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Abstract: Drought & flood events, especially the drought & flood combination events 

(DFCEs) on the North China Plain (NCP), known as an important grain production region in 

China, constitute a serious threat to China’s food security. Studies on DFCEs in this region 

are of great significance for the rational allocation of water resources and the formulation of 

integrated response strategy for droughts and floods. In this study, L-moments theory and 

bivariate copula method were used to evaluate the probability characteristics of seasonal 

DFCEs (continuous drought, continuous flood, and alternation between drought and flood) 

on the NCP, based on the daily precipitation data (1960–2012) at 19 meteorological stations. 

Results indicate the following: (1) On the NCP, the precipitation in summer accounts for 

56.45%–72.02% of mean annual precipitation, and the precipitation in autumn and spring 

come second. The winter precipitation is the smallest (less than 4%); (2) The best-fit 
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distribution for precipitation anomaly percentages in spring, summer and autumn are 

Generalized Normal (GNO), Generalized Logistic (GLO) and Pearson III (P-III) in  

sub-region I, respectively. While in sub-region II, they are respectively the P-III, P-III and 

Generalized Extreme-Value (GEV); (3) Compared with the Gumbel copula and Clayton 

copula, Frank copula is more suitable for spring-summer and summer-autumn precipitation 

anomaly percentage sequences on the NCP; (4) On the time scale, continuous drought 

respectively dominate in spring-summer DFCEs and in summer-autumn DFCEs on the 

NCP. Summer-autumn DFCEs prevail in sub-region I with the average probability value 

0.34, while spring-summer DFCEs dominate in sub-region II, of which average probability 

value is 0.42; (5) On the spatial scale, most areas where the probability of continuous 

drought in spring-summer and spring drought & summer flood is relatively high are located 

in the northwest, northeast, and coastal parts of sub-region II; all the events with high 

probability of continuous drought in summer-autumn and summer flood & autumn drought 

occurred at the central part in the northwest of sub-region II. 

Keywords: L-moments; the copula function; DFCEs; precipitation data; probability;  

the NCP 

 

1. Introduction 

Due to the global warming, climate and environment have experienced significant changes, as a result 

of which the global average surface temperature has risen by 0.56–0.92 °C [1,2]. The increase of air 

temperature accelerated the rate of water cycle, thus leading to the increase in the frequency of 

occurrence of extreme hydrological events (i.e., droughts and floods), having brought about significant 

direct losses of social economy [3,4]. However, continuous droughts, continuous floods and the 

alternation between drought and flood between seasons become more frequent than ever along with the 

exacerbation of climate changes impacts [5,6], and their impacts exhibit a multi-faceted and multi-level 

feature. Hence, it’s essential to reinforce the studies on drought & flood combination events (DFCEs) so 

as to achieve the rational distribution of industry structure, the disaster risk management, and the 

optimized allocation of water resources. 

At present, there are many studies performing characteristic analysis on drought or flood events based 

on copula functions. Specific to droughts, Shiau and Modarres [7] probed into the joint distribution of 

drought intensity, duration and frequency in Iran using the bivariate copula function. Results showed 

that the drought severity in humid region might be more severe under high rainfall fluctuations.  

Ibrahim et al. [8] have evaluated the dry conditions in Peninsular Malaysia using bivariate copula, and 

showed that the Galambos distribution provides the best fit for the majority of stations.  

Mirabbasi et al. [9] have tested several copulas to analyze the meteorological drought characteristics of 

the Sharafkhaneh gauge station, and come to the same conclusion as Ibrahim. According to the flood 

events, Zhang [10] derived bivariate distributions of flood peak and volume, and flood volume and 

duration through the bivariate Archimedes copula distribution, and results showed that bivariate copula 

distribution model fits better than others. Sraj et al. [11] have applied and compared different bivariate 
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copulas to analyze the corresponding hydrograph volumes and durations of 58 flood events at the Litija 

gauging station on the Sava River in Slovenia. Results showed that the differences among most of the 

applied copulas were not significant. Li et al. [12] have analyzed flood peaks and flood volumes 

considering the historical information based on the copula. 

Recently, frequency analyses of droughts or floods have been performed using multivariate  

copulas, which are more complex mathematically than the bivariate case [13]. Some research focused 

more on the drought duration, severity, and intensity to analyze the drought events by applying trivariate 

copulas [14,15]. And some researches devoted to the flood peak, volume, duration and suspended sediment 

concentration to probe into the flood events using the same kind of method as  

droughts [16–19]. These studies aimed at individual drought or flood events, and did not take into account 

the DFCEs. Meanwhile, few studies on drought, flood or DFCEs analysis using copulas have been 

conducted on the NCP. 

