	Optimized ([CO] only)	2.76	2.60	1.74
	Optimized (Joint Simultaneous)	2.71	2.58	1.70
	Optimized (Joint Sequential)	2.99	2.49	1.78
d180	Observation			
	Modeled	3.38	3.18	1.63
	Optimized (Joint Simultaneous)-adjusted isotopic source ratio	0.93	0.82	0.43
	Optimized (Joint Sequential)-adjusted isotopic source ratio	1.53	1.85	0.42
	Optimized (Joint Simultaneous)-fixed isotopic source ratio	2.91	3.31	1.15
	Optimized (Joint Sequential)-fixed isotopic source ratio	2.90	3.26	1.17

Table S6. Cont.

Table S7. *A priori* and *a posteriori* oxygen isotope source signatures of CO. The *a posteriori* values are obtained from the standard inversion run of this study (simultaneous inversion).

	Fossil	Biomass	CH4	NMHC	Biofuel	Ocean	Biogenic
97NH	21.5	18.2	2.9	1.3	14.7	18.2	-0.4
98NH	21.5	14.1	2.4	5.0	22.5	17.5	-1.5
04NH	21.5	12.5	2.5	5.0	15.4	16.0	5.0
97SH	23.5	12.5	3.0	5.0	18.1	20.0	5.0
98SH	23.8	12.5	2.2	5.0	18.5	19.2	4.5
04SH	23.2	12.5	0.9	5.0	16.2	17.7	2.7
a priori	23.5	17.5	0.0	0.0	17.5	15.0	0.0

Figure S1. Measurement stations for [CO] and isotope ratios. Alert, Canada (ALT), Spitsbergen, Norway (ZEP), and Izana, Canary Islands (IZO) are measured by Max Plank Institute for chemistry, Germany [27,88], Baring Head, New Zealand (BHD) and Scott Base, Antarctica (SCO) are measured by National Institute for Water and Atmospheric Research, New Zealand [42,89], and Mauna Loa, USA (MLO), Ragged Point, Barbados (RPB), and Heimaey, Iceland (ICE) are measured by Stony Brook University [36].

Figure S2. Cont.

Figure S2. Cont.

Figure S2. Cont.

Figure S2. Cont.

Figure S2. MOZART-4 simulation results; the gray dots are modeled [CO] and δ^{18} O, the green dots are NOAA [CO] and the blue dots are [CO] and δ^{18} O used in this study.

Alert

Figure S3. Cont.

Figure S3. Cont.

Spitzbergen

Figure S3. Cont.

Figure S3. Cont.

Figure S3. Cont.

Izana

Figure S3. Cont.

Figure S3. Cont.

Figure S3. Cont.

Barbados

Figure S3. Cont.

Figure S3. Cont.

Figure S3. Cont.

Scott Base

Figure S3. Cont.

Figure S3. MOZART-4 simulation results: contribution (concentration) of CO sources at each station (the first panel of each station), time series of δ^{18} O by each source at each station (the second panel of each station) and contribution of CO sources for each geographic emission region (FF, BF and BB only). For the time series of δ^{18} O, the isotopic source signature of each source are shown in the legend.

Figure S4. Cont.

Figure S4. Comparison of *a priori* (brown line) and *a posteriori* (blue line) modeled surface [CO] with measurements (blue dots).

Figure S5. Cont.

Figure S5. Comparison of optimization factors calculated from joint simultaneous inversion ([CO]+ δ^{18} O), [CO]-only inversion and [CO]-only inversion using NOAA GMD [CO] (GMD[CO]). To get the [CO]NOAA inversion results, the following 11 NOAA GMD sampling sites are selected: Christmas Island, Republic of Kribati (lat 1.7°, lon –157.17°), Mariana Island, Guam (lat 13.43°, lon 144.78°), Cape Kumukahi, Hawaii, United States (lat 19.52°, lon –154.82°), Assekrem, Algeria (lat 23.18°, lon 5.42°), Key Biscayne, Florida, United States (lat 25.67°, lon –80.20°), Sede Boker, Negev Desert, Israel (lat 31.13°, lon 34.88°), Terceira Island, Azores, Portugal (lat 38.7°, lon –27.38°), Ulaan Uul, Mongolia (lat 44.45°, lon 111.10°), Park Falls, Wisconsin, United States (lat 45.93°, lon –90.27°), Baltic Sea, Poland (lat 55.35°, lon 17.22°), Barrow, Alaska, United States (lat 71.32°, lon –156.60°).

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).