
Atmosphere 2015, 6, 1736-1752; doi:10.3390/atmos6111736 
 

atmosphere 
ISSN 2073-4433 

www.mdpi.com/journal/atmosphere 

Article 

An Assessment of Air Pollution Exposure Information for 
Health Studies  

Frederick W. Lipfert 

Environmental Consultant, Greenport, New York, NY 11944, USA; E-Mail: fred.lipfert@gmail.com; 

Tel.: +631-261-5735 

Academic Editor: Pasquale Avino 

Received: 14 August 2015 / Accepted: 28 October 2015 / Published: 6 November 2015 

 

Abstract: Most studies of air pollution health effects are based on outdoor ambient 

exposures, mainly because of the availability of population-based data and the need to 

support emission control programs. However, there is also a large body of literature on 

indoor air quality that is more relevant to personal exposures. This assessment attempts to 

merge these two aspects of pollution-related health effects, emphasizing fine particles. 

However, the basic concepts are applicable to any pollutant. The objectives are to examine 

sensitivities of epidemiological studies to the inclusion of personal exposure information 

and to assess the resulting data requirements. Indoor air pollution results from penetration 

of polluted outdoor air and from various indoor sources, among which environmental 

tobacco smoke (ETS) is probably the most toxic and pervasive. Adequate data exist on 

infiltration of outdoor air but less so for indoor sources and effects, all of which have been 

based on surveys of small samples of individual buildings. Since epidemiology is based on 

populations, these data must be aggregated using probabilistic methods. Estimates of 

spatial variation and precision of ambient air quality are also needed. Hypothetical personal 

exposures in this paper are based on ranges in outdoor air quality, variable infiltration 

rates, and ranges of indoor source strength. These uncertainties are examined with respect 

to two types of mortality studies: time series analysis of daily deaths in a given location, 

and cross-sectional analysis of annual mortality rates among locations. Regressions of 

simulated mortality on personal exposures, as affected by all of these uncertainties, are 

used to examine effects on dose-response functions using quasi-Monte Carlo methods. The 

working hypothesis is that indoor sources are reasonably steady over time and thus 

applicable only to long-term cross-sectional studies. Uncertainties in exposure attenuate the 

simulated mortality regression coefficients; correlations between “true” and hypothesized 

exposures are used to compare their effects. For a given exposure uncertainty level, 
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attenuation of regression coefficients is similar for both types of simulated mortality 

studies, but since cross-sectional studies involve indoor sources they are more sensitive, to 

the point where regression coefficients may be driven to zero. The most pressing need for 

confirming data is the distribution of indoor sources among cities, especially for ETS. 

Keywords: indoor air quality; personal exposure; particulate matter; environmental 

tobacco smoke; simulated regressions 

 

1. Introduction 

There are several rationales for monitoring ambient air quality: 

• To characterize the environment of a community. 

• To determine compliance with regulatory standards. 

• To investigate effects of new or modified pollution sources. 

• To provide exposure data for studies of adverse effects, especially health effects. 

In the first case, considering a wide range of pollutants may be more important than their precision 

or accuracy, and historical contexts may be of interest. However, accuracy is important with respect to 

developing effective pollution control strategies. Regulatory compliance issues are limited to specified 

pollutants and measurement methods.  

Developing appropriate exposure information for health effects studies is more complex and 

depends on the type of study. It is important to note that outdoor ambient air quality data may suffice 

to characterize the environment of a community but are unlikely to adequately characterize exposures 

of individuals within the community [1]. Further, exposures of only a few of those individuals are 

relevant to epidemiology. This conclusion has seldom been considered by epidemiologists in recent 

years. Other important considerations include: 

• Regulatory standards may be based on studies that used incomplete exposure information [2]. 

• A complete description of community environment should include both indoor and outdoor 

conditions [3].  

The paper is organized as follows: This section describes the rationale for the study and lays out the 

requirements for different types of exposure data. Section 2 describes the assessment methodology. In 

Section 3, I describe the exposure data I found in the literature and their characteristics. Section 4 then 

uses these data to estimate how different types of epidemiological studies would be affected by 

uncertainties inherent in the available exposure data and by the use of estimated personal exposures 

rather than the usual ambient air quality data. I discuss the implications of these findings in Section 5 

and the resulting conclusions in Section 6.  