This paper focuses on the probability characteristics of seasonal DFCEs on the NCP based on the  

L-moments theory and bivariate copula distribution, so as to provide necessary basis for the response to 

droughts and floods on the NCP. This paper is arranged as follows: (1) Section 2 describes the study area 

and data used in the study; (2) Section 3 introduces analysis methods based on the L-moments, bivariate 

copula distribution and goodness of fit test; (3) Section 4 provides results and discussions;  

(4) Finally, Section 5 draws the conclusions. 

2. Study Area and Data 

2.1. Overview of the Region of Interest 

The NCP (E: 112°30′–119°30′, N: 34°46′–40°25′) is a low-lying depositional plain of the Yellow 

River and the Haihe River and covers an area of 136,000 km2 in the east of China (Figure 1). This plain 

has a continental monsoon climate, where it’s dry and cold in winter, hot and rainy in summer, and dry in 

spring. The annual precipitation ranges from about 800 mm in the south to 500 mm in the north [20], 

most of which occurs from June to September. The mean annual land surface evaporation and water 

surface evaporation are 470 mm and 1100 mm, respectively [21]. Droughts and floods happen 

frequently in this region. Meanwhile, there are four clear seasons on the NCP. Spring includes March, 

April and May. June, July and August belong to the summer. Autumn is composed of September, 

October and November. And the rest months pertain to the winter. The NCP is part of the basins of the 

Haihe River, the Yellow River and the Luanhe River. It comprises nearly 60 rivers in different sizes, 

including the Tuhai River, the Majia River, and the coastal rivers in Hebei Province etc. 

The NCP is substantially located in the Haihe River Basin. According to the Historical Data of 

Floods and Droughts at the Haihe River Basin, floods and droughts have respectively occurred 194 and  

192 times at the Haihe River Basin from 1469 to 1948. During the period of 1949–1990, both floods and 

droughts have occurred 18 times [22]. The Haihe River Basin is also subjected to continuous occurrence 

of droughts and floods for years [23]. From 1470 to 1911, droughts which lasted 2 years have occurred  

11 times; three consecutive years of drought has occurred 8 times. Over three consecutive years of 

drought has occurred 7 times, in which the longest one lasted 7 years. Moreover, there were two dry 

years at the Haihe River Basin from 1956 to 1998. Specific to flood, it occurred continually at the Haihe 
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River Basin during the period of 1652–1654 and 1822–1823. Besides, the wet years lasted 12 years 

during the period from 1883 to 1894, including three devastating floods. 

2.2. Data Sources 

The daily precipitation observations (1960–2012) are collected from 19 meteorological stations 

(Figure 1) on the NCP. These data are derived from the National Meteorological Information Center 

(NMIC) [24], and has been subjected to stringent quality inspection by NMIC [25,26]. Besides, this 

paper makes the following provisions on data missing: Where the data for 5 days within one month is 

missing, the data for that month should be deemed missing. If the period of data missing reaches 1 month 

within a year, the data for that year should be considered missing. 

Figure 1. North China Plain, meteorological stations and rivers. 

 

3. Methodology 

3.1. Theory of L-Moments 

L-moments are proposed by Hosking (1990) [27] based on probability weighted moments (PWM) 

and represent the PWM linear combination as [28]. The most important feature of L-moments is that it is 
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less sensitive than ordinary moments to the data sequence extremes and can obtain more robust 

parameter estimates. L-moments are defined as follows [29]: 

Assume F(x) is the distribution function of random variable X, let X1n ≤ X2n ≤ … ≤ Xnn be the random 

sampling order statistics of X which sample size is n. The r-order linear moment of variable X should be: 
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L-moments ratio is defined as follows: 

122 llt = ; 
233 llt = ; 

244 llt =  (4)

where, t2, t3, t4 are the L-variation coefficient (L-Cv), L-skewness coefficient (L-γ) and  

L-kurtosis coefficient (L-k), respectively. 

3.2. Identification and Test of Homogenous Regions Based on the L-Moments 

3.2.1. Identification of Homogenous Regions 

The homogeneous region means the monitoring data of meteorological stations within the region 

could be expressed with the same probability distribution [26,29]. The identification could be performed 

in many ways, principally including geographical proximity principle, subjective division method, objective 

division method, and clustering methodology [30]. Clustering method is a multivariate statistical 

analysis-based standard classification method that is frequently used for hydrological partition [26]. 

