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Abstract: The temporal and spatial characteristics of meteorological drought have been 

investigated to provide a framework of methodologies for the analysis of drought in the 

Beijing-Tianjin-Hebei metropolitan area (BTHMA) in China. Using the Reconnaissance 

Drought Index (RDI) as an indicator of drought severity, the characteristics of droughts have 

been examined. The Beijing-Tianjin-Hebei metropolitan area was divided into 253 grid-cells of 

27 × 27km and monthly precipitation data for the period of 1960–2010 from 33 meteorological 

stations were used for global interpolation of precipitation using spatial co-ordinate data. 

Drought severity was assessed from the estimated gridded RDI values at multiple time scales. 

Firstly, the temporal and spatial characteristics of droughts were analyzed, and then drought 

severity-areal extent-frequency (SAF) annual curves were developed. The analysis indicated that 

the frequency of moderate and severe droughts was about 9.10% in the BTHMA. Using the SAF 

curves, the return period of selected severe drought events was assessed. The identification of 

the temporal and spatial characteristics of droughts in the BTHMA will be useful for the 

development of a drought preparedness plan in the region. 

Keywords: Drought variability; probabilistic analysis; Reconnaissance Drought Index (RDI); 

drought severity-areal extent-frequency; Beijing-Tianjin-Hebei metropolitan area 
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1. Introduction 

In recent years, climate change and the growing global warming trend have aroused people’s concern, 

having frequently caused extreme events [1–3]. As one of the most serious disasters produced by extreme 

weather events, drought have devastating impacts on water resources, the environment and the human 

health in some regions, even worldwide [4,5]. Droughts are the costliest natural disaster in the world and 

affect more people than any other natural disaster [6]. Drought is not only a complex natural hazard but a 

disaster [7] which is defined by the lack of precipitation [8]. Regional drought has also become a vital 

research topic in regional studies of global change [9]. It has become important to study drought 

distribution characteristics in terms of time and space of a region and what caused the drought [10,11]. 

A large number of studies testing the effectiveness of the various indices for detection and monitoring 

of drought events and regional drought analyses can be found in the international literature.  

Estrela et al. [12] studied the impact and the frequency of drought, as well as its pressures on water 

resources. They highlighted that precipitation across Europe has been decreasing for the last three 

decades of the 20th century. As a result, the number of extreme dry periods has increased over the last 

decade of the 20th century. Furthermore, much research has been conducted to better estimate spatial 

patterns for drought intensity and duration. Yoo and Kim [13] investigated the vulnerability of an 

environment to drought based on soil moisture. The spatial-temporal patterns of drought were 

characterized by applying the empirical orthogonal function (EOF), which enables us to identify major 

styles of spatial variability. Clause [14] analyzed the relationship between duration and severity of the 

largest annual droughts at various locations by applying linear regression analysis. Moreover, the study 

conducted a regional drought frequency analysis to achieve more reliable results for study areas with 

limited or inadequate data available. 

There have been some studies on evaluation and characteristics of drought for different periods and 

sites in China. For instance, Yuan and Wu [15] introduced the agricultural drought index (CSDI) and 

analyzed space and temporal changes of agricultural drought in the study area. By analyzing the CSDI 

values of 18 representative stations distributed in the BTHMA during the period of 1961–1990, four 

types of agricultural drought in this area were identified. Risk analysis on agricultural drought further 

showed the possibility of drought afflicting agricultural production in the area. Yan et al. [16] applied 

the standardized precipitation index (SPI) as a drought index and used precipitation from meteorological 

stations in China from 1958 to 2007 to calculate the indices in each season. Through applying Kriging 

interpolation to SPI values for each station, all the values could be made spatially and temporally 

comparable. Based on raster data for seasonal SPI, drought rate and drought probability were computed 

to demonstrate the spatial and temporal distribution characteristics of drought in Hebei Province from 

1958 to 2007. However, a comprehensive analysis considering both precipitation and evapotranspiration 

in precipitation series and drought in regions, as presented here, is still lacking, and analysis of drought 

patterns is not clear enough. 