1.1. Data Requirements by Type of Study 

Studies involving controlled exposures of defined individuals require accurate and precise 

measurements of the pollutants involved; surrogate measures are unlikely to suffice [4]. By contrast, 

epidemiological methods are required to study populations large enough to detect the subtle health 
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effects found under current conditions [5]. The often quoted aphorism, the dose makes the poison, 

applies here and requires considering each of element connecting ambient air quality to dose. The main 

elements are: 

• Selection of pollutants to be considered 

• Accuracy of measurement methods  

• Spatial and temporal variability of outdoor air quality 

• Penetration of outdoor air into occupied spaces 

• Strengths of indoor pollution sources. 

Other elements of uncertainty include indoor ventilation rates, rates of human uptake, and doses to 

target organs, for all of which adequate data are lacking. 

Each of these elements involve uncertainties and requires averaging over populations; both 

regulated ambient (i.e., “criteria”) and toxic pollutants should be considered. Assessment requires 

comparing the relative contributions of each element of uncertainty with respect to the uncertainty in 

total exposure. For example, it would not be cost-effective to require a measurement method to have 

an accuracy of say, ±1%, if the uncertainty of the community average is say, ±10%. Similarly, if most 

exposures occur indoors, the accuracy of outdoor air measurements becomes less important for health 

studies. As outdoor air becomes cleaner, indoor pollution sources become more important. The 

processes linking exposure to target organ dose are perhaps the most problematic but have seldom 

been considered.  

Reasons for neglecting personal exposures in air pollution epidemiology include: 

• Regulatory mandates are limited to outdoor air [6]. 

• Indoor exposure information is not available for populations. 

• Physiological processes governing doses to target organs are not well understood [7]. 

• Current epidemiological methods based on outdoor air quality have produced consistent and 

highly statistically significant findings that have been interpreted as individual risks [8].  

Conventional epidemiological studies require parallel data on each parameter for all subjects, 

typically numbering in the thousands. With these deterministic methods, significance levels are largely 

determined by model fit. Typically, individual exposures are inferred from air quality data from a 

limited number of fixed ambient monitoring stations; the resulting uncertainties have been assessed in 

a number of studies. However, personal exposure data must be obtained on an individual basis and 

probabilistic methods are thus required to estimate population exposures. Survey sample sizes and the 

properties of exposure distributions will also affect significance levels of population-based risk 

estimates. The difficulties of this task do not diminish its relevance.  

1.2. Exposure Data Requirements for Epidemiological Studies 

Studies of population health fall into two categories: variations over time at selected locations 

(time-series studies) and variations among locations during selected time periods (cross-sectional 

studies). Although there may be some overlap, their respective data requirements differ substantially. 
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1.2.1. Time-Series Studies 

Short-term (daily) variations are mainly driven by changes in weather such as stagnations, storms, 

or frontal passages. In such cases, ambient concentrations of various pollutants tend to show similar 

patterns. Shorter term (hourly) variations are largely due to occupational patterns or emission cycles 

such as vehicular traffic. Longer term cycles are usually seasonal, driven by both emissions and 

weather. A valid time-series study must control all of these patterns that relate to short-term health 

effects like mortality or hospitalization. Nevertheless, time-series studies have important advantages. 

They have been validated by major episodes of the past century during which excess daily death rates 

were high enough to allow identification of individual victims. They are not confounded by indoor 

pollution sources that remain largely unaffected by daily weather changes. However, only a fraction of 

outdoor air (typically ~ 50% [9]) penetrates indoors, thus attenuating actual exposures. Indoor/outdoor 

relationships must be averaged over the communities under study, which reduces the variance of these 

perturbations but not biases resulting from partial penetration of outdoor air. 

The appropriate duration of exposure has not been established for epidemiological studies; statistical 

significance is often seen for multi-day periods [10]. Daily means are generally more relevant than 

hourly means for population-based studies because penetration of outdoor air is not instantaneous and 

the timing of peak hourly concentrations will vary within a population.  