Clustering methods mainly include partitioning methods, hierarchical methods, density-based methods, 

grid-based methods, model-based methods, etc. This paper employs K-means under partitioning 

method. However, it should be noted that, since the result of cluster analysis is not necessarily the final 

result, it’s necessary to make reasonable adjustments. For example, moving a meteorological station 

from one sub-region to another, subdividing a sub-region, merging a number of sub-regions, removing 

some meteorological stations, or adding new meteorological stations and performing repartition [30]. 
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3.2.2. Screening Data Using the Discordancy Measure Test 

Discordancy test is performed to check the existence of singular meteorological stations in each  

sub-region in the following principle: 

Assume there are N meteorological stations within a certain area, and it’s possible to work out the 

linear moment coefficient of sample ( ( ), ( ), ( )) for each meteorological station, i = 1, 2, …, N; let: 
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The discordancy measure D could be expressed as [29]: 
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3
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where, ( ) means the L-Cv of sample linear moment; ( ) represents the L-γ of sample linear moment; ( ) stands for the L-k of sample linear moment. When discordancy measure Di is not greater than 

critical value [26] (Table 1), no singularity is considered existing within the area. 

Table 1. Critical values of discordancy measure coefficient D. 

Number of Sites 5 6 7 8 9 10 11 12 13 14 15 

Critical value 1.333 1.648 1.917 2.140 2.329 2.491 2.632 2.757 2.869 2.971 3.000

3.2.3. Regional Heterogeneity Test 

Regional heterogeneity test is performed to estimate the rationality of all meteorological stations 

being regarded as an area through the calculation of sub-regional homogeneity.Regional heterogeneity 

test could be performed in many ways. This paper employs H value test method [29]. 

The Monte Carlo simulation is performed to randomly generating sequences of Nsim (Nsim = 1000 in 

this study) equivalent region data via numerical simulation of kappa distribution with four parameters. 

And then the variability of the L-moments ratios, which is calculated from the simulated sequences is 

compared with those of the observations [31]. 

The heterogeneity measures Hj (j = 1, 2, 3) are calculated as follows: 
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where, H1 is the standard deviation, weighted according to record length, of the at-site L-Cvs; H2 

indicates the average distance from the site coordinates to the regional average on a plot of L-Cv versus 
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L-γ; H3 means the average distance from the site coordinates to the regional average on a plot of L-γ 

versus L-k [32]. Vj (j = 1, 2, 3) are the dispersion degree of sequences composed of variation 

coefficients of sample linear moments; μvj and σvj are respectively mean value and standard deviation of 

the Nsim values of Vj; N is the total number of meteorological stations in the region of interest; ni is the 

record length at site i; ( ), ( ), ( ) are, respectively, the sample L-Cv, L-γ and L-k at site i; , ,  

are the weighted regional average L-Cv, L-γ and L-k, respectively. 

If H < 1, the sub-region could be considered homogeneous; if 1 ≤ H ≤ 2, such sub-region may be 

heterogeneous; if H > 2, such sub-region must be heterogeneous [29]. 

3.2.4. Selection of Best-Fit Distribution Function 

The method of the best-fit distribution selection described by Hosking and Wallis [29] is based on a 

comparison between sample L-kurtosis and population L-kurtosis for different distributions. The test 

method is termed ZDIST and given as follows: 

( ) 4444 σBttZ RDISTDIST +−=  (9)

( )( )Rm

s

tt
N

B 444

1 −= ; ( ) ( )( )
21

1

2
4

2

44
1

4 1




















−−−= 

=

−
sN

j
s

Rm
s BNttNσ  (10)

where, DIST means a specified distribution function;  is the regional average L-kurtosis value 

which is calculated from simulation for the distribution function; B4 and σ4 are the bias and standard 

deviation of the regional average L-kurtosis ( )  of Monte Carlo simulation samples by Kappa 

distribution [26]; Ns stands for the total number of samples in the region generated. If |ZDIST| ≤ 1.64, the 

distribution DIST designated could be accepted as uniform distribution of the region at 90% confidence 

level, and smaller |ZDIST| value indicates better fit. 

3.3. Precipitation Anomaly Percentage = − ̅̅ × 100% (11)

where, Pa means the precipitation anomaly percentage; p indicates the precipitation within a certain 

period, mm; ̅ means the long-time average annual value of the precipitation of such period, mm. 

3.4. Bivariate Copula Joint Distribution Function 

Copula function refers to the multivariate joint distribution function evenly distributed within [0, 1], 

and can combine with marginal distribution of a number of random variables and work out their joint 

distribution [33]. Common copula joint distribution functions exhibit 3 types of structures, i.e., elliptic 

type, quadratic type, and Archimedean type. Bivariate Gumbel copula function, Clayton copula function 

and Frank Copula function under