Drought is often represented in terms of drought variables [17], which include drought intensity, 

drought frequency and duration. A large number of drought indices with various complexities have been 

used in many areas all over the world for different purposes. Some of the most popular indices used in the 

past include the Palmer Drought Severity Index (PDSI) [18] , the Rainfall Anomaly Index (RAI) [19], the 

Soil Moisture Drought Index (SMDI) [20], the Standardized Precipitation Index (SPI) [21], the Deciles, 
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the Percent of Normal, the Crop Moisture Index (CMI) [22], the Surface Water Supply Index (SWSI) [23] 

and indices based on the Normalized Difference Vegetation Index (NDVI) [24]. Heim [25] summarized 

a comprehensive review of drought indices used in the United States for the 20th century. 

The Reconnaissance Drought Index (RDI) was used to capture the drought distribution and estimate 

the drought severity. The RDI is widely used and is gaining ground, mainly owing to its data conditions 

and its high sensitivity and elasticity [26–30]. It is based both on accumulative precipitation (P) and 

potential evapotranspiration (PET). In addition, previous studies have detected that the use of the 

selected PET methods have no significant influence on RDI. This also supports the perspective that RDI 

is a vigorous drought index, not dependent on PET calculation methods, which simplifies the process of 

calculation [24]. 

In this study, the drought was considered a meteorological phenomenon characterized by prolonged 

periods of abnormal precipitation deficit. The RDI was used for the identification and assessment of drought 

events. The use of RDI for the detection of drought at multiple time-scales is well documented [31] and 

presented earlier in the paper. The observed monthly precipitation data from 33 meteorological stations 

for 51 years were spatially distributed into 253 grids of 27 × 27 km using a global interpolation technique. 

The precipitation grid data were then used for the estimation of the RDI time series. A practical method 

for developing annual and monthly drought intensity or drought severity-areal extent-frequency (SAF) 

curves is proposed. This methodology provides useful information to characterize a regional drought 

event and to plan water resources management in semi-arid regions. The methodology was applied to 

the Beijing-Tianjin-Hebei metropolitan area in China. 

The main objective of this study was (1) to calculate the average cumulative areal precipitation for 

selected dry years and normal cumulative areal precipitation to illustrate the driest years in the  

Beijing-Tianjin-Hebei Metropolitan area; (2) to estimate drought severity using RDI at the 3-month, 6-month 

and 12-month timescales at 33 meteorological stations; (3) to conduct temporal analysis of drought by 

using the regional representative RDI time series from the mean areal precipitation and perform 

frequency analysis on the annual minimum values; (4) to perform spatial analysis and visualize the 

drought severity for various time-scales and specific drought episodes in GIS; (5) to perform frequency 

analysis for each areal extent and the associated drought severity by estimating the areas affected by 

specified drought severities using multiple queries in GIS. 

2. Study Area and Database 

The study area is the Beijing-Tianjin-Hebei Metropolitan area located in north of North China Plain 

(Figure 1). The region, which encompasses China’s northernmost metropolitan region andits major 

cities, Beijing and Tianjin, is located in Hebei province and stretches from the municipalities of Beijing 

and Tianjin towards the Bohai Sea. The BTHMA is a plain region surrounded by the Yanshan Mountains 

in the north and the Taihang Mountains in the west, the coast of the Bohai Sea in the east, the North 

China Plain in the south, and the Inner Mongolia Plateau in the northwest. The BTHMA’s total area is 

roughly 185,000 km2. The elevation ranges from sea level at the eastern coastal area to more than 2208 m 

at the northern and western mountain areas, and the mean elevation of the region is nearly 404.96 m 

(Table 1). 

In the BTHMA the climate is continental; the springs are droughty, the summers are hot and the 

winters are cold, and the temperature difference between the summer and the winter is large. Summers 
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in the BTHMA are usually very hot and wet, and in July and August temperatures can reach 40 °C. Mean 

annual precipitation over the whole BTHMA is about 519 mm and it is distributed unevenly in space 

and time. The mean annual precipitation varies from about 400 mm at the southern plain area to more 

than 1180 mm at the western mountain peaks. Generally, the maximum precipitation occurs in July and 

August, and the minimum in February. The northern mountain areas receive significant amounts of snow 

during the winter months and transient snowpack develop. 

Table 1. Geographical descriptions mean and standard deviation of annual precipitation time 

series of the synoptic stations used in the study. 