1.2.2. Cross-Sectional Studies 

Longer term, usually annual, studies involve differences among communities and cohorts and must 

control for all other spatial differences that may relate to air quality. Since disadvantaged areas often 

have the worst air quality within a city, confounding may result from intercommunity differences in 

smoking, poverty, or education, all of which are known to exert larger effects on public health than air  

pollution [11]. Such differences can be difficult to control because of the multitude of such factors and 

lack of adequate data. In contrast with time-series studies, cross-sectional studies have not been 

validated by identifying specific putative victims Other issues involve timing and duration of 

exposures, including contributions of short-term exposures and allowance for the lag and latency for 

development of new diseases, for which cumulative exposures may be appropriate [12]. Persistent 

exposures from indoor pollution sources must also be considered and averaged across each community 

in the study. Exfiltration (venting of indoor air) is also possible and relates to the degree of building 

tightness, but adequate data are not available. However, forced ventilation may result in additional 

intake of outside air in order to maintain equilibrium.  

Longitudinal studies [13] of gradual changes in exposures, of which few have been published, must 

control for other long-term changes including improved medical care, better residential construction, 

and reduced rates of smoking. 

1.2.3. Summary 

Sources of exposure uncertainty in epidemiology include: 

For time-series studies, sources include instrument accuracy and spatial variation of daily outdoor 

air quality averaged over the number of monitoring locations and annual rate of infiltration of outdoor 
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air averaged over the number of residences in the community under study. Seasonal variations in 

infiltration rates might also be considered.  

For cross-sectional studies, sources include instrument accuracy and annual spatial variation of 

outdoor air quality averaged over the number of monitoring locations in each city, infiltration of 

outdoor air averaged over the number of residences in each city, and annual average contributions of 

indoor sources averaged over the number of residences in each city. 

Each of these parameters will vary by pollutant, and it is likely that outdoor and indoor air quality 

may involve different species. Although this paper emphasizes particles, pollutants of interest should 

not be limited to criteria pollutants but should include toxic species of known health effects, especially 

those found indoors. 

2. Methods and Data 

The basic method of assessment involves postulating baseline datasets and hypothetical linear 

regressions of mortality on pollution, as if the mortality rates were adjusted for confounding variables. 

These regressions are then repeated using exposure data modified to reflect outdoor air quality 

variability, penetration into residences, and indoor air pollution sources, sequentially. The data required 

to estimate these exposure variations were obtained from the literature and expressed as exposure 

increments and their standard errors. The outcome of the assessment is the degree to which regression 

coefficients and their standard errors differ from baseline values according to definitions of exposure. 

3. Results 

Data are available for each of these exposure parameters for several pollutants; fine particulate 

matter (PM2.5) was selected as an illustrative example. Personal exposures are often assumed to be 

tantamount to indoor concentrations, which comprise infiltrated outdoor air and emissions from indoor 

sources [14]. However, indoor air quality relates to the average personal exposures of all the 

individuals in the household during the study period and is thus less difficult to model.  

Indoor sources comprise key constituents of personal exposure for all types of health studies 

including toxicological studies of sick building syndrome and the like [15]. An epidemiology study 

based only on outdoor air quality, as has been the case, tacitly assumes that indoor sources may be 

neglected, ostensibly because they are not regulated under the Clean Air Act. As shown below, this 

assumption has important implications for epidemiology and estimates of health effects 

3.1. Outdoor Air Concentrations  

Many studies of daily variations in health parameters have been based on a few or single air quality 

monitoring stations; spatial and/or temporal air quality variability could thus be an important 

contributor to uncertainties in health effect estimates. Uncertainties in outdoor air concentrations, 

including spatial variability and instrumental or analytical precision, reflect directly on personal 

exposures to outdoor air.  

The daily PM2.5 data of Pinto et al. [16] for 27 urban areas that had multiple monitors for the year 

2000 appear to be the best dataset for studying intracity spatial variations. Pinto et al. list the ranges in 
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inter site means and site-pair correlations as indices of spatial variability. The correlations between 

pairs indicate their consistency over time irrespective of mean values, which is important for time-

series studies. The ranges of mean values indicate variability for use in long-term studies. Neither of 

these statistics provides direct estimates of spatial uncertainties in outdoor air quality for comparison 

with those for indoor air quality, which are estimated as follows.  