Station Name Longitude (E) Latitude (N) Elevation (m) Mean (mm) Standard Deviation (mm) 

Beijing 116.47 39.80 31.30 536.32 172.07 

Zhangbei 114.70 41.15 1393.30 386.94 68.47 

Weixian 114.57 39.83 909.50 398.88 88.09 

Shijiazhuang 114.42 38.03 81.00 525.89 172.28 

Xingtai 114.50 37.07 77.30 515.19 176.86 

Fengning 116.63 41.22 661.20 458.04 89.55 

Weichang 117.75 41.93 842.80 433.49 88.21 

Zhangjiakou 114.88 40.78 724.20 399.00 91.85 

Huailai 115.50 40.40 536.80 378.98 80.58 

Chengde 117.95 40.98 385.90 518.28 108.71 

Zunhua 117.95 40.20 54.90 711.88 201.17 

Qinglong 118.95 40.40 227.50 691.79 190.63 

Qinhuangdao 119.52 39.85 2.40 634.01 179.22 

Bazhou 116.38 39.12 9.00 511.18 184.55 

Tangshan 118.15 39.67 27.80 605.37 160.43 

Laoting 118.88 39.43 10.50 600.22 176.73 

Baoding 115.52 38.85 17.20 517.57 195.07 

Raoyang 115.73 38.23 19.00 519.99 153.49 

Cangzhou 116.83 38.33 9.60 610.09 194.76 

Huanghua 117.35 38.37 6.60 589.70 196.37 

Nangong 115.38 37.37 27.40 478.54 142.07 

Anyang 114.40 36.05 62.90 561.60 169.20 

Jianpingxian 119.70 41.38 422.00 459.86 107.01 

Huade 114.00 41.90 1482.70 307.79 66.02 

Duolun 116.47 42.18 1245.40 375.24 70.05 

Dezhou 116.32 37.43 21.20 567.40 182.87 

Huimin 117.53 37.48 11.70 572.64 172.16 

Shenxian 115.67 36.23 37.80 539.63 158.65 

Datong 113.33 40.10 1067.20 370.24 84.31 

Wutaishan 113.52 38.95 2208.30 748.29 183.55 

Yangquan 113.55 37.85 741.90 541.07 148.24 

Tianjin 117.07 39.08 2.50 536.45 147.41 

Tanggu 117.72 39.05 4.80 575.59 183.33 
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Figure 1. Spatial distribution of the 33 meteorological stations in Beijing-Tianjin-Hebei 

Metropolitan area map. 

BTHMA experienced severe, extreme and persistent droughts during the period from mid 1960s to 

early 1970s and the period from late 1990s to early 2000s. The average cumulative areal precipitation 

during these two periods is compared to normal cumulative areal precipitation in Figure 2. During these 

two periods the monthly and annual precipitation were significantly below normal. In particular, 1965 

and 1997 were the first and second driest years on record, respectively (Figure 2). 

The driest January and February and the second driest December in record occurred in 1965. The 

prolonged and significant decrease of monthly and annual precipitation had a dramatic impact on water 

resources of the region. Usually, the dry periods are accompanied by high temperatures, which lead to 

higher evapotranspiration rates and dry soils [32]. These conditions inversely affect both the natural 

vegetation and the agriculture of the region as well as the available storage of the reservoirs. Severe and 

extremely dry conditions result in irrigation cutbacks, overexploitation of groundwater and significant 

losses of crop yields.  

The estimation of the RDI values was based on monthly precipitation data and the potential 

evapotranspiration (PET). Monthly precipitation data and temperature data from 33 stations distributed over 

the BTHMA (Figure 1 and Table 1) and for the 1960 to 2010 period were available. The locations of the 

stations are shown in Figure 1. The elevation of these stations ranges from 2.4 m to 2208.3 m (Table 1). 

These precipitation data were used for the spatial distribution of monthly precipitation over the BTHMA 

as discussed in the next section of the paper. 
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Figure 2. Cumulative areal precipitation for selected dry years. 

3. Materials and Methods 

The methodology presented in this paper and applied to the BTHMA is as follows: the spatial 

interpolation of precipitation gauge data and the generation of gridded precipitation data; the calculation 

of the RDI values for each grid using the respective gridded precipitation for multiple timescales; 

analysis of the temporal characteristics of droughts in the BTHMA followed by the analysis of spatial 

characteristics of droughts in the BTHMA; and the development of drought severity-areal extent-frequency 

curves for the region for mean annual droughts and multiple time-scales. The steps in the methodology 

are shown in Figure 3. 