The definition of the correlation coefficient R is useful in this regard: 

R2 = 1−σxy
2/σy

2 (1)

where σxy
2 is the unexplained variance from a linear regression of y on x, which in this case are parallel 

records of daily PM2.5 in a given city, and σy is the corresponding standard deviation. Unfortunately, σy 

values are not tabulated by Pinto et al. so that estimation is required from other sources. For this 

purpose, PM10 data was drawn upon for the 20 largest USA cities [17] and estimated a standard 

deviation for each city using the tabulated means and 10th and 90th percentiles. Note that PM10 and 

PM2.5 have the same coefficients of variation (0.29) across cities [18] and thus similar frequency 

distributions. The ratios of estimated deviation to mean PM10 ranged from 0.20 to 0.43 with a mean of 

0.30 and a standard deviation of 0.56. These estimates are considered adequate for the purposes of 

comparative analyses in this paper and used a mean value of 0.3 to estimate σy. Equation (1) was then 

used to estimate σxy for each city as shown in Figure 1.  

 

Figure 1. Estimated spatial PM2.5 uncertainties for 27 USA cities [16]. 

  

Figure 2. Fractional spatial uncertainties for 27 USA cities [16]. 
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These estimated errors are highly correlated with mean PM2.5 with an average ratio of error to mean 

of 0.077 (Figure 2). At 15 μg/m3, the 95% confidence intervals for a single monitoring station would 

thus be (12.7, 17.3). For the average over a network of 10 stations, the CIs would be (14.6, 15.4). As 

discussed below, corresponding indoor values for infiltrated outside air would be approximately half of 

these estimates. Note that the averaging process for outdoor air pertains to the number of monitoring 

stations within a city, while averaging for indoor air pertains to the number of households in that city. 

3.2. Infiltration of Outdoor Air  

Infiltration has been studied extensively in USA and abroad. A good approximation of the mean rate 

is about 0.50 and a typical distribution is shown in Figure 3; the standard deviation is about 0.07 [9]. 

However, epidemiology studies involve large populations and community averages over thousands of 

residences. The variability among individual buildings is thus of little importance, assuming minimal 

seasonal variations or correlations with other community attributes like income, education, proximity to 

pollution sources like traffic. Nevertheless, accounting for infiltration has the effect of doubling risk 

estimates because only half of the outdoor concentration could be responsible for health effects 

observed indoors.  

 

Figure 3. Distribution of outdoor air penetration ratios for individual buildings [9].  

3.3. Indoor Air Pollution Sources 

Many studies have characterized specific types of indoor particulate air pollution such as 

environmental tobacco smoke (ETS), pet dander, indoor combustion source including gas stoves, 

candles, incense, household dust [15]. Note that current regulatory practice considers the mass but not 

the chemistry of PM. In the developed world, the most common indoor pollutants are NO2, CO, and 

particulate matter, especially PM2.5. Aside from photocopy machines, there are no indoor sources of 

O3, and SO2 tends to be adsorbed onto interior surfaces. Important indoor non-criteria pollutants 

include NH3, benzene, and formaldehyde, all of which are known to cause adverse health effects [19]. 

Acid aerosols tend to be neutralized indoors [20]. It is quite possible that important indoor pollutants 

may differ from outdoor species, requiring consideration of mixtures.  
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ETS may be the most important source of indoor PM2.5. Jenkins et al. [21] measured personal 

exposures to respirable particulates (RSP, PM3.5)* for 100 nonsmokers in each of 16 metropolitan 

areas and contrasted the results according to passive smoking in their work and home environments. 

The results are shown in Figure 4, with an RSP range of 8–15 μg/m3 due to ETS. There is also a 

negative relationship with outdoor levels. Spengler et al. [22] reported an indoor RSP increment of  

20 μg/m3 when two smokers were present, which is consistent with Figure 4. 

 

Figure 4. Effects of environmental tobacco smoke on indoor PM3.5 concentrations in 16 

USA cities [21]. In the 1980s, fine particles were designated “respirable particles” (RSP), 

defined as PM3.5. 

The contributions of indoor sources cannot be measured directly but may be inferred by regressing 

indoor concentrations on outdoor levels. The time-series data of Zeger et al. [23] for Riverside, CA 

shown in Figure 5 are useful for this purpose. The slope (0.58) represents the infiltration rate of 

outdoor air while the intercept (58 μg/m3) represents contributions of indoor sources. Both of these 

estimates are highly statistically significant. Figure 6 implies that the effects of indoor sources do not 

vary over time at this location. 

 

Figure 5. Indoor/outdoor PM10 relationships from Riverside, CA [23]. 
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Figure 6. Estimated effects of indoor PM10 sources in Riverside, CA [23]. 