 

Figure 3. The steps in the methodology. 

In this study, the Geographical Information System(ArcGIS 10.0) was used for its ability to produce 

maps showing the spatial distribution of the RDI and, once the maps are produced, to answer multiple 
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queries about the areas (or grids) with a specified value or range of values for the RDI. This ability is 

based on the connection of the GIS with the developed RDI database. 

3.1. Spatial Interpolation of Precipitation 

The spatial interpolation of precipitation over the BTHMA was estimated using a simple Multiple 
Linear Regression (MLR) model proposed by Naoum and Tsanis [33]. The general form of the model is: 

P=a+b1·X+b2·Y+b3·Z+b4·X2+b5·Y2+b6·Z2+b7·X·Y+b8·X·Z+b9·Y·Z 

where P is the precipitation (mm), X is the longitude (km), Y is the latitude (km), Z is the elevation (m).  

This MLR model was developed using stepwise linear regression. Terms of higher order only 

marginally improve the precipitation interpolation accuracy, leading, however, to spurious correlation 

between the interpolated and observed precipitation. 

This MLR model was used because it yields realistic spatial distribution of precipitation, it provides 

reasonable estimates of areal precipitation for different scales, it is not greatly influenced by the number 

and the spatial distribution of precipitation gauges when estimating mean areal precipitation and its spatial 

distribution, and it is simple to apply. This model has been applied in Crete [33] for annual precipitation 

and its results were comparable with other spatial interpolation methods (likesplines, ordinary kriging, 

inverse distance weighting, and trend surface). Furthermore, Bostan et al.(2012) [34] compared five 

different statistical methods to spatially predict the average annual precipitation of Turkey using point 

observations of annual precipitation at meteorological stations and spatially exhaustive covariate data 

(i.e., elevation, aspect, surface roughness, distance to coast, land use and eco-region). The methods 

compared were multiple linear regression (MLR), ordinary kriging (OK), regression kriging (RK), 

universal kriging (UK), and geographically weighted regression (GWR).The results of all spatial 

interpolation methods were both cross-validated and independently validated and have shown that the 

simple MLR model gives reasonably good estimates of precipitation spatial distribution. 

The MLR model was firstly calibrated using the monthly precipitation data from the 33 stations and 

its constants (a, b1, b2, …, b9) were estimated for each month of the period 1960 to 2010. This means 

that 33 monthly MLR models were developed. The developed MLR models gave better results for the 

dry winter months than the wet summer months. This is expected due to the large spatial variation of 

precipitation during summer. 

The MLR models were then applied to estimate the precipitation in grid cells with dimensions of  

27 × 27 km and generate gridded precipitation for the period of 1960 to 2010. The total area of the 

BTHMA was divided into 253 grids and their elevation ranged from 2.4 m to 2208.3 m. Although these 

are large grids, they are suitable for drought analysis since droughts are regional phenomena affecting 

large areas. There are 146 county-level administrative units in the BTHMA, which are responsible for 

water resources management of their own district. Therefore, the 253 grid-cells were enough to 

demonstrate the drought of every county. Furthermore, the work presented in this paper is part of an 

ongoing research program. An objective of this research program is also to evaluate the forecasting 

potential of drought using, among others, remote sensing data, such as satellite vegetation indices (e.g., 

NDVI, Vegetation Condition Index (VCI)). Such remote sensing data are available, for the period of 

analysis, for grids 27 × 27 km, leading us to this selection of grid size. 
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3.2. Drought Identification 

According to AsadiZarch et al. [35], the Reconnaissance Drought Index (RDI) was characterized as 

a general meteorological index for the drought assessment. The RDI is considered in three ways: the 

initial value (αk), normalized RDI (RDIn) and standardized RDI (RDIst). The initial value (αk) is presented 

in an aggregated form using a monthly time scale and may be calculated on a monthly, seasonal or annual 

basis. The αk can be calculated usingthe following equation: 