(a) 

(b) 

Figure 7. Indoor-outdoor PM2.5 relationships among USA: (a) Cities [21]; (b) Cities [24] 

Note: ( ) denotes standard error. 

.  
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Mean particulate levels tend to vary more between cities than within a city, especially for fine 

particles. Jenkins et al. [20] sampled outdoor and indoor respirable particulates in 16 US cities;  

Avery et al. [23] present detailed PM2.5 sampling data from 34 USA cities. The contributions of indoor 

sources were estimated by subtracting 50% of the outdoor concentration from the indoor 

concentration. Caution is in order here because the small samples in each city may not adequately 

represent city-wide averages. These results are shown in Figure 7a,b which show that personal exposures 

cannot be predicted from outdoor concentration levels. The mean indoor source contribution from  

Avery et al. [24] is 9 μg/m3; from Jenkins et al. [21], 12 μg/m3 for all subjects and 0.9 μg/m3 in the 

absence of ETS. Thus, with respect to cross-sectional analysis, mean ambient concentration is a poor 

surrogate for actual (personal) exposure, even in nonsmoking households, even though they may be 

correlated over time in each city. 

Adverse effects of ETS have been reported in epidemiological studies [25,26]. However, I found no 

air pollution studies that accounted for ETS increments to PM exposures. “Control” for passive 

smoking in regression analysis does not meet this requirement. In this regard, “% smokers” is probably 

a more appropriate confounding variable than “yes/no” for individual primary smokers. 

Frequency distributions of these two sets of multi-city data are shown in Figure 8. The distribution 

of data from Jenkins et al. [21] is well behaved, in contrast to the data from Avery et al. [24], for 

which about 7% of cities had lower concentrations than expected and about 25% were higher. The 

remaining two-thirds of the cities had indoor source contributions in the expected range of 5–10 μg/m3. 

Specific reasons for the different distributions in these two studies are unknown and may comprise 

further sources of uncertainty.  

 

Figure 8. Estimated frequency distributions of city-average PM2.5 concentrations from 

indoor sources [21,24]. 

4. Simulated Epidemiological Analyses 

To illustrate potential effects of exposure uncertainties on epidemiological exposure-response 

relationships, a time-series of 1000 days and regressed simulated daily mortality variables against 
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alternative exposure variables was simulated. Similar cross-sectional regressions for a cross-sectional 

dataset for 100 cities were ran. In the time-series analysis, the “true” PM2.5 concentration was set at 15 

μg/m3 for all days, as if seasonal and temperature effects had been removed. Random effects of spatial 

variability of outdoor air and the penetration to the indoors were simulated; indoor sources were 

assumed to be invariant on a daily basis and were not considered. Since these simulated series have no 

serial correlation, lag effects could not be considered. 

The cross-sectional analysis included spatial variability of outdoor air and indoor penetration and 

parametric effects of arbitrary indoor sources. Mean PM10 values for 20 large cities [17] were used to 

establish the baseline distributions; PM2.5 was then assumed to be about half of PM10 on average [9] 

and the dataset was replicated five times in order to provide an arbitrary set of 100 cities. The sources 

of variability included the spatial data of Pinto et al. [16], a mean infiltration rate of 0.5, and the indoor 

source distributions of either Avery et al. [24] or Jenkins et al. [21]. The analysis assumed that indoor 

source strengths are independent of outdoor air quality, as shown in the figures above.  

The mean mortality rate was set at 35 deaths/day and the baseline PM2.5 regression coefficient at 

0.25. Random errors at various levels using a spread-sheet random function were introduced and found 

that 10 regression replications provided adequate numerical stability as judged by the similarity of the 

standard deviation across replications with respect to the average of the standard errors of each of the 

10 regressions. Both analyses assume that the mortality variables have been adjusted for all confounders, 

such that pollution exposure is the only independent variable. These simulations are intended to serve 

as examples of what personal exposures might be expected, rather than precise estimates of actual 

situations. Table 1 provides summary statistics for the variables used in these simulations. 