1

12
1

, 1(1) 1(1)
k
j iji

k
j ij

P
i N and j k

PET
α =

=

= = =


 (1)

where Pij and PETij are the precipitation and potential evapotranspiration within the month “j” of the 
year “i” and N is the total number of experimental years. Generally, the Penmann-Monteith equation is 
used to calculate PET; however, if required parameters are not available, it is recommended to use the 
Thornthwaite equation [36]. Suitability of the Thornthwaite equation has also been recommended in 
recent research works, e.g., [24,37]. Consequently, in the present research with limited data (only 
temperature), the Thornthwaite equation [38] was applied to calculate PET. Considering that using the 
selected PET methods has no significant influence on RDI, we selected the simplest Thornthwaite 
method [39].However, the temperature is corrected using the effective temperature instead of the mean. 
The effective temperature is defined as Tef = 0.36 (3Tmax − Tmin). 

Equation (1) could be calculated for any period of the year. It could also be recorded starting from any 

month of the year, if necessary. A second expression, the Normalized RDI (RDIn) was computed using the 

following equation, in which it is evident that the parameter αk is the arithmetic mean of αk values. 
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The initial formulation of RDIst [40] used the assumption that αk values follow the log natural (ln) 

distribution. So, RDIst was calculated as: 
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In which, yk is the ln (αk(i)),  was the arithmetic mean of yk and is the standard deviation. Based 
on an extended research on various data from several locations and different time scales, it was 
concluded that αk values follow both the ln and the gamma distribution values at almost all locations and 
time scales. In most cases, though, the gamma distribution proved to be more successful. 

According to Tsakiris et al. (2008) [41] and also Asadi Zarch et al. (2011) [35], it has been proved 

that the calculation of RDIst could be performed better by fitting the gamma probability density function 

(pdf) to the given frequency distribution of αk, following the procedure described below. Like SPI 

computation using the gamma approach, this method tends to solve the problem of calculating RDIst for 

the small time scales, e.g., monthly, which may include zero precipitation values (αk = 0), for which 

Equation (3) could not be applied [41]. The gamma distribution is defined by its frequency or probability 

density function: 
11
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where α > 0 is a shape factor; β > 0, a scale factor and x > 0 is the amount of precipitation [41]. Γ (α) is 
the gamma function, defined as: 

1

0
( ) yy e dyαα

∞ − −Γ =   (5)

Fitting of distribution to data requires the estimation of α and β as following: 
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for n observations. The resulting parameters were then used to find the cumulative probability of an 

observed precipitation event for the given month or any other time scale: 
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Substituting t for xβ reduces the Equation (6) to incomplete gamma function 
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Since, the gamma function is undefined for x = 0 and a precipitation distribution may contain zeros, 
the cumulative probability becomes: 

( ) (1 ) ( )H x q q G X= + −  (11)

where q is the probability of zero precipitation and G(X) is the cumulative probability of the incomplete 
gamma function. If m be the number of zeros in a αk time scales, then q could be estimated by m/n. The 
cumulative probability H(x) is then transformed to the standard normal random variable z with mean 
zero and the variance of one [42], which is the value of RDIst [43]. 

Positive values of RDIst indicate wet periods, while negative values indicate dry periods compared 

with the normal conditions of the area. The severity of drought events increases when RDIst values 

become negative. As per Dimitris Tigkas [31], we divided the RDI into moderate, severe and extreme 

classes for both dry and wet RDI as shown in Table 2.  

In this study, the monthly gridded precipitation data were used for the estimation of the RDI for each 

grid cell for 3-month, 6-month and 12-month precipitation accumulations for each month of the period 

of analysis. The procedure, adopted in this study for the calculation of gridded RDI values, is called 

interpolate-calculate, because first the precipitation is spatially distributed, and then the RDI time series 

are calculated in each grid. An alternative strategy would be to firstly calculate the RDI time series at 

each precipitation station and then interpolate the RDI values into grids. This strategy is called  

calculate-interpolate. Bechini et al. (2000) [44] reported that the first procedure (i.e., interpolate-calculate 

procedure) should be followed, especially for non-linear models, paying considerable attention in the 

accurate interpolation of the initial parameters. 
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The calculation of drought indices performed through the software package Drought Indices 

Calculator (Drin C) [45,46], which was enhanced to meet the needs of this study. 

Table 2. Drought classification of RDI. 

Drought Class RDI Value 

Extremely wet RDI ≥ 2.0 

Very wet 1.5 ≤ RDI < 2.0 

Moderately wet 1.0 ≤ RDI < 1.5 

Near normal −1.0 ≤ RDI < 1.0 

Moderate drought −1.5 ≤ RDI < −1.0 

Severe drought −2.0 ≤ RDI < −1.5 

Extreme drought RDI < −2.0 

3.3. Temporal and Spatial Analysis of Droughts in the BTHMA 

The temporal and spatial characteristics of droughts in the BTHMA were assessed by analyzing the 

gridded RDI values. The computed gridded RDI values of various time scales and for the period of 

analysis (1960 to 2010) were entered into a Geographical Information System (GIS) database. Firstly, 

the temporal variation of RDI was assessed using the regional representative of RDI, calculated from 

the time series of the mean areal precipitation of BTHMA. Analysis of the computed RDI time series 

revealed the most severe and extreme droughts occurred in the region. Then, the spatial characteristics 

of droughts during these severe dry periods were analyzed and visualized within the GIS. The spatial 

characteristics of droughts were further analyzed and the areas (or grids) affected by a specified drought 

severity were estimated within GIS. In this study, the inverse distance weighting(IDW)method was used 

for spatial interpolation and raster calculator was applied to calculate the area of drought. Finally, 

performing frequency analysis the annual drought intensity or drought severity-areal extent-frequency 

(SAF) curves were developed for the region.  

The annual average SAF curves were developed according to the following procedure: 

For every year, the computed gridded monthly RDI values for various time scales were used. The 

annual average drought severity in each grid was estimated by dividing the annual sum of RDI in 

monthly dry spells (negative RDI values) for a particular time scale by 12. Obtain the drought severity 

associated with the areal extent using the distribution map produced in the GIS. Perform frequency 

analysis for each drought areal extent percentage to associate the drought severity with return periods, 

considering an adequate probability distribution. Develop the average annual SAF curves for the 

particular time scale and repeat the analysis for the next timescale. 

The frequency analysis is commonly used in hydrology and meteorology to assess the return period 

of particular events. In this study, the drought severity or drought intensity has negative values. The 

negative values of drought severity were transformed to positive values to represent extreme conditions 

and analyze the exceedance probability. Various theoretical probability distributions were statistically 

tested before fitting the observed drought severity. Specifically, the theoretical probability distributions 

tested for fitting the observed drought severity for the annual analyses (average annual drought severity) 

and for the various RDI time scales (3-month, 6-month and 12-month) were the Generalized Extreme 

Value (GEV), the Extreme Value I (EVI, Gumbel), Log-Normal-2 parameter, Log-Normal-3 parameter, 
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Gamma, Log Pearson III, Generalized Pareto, and Weibull distributions. In this study, the non parametric 

Kolmogorov-Smirnov (K-S) test and the parametric Chi-Square test were used for the selection of the 

most adequate probability distribution, although other statistical tests may be applied, such as  

L-moments, L-skewness, and L-kurtosis. Most of the theoretical probability distributions tested (i.e., 

GEV, EVI, Gamma, Log Person III and Log- Normal-3 parameter) have passed the tests and could have 

been used for drought frequency analysis. However, the EVI distribution was selected for the analysis 

because (1) overall, it performed well for the annual and monthly analyses of drought severity and passed 

the two tests for all RDI time scales, (2) it is a two parameter probability distribution and its parameter 

values may be estimated with less uncertainty, especially for small samples, and (3) it is commonly used 

for drought analyses [47–50]. 

4. Results and Discussion 

4.1. Temporal Characteristics of Droughts in BTHMA 

The regional representative of RDI for the Beijing-Tianjin-Hebei Metropolitan area (BTHMA) was 

calculated for multiple time scales, using the mean areal precipitation (Figure 4). The analysis of the  

3-month RDI and 6-month RDI time series indicated that the record minimum RDI observed in January 1968 

and January 1972, respectively (Figures 4a and 4b). The drought severity for both time scales was evaluated 

as severe (3-month RDI = −1.93 and 6-month RDI = −1.67) and had return periods of 14 and 20 years, 

respectively. The annual minimum RDI values for the 3-month and 6-month time scale most frequently 

occur during January and February (Table 3). 

Table 3. Relative frequency of occurrence (%) of annual minimum monthly RDI for various 

time scales using regional representative RDI. 

Month 3-Month RDI/% 6-Month RDI/% 12-Month RDI/% 

January 21.5 19.8 12.8 

February 16.1 19.8 16.1 

March 12.5 12.5 21.1 

April 9.1 9.1 9.2 

May 3.2 5.8 5.2 

June 3.2 3.1 3.1 

July 6.3 0.0 3.1 

August 6.3 3.1 3.0 

September 3.2 5.8 5.2 

October 6.3 6.1 6.3 

November 9.1 5.8 6.3 

December 3.2 9.1 9.8 

The annual minimum 12-month RDI values for the period of analysis were mainly observed in 

February and March (Table 3). Visual inspection of 12-month RDI time series (Figure 4c) indicated that 

droughts were quite frequent during the 1960s and the late1990s. However, two distinct severe dry 

periods were revealed, considering only the annual minimum spatially averaged RDI value. The first 

period occurred during the year 1965 and is characterized as a moderate drought event. The second 
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period was the period from the year 1997 to 2002 and is characterized as a moderate drought for the 

whole BTHMA. Especially, the annual precipitation of the year 1965 is the smallest for the 51 years of 

analysis (1960 to 2010). The drought that occurred in 1965 is the most severe drought ever experienced 

in the BTHMA. The annual minimum 12-month RDI was observed in 1965 (RDI = −1.02) and had an 

estimated frequency of recurrence of 14 years. 

 

(a) 

 

(b) 

 

(c) 

Figure 4. Time series of average RDI values for the Beijing-Tianjin-Hebei Metropolitan 

area (BTHMA) for (a) 3-month, (b) 6-month and (c) 12-monthtime scales. 

The second drought event is a much more prolonged drought event than the drought event of 1965 

and lasted over five years (1997–2002); it is interrupted by a wet 1998 and continued until the end of 

2002. The minimum values of spatially averaged monthly RDI were observed during the year 1997 for 

the 12-month time scales, and it is characterized as a moderate drought event. The minimum 12-month 

RDI was estimated for 1997 (RDI = −1.01). This event had an estimated return period of 15 years for 

the 12-month time scale. This prolonged drought event caused exploding water demands and subsequent 

impacts in the BTHMA, in general. 
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4.2. Spatial Characteristics of Droughts in the BTHMA 

Although the estimation of drought severity at a point or as regionally representative gives useful 

information for water management, it is interesting and important to assess the drought over a specified 

region or basin. Regional drought analysis is useful for determining the spatial distribution and 

characteristics of drought, and evaluating the most affected areas for a specific drought event. In this 

study, the spatial analysis was performed using the gridded RDI values estimated for various time scales. 

Using the developed RDI database and the abilities of GIS, one can visualize the distribution of RDI 

values across the area of interest for various time scales. As an example, Figure 5 shows the variation of 

RDI across the BTHMA for 1965 for 3-month, 6-month and 12-monthtime scales. The spatial 

distribution of drought for this particular year is quite different when the RDI was assessed at the various 

time scales (Figure 5). Using the 3-month RDI, it seems that an area in the north of the region was the 

area most affected by the drought. When larger time scales of RDI are used (6-month), the pattern 

changes and indicates that the most drought-affected areas were the central areas of the region. Finally, 

the spatial variation of the 12-month RDI shows that the most affected areas were the western areas, 

which was consistent with former research [51]. 

Using GIS and the average annual RDI, the spatial distribution of a particular annual drought episode 

could be assessed. As an example, Figures 6 and 7 show the spatial variation of the average annual 12-month 

and 6-month RDI, respectively, for the first (1965) and second (1997) driest years in record. Figure 6 

indicates that during the year 1965, the average annual 12-month drought intensity was greater for the 

northwestern and some southeastern areas of the region, whereas during 1997 the most drought affected 

areas were in the northeastern and some central parts of the region. A similar spatial pattern was observed 

using the average annual 6-month RDI (Figure 7) for the years of 1965 and 1997. 

The above analyses show that, when accounting the duration and the intensity of drought, indeed, the 

drought of the year 1965 was more severe than the drought of 1997. For example, the average annual 

12-month RDI for 1965 and 1997 (Figure 6) ranges from −2.73 to 0.74, and −2.20 to 0.45, respectively. 