Table 1. Statistics of variables used in simulations 

  Mean Std. dev. CV 

A. Simulated 

time-series 

analyses 

base PM2.5 with instrument error 15 0.89 0.059 

with infiltration error 1 7.5 0.48 0.064 

with additional error 2 7.5 0.53 0.071 

with additional error 2.5 7.5 0.59 0.079 

with additional error 3 7.5 0.61 0.081 

with additional error 4 7.5 0.8 0.106 

mortality 38.75 1.74 0.045 

B. Simulated 

cross-sectional 

analyses 

base PM2.5 16.5 3.25 0.2 

w/spatial error 19 3.65 0.19 

w/infiltration 9.5 1.82 0.19 

w/100% indoor sources 33.9 12.2 0.36 

w/50% indoor sources 22.1 6.87 0.31 

w/25% indoor sources 16.2 4.62 0.29 

w/15% indoor sources 13 2.68 0.21 

mortality 39.1 1.67 0.043 

4.1. Time-Series Simulations 

Figure 9 shows that, as spatial errors are added, the exposure sequences track well but regression 

coefficients are attenuated and tend to lose statistical significance. When infiltration to the indoors is 

considered, exposures are halved and thus regression coefficients are essentially doubled. 
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Figure 9. Sample of simulated daily variations in PM2.5 with error added. 

4.2. Cross-Sectional Simulations  

I used the data of Pinto et al. [16] to estimate the spatial variability of outdoor PM2.5 within each 

city. As seen in Figure 3, the mean fractional error in a given city is 7.7% with a standard deviation of 

2.3%. This baseline distribution was then perturbed randomly among cities. The outdoor air infiltration 

rate was held constant at 0.5 for these simulations With respect to indoor pollution sources from  

Avery et al. [24], a quasi-normal distribution was able to be fit to Figure 8 by discarding the two lowest 

values and exponentiating the data to successively lower powers. The best fit was obtained using the 

0.05 power of concentration, which produced a correlation coefficient of 0.95 and 95% confidence 

intervals of 1.5 and 46 μg/m3. For the data of Jenkins et al. [21], the distribution of indoor sources was 

assumed to be normal with a mean of 12.1 μg/m3 and standard deviation of 2.9. 

4.3. Simulation Results  

Figure 10 compares the results of these time-series and cross-sectional simulations in response to 

reduced correlation between exposure variables. In the absence of error, the 50% infiltration rate has 

the effect of doubling either regression coefficient, as shown at the right of the figure. For 

convenience, the regression coefficient scale is also converted to percent mortality change per 10 

μg/m3 (right-hand scale). Attenuation of the outdoor time-series coefficients results from increasing 

spatial errors; for example, correlations between daily data from monitors in the same city are 

frequently around 0.8, which results in a coefficient reduction of about 30%, without considering 

indoor air quality. However, these effects of outdoor variability are more than compensated for by the 

biasing effect of partial penetration to the indoors. Intra-city variations in infiltration are of little 

concern because they would be averaged over the number of residences in each city under study. 
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Figure 10. Simulated attenuation of regression coefficients by uncertain outdoor air 

quality, indoor infiltration, and indoor pollution sources. 

Only one data point is shown for the cross-sectional model with outdoor data, for which the 

attenuation is due to spatial variability. The baseline cross-sectional analysis involves a much larger 

range in exposures based on the original set of cities selected. As with the time-series simulations, 

regression coefficients are doubled because of the 50% indoor penetration rate [9]. However, they can 

be greatly attenuated by effects of indoor sources. The initial simulation is based on the indoor source 

distribution of Figure 8; with this level of pollution from indoor sources, the relationship between 

personal exposure and mortality becomes nil. As a result, fractions of this indoor source level were 

used in order to generate a range of coefficient attenuation for comparison. The mean concentration of 

infiltrated outdoor air is about 9.6 μg/m3 and adding 15% of the Avery et al. [24] indoor source 

contribution (3.4 μg/m3) attenuates the cross-sectional mortality regression by more than 50%, placing 

it well within the range of attenuated time-series regression coefficients. 

Using the indoor source distribution based on the data of Jenkins et al. [21] reduced the simulated 

mortality regression coefficient to essentially zero, as is the case with the full-strength data from  

Avery et al. [24]. 

4.4. Attenuation with Actual Epidemiological Data 

A further example of regression attenuation may be seen with data from the Harvard Six Cities 

Study. Spengler et al. [22] reported personal RSP exposures for each city, and Dockery et al. [27] 

reported relative mortality risks. These data are combined in Figure 11, based on either outdoor data or 

personal exposures. The two exposure-response lines are roughly parallel, but using the higher 

personal exposures shifts the dose-response function to the right, implying a statistically significant 

threshold of about 20 μg/m3. 
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Figure 11. Exposure-response relationships from the Harvard Six Cities Study. 