Similarly, the analysis for the average annual 6-month RDI (Figure 7) indicates that the RDI values for 

1965 range from −1.25 to 0.22 whereas, the RDI for the latter year ranges from −1.21 to 0.05. These 

results also confirm the above analysis for the estimation of drought severity. 

  

Figure 5. Cont.  
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Figure 5. Variation of RDI in 1965 across BTHMA for various time scales. 

 
(a) (b) 

Figure 6. Spatial variations of average annual 12-month RDI for (a) the year 1965, and  

(b) the year 1997. 

 

(a) 

 

(b) 

Figure 7. Spatial variations of average annual 6-month RDI for (a) the year 1965, and  

(b) the year 1997. 
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4.3. Drought Severity-Areal Extent-Frequency Curves for the BTHMA 

A method to assess the spatial characteristics and the frequency over an area is drought severity-areal 

extent-frequency (SAF) curves. In this study, SAF curves were developed for the BTHMA using GIS 

capabilities and the spatial RDI database. The SAF curves were developed for the average annual 

drought severity for multiple time scales of RDI. The procedures for estimating the SAF curves have 

been outlined earlier in the paper. The percentage of the areal extent associated with a specified drought 

severity (or negative RDI value) was obtained by applying multiple queries in the GIS RDI database and 

analyzing the results. Figure 8 shows an example of such a multiple query for 1965. Since it is not 

feasible, due to paper length limitations, to show all the developed SAF curves, only indicative SAF 

curves will be presented. 

 

 

Figure 8. Maps of areal extent for various time scales of RDI classes in 1965. 

Following the analysis steps previously presented, the SAF curves of the average annual drought severity 

were developed. Results were found in the analysis of the average annual SAF curves (Figure 9).These results 

indicate that the 1965 drought event was much more prolonged with continuous negative monthly values of 

RDI and had a negative impact on much larger area than the 1997 event. Thus, the drought that occurred in 
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1965 ear was more severe than the 1997 drought considering the duration and areal extent contrarily to the 

results of the analysis of the spatially averaged drought severity presented before. 

 
(a) 

 
(b) 

Figure 9. Severity-areal extent-frequency curves of the average annual drought severity for 

(a) 3-month RDI, and (b) 12-month RDI. 

5. Conclusions 

This study was focused on presenting a framework of methodologies for the analysis of the temporal 

and spatial characteristics and frequency of droughts in the BTHMA in China. The RDI computed at 

various time scales was used as an indicator of drought severity. The RDI was computed using spatially 

distributed or gridded precipitation, and a database of computed RDI values was developed. Using this 

database, three analyses were performed: (1) an analysis of the temporal variation and frequency of 

droughts using the spatially averaged RDI over BTHMA as a regional representative, (2) an analysis of 

the spatial variation of droughts with the help of GIS capabilities, and (3) a regional frequency analysis 

that lead to the development of drought severity-areal extent-frequency curves. The last two analyses 

were performed for annual drought severity, and the annual drought severity was assessed by using the 

average annual negative RDI. 

The temporal and spatial drought analyses indicated that the BTHMA experiences quite frequent 

moderate and severe droughts. The region experienced prolonged and severe droughts during the periods 

of 1965–1972 and 1997–2002. In particular, the persistent and prolonged drought of 1997–2002 

seriously affected urban water supply and agricultural irrigation. The spatial variation of droughts during 

the two periods was quite different. For the 1965–1972 drought, the most affected areas were the 

northeastern and some western areas of BTHMA, whereas the northern and central areas of BTHMA 

were mostly affected during the prolonged drought during the period 1997–2002. It has been shown that 
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the drought in the late 1990s was associated with a return period of more than 80 years with a large areal 

extent. The identification of the temporal and spatial characteristics of droughts in BTHMA will be 

useful for the development of a drought preparedness plan in the region. 

Future research steps will be to investigate the interconnectivity of meteorological drought with 

hydrological and water resources drought, to evaluate the forecasting potential for droughts using 

meteorological data and remote sensing indices, and to predict the spatiotemporal distribution pattern of 

RDI with a generalized global interpolation model and drought forecasting modules in the future. 
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