5. Implications  

Uncertainties in exposure to air pollution have long been known to epidemiologists but seldom 

explored in detail, with the possible exception of spatial variability in outdoor concentrations. Most 

epidemiology studies use averages over the relevant ambient monitoring stations in a given city, but 

such spatial variability can be important when only a few monitoring sites are available in a given city. 

In time-series studies of daily events, data from nearby monitoring sites may be highly correlated, 

depending on the pollutant, but there are also issues of bias due to variability in mean values. These 

issues are relevant to most epidemiology studies. 

However, variability in outdoor air quality comprises only a minor portion of the combined 

uncertainties in total (personal) exposures, which include variable rates of infiltration of outdoor air 

into occupied spaces and effects of many different indoor sources of air pollution. Infiltration is a 

factor for all types of epidemiology studies and these rates are well defined. Effects of indoor sources 

generally relate only to long-term studies, including cohort studies. This distinction creates a hierarchy in 

epidemiology studies, with daily time-series being the least affected and cross-sectional studies the 

most affected.  

Figure 10 shows that time-series studies of 1000 days and cross-sectional studies of 100 cities will 

have equivalent regression attenuation for a given exposure uncertainty, but that cross-sectional studies 

are inherently less reliable since they are subject to additional uncertainties from indoor pollution sources.  

In terms of optimizing exposure information for epidemiology, the most critical data needs relate to 

distributions of indoor pollution sources within and between cities. Because of averaging within cities, 

the accuracy for any one building may be less important than the number of cities with at least some 

rudimentary data; i.e., in this sense, quantity may be more important than quality.  

Figure 7 shows that indoor air quality is essentially unrelated to outdoor air quality across cities. 

Interpretation of all the extant cross-sectional studies, including cohort studies, is thus in question. 
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Since such studies have played a large part in setting ambient air quality standards, this finding could 

have important regulatory implications. 

Studying the health effects of indoor sources could be quite data intensive, requiring linkage 

between individual decedents and their residential characteristics. Privacy concerns may well preclude 

such an investigation. Nevertheless, the public should be aware of the risks of indoor air about which 

they have some control as well as the community levels of outdoor air quality subject to regulation. 

6. Conclusions 

Measured outdoor air quality is subject to uncertainties due to monitoring site location and 

analytical errors. Intersite variability in mean PM2.5 showed a mean standard error of 7.7% among 27 

USA cities, so that 95% confidence intervals would be (12.7–17.3) μg/m3 for a single monitoring 

station at 15 μg/m3. Multi-site data are thus strongly preferred for epidemiological studies and 

regulatory decisions. 

Personal exposure is tantamount to indoor concentration for epidemiological purposes. Indoor air 

pollution emanates from infiltrated outdoor air and emissions from indoor sources. Rates of infiltration 

average about 50%, are reasonably well-defined, and contribute little uncertainty to exposure averaged 

across a city because of strong correlations between ambient and infiltrated outdoor concentrations. 

However, the decrease in mean effective exposure biases regression coefficients based on outdoor air 

such that the true effects of time-dependent exposures may be up to twice those of current estimates. 

Slowly varying indoor sources have essentially no effect on time-series analyses although base 

concentration levels would be affected. 

By contrast, intercity variations in the mean contributions of indoor sources can strongly affect  

cross-sectional studies. Two independent studies of groups of USA cities show no correlation between 

mean indoor and outdoor concentrations. As a result, effect estimates from long-term cross-sectional 

and cohort studies may have been over-estimated. The largest contributions to indoor air pollution are 

from environmental tobacco smoke; contributions from other indoor pollution sources also vary widely 

among cities but have little effect when averaged across a group of cities.  

All of these findings are based on small samples of indoor air and rudimentary Monte-Carlo 

analyses. Larger samples of indoor air quality are needed across many more cities for various criteria 

and non-criteria pollutants including PM size and composition, after which full-fledged probabilistic 

analyses would be appropriate for various health endpoints. Pending such verification, comparisons 

between time-series and cross-sectional studies remain problematic as does use of the latter for regulation. 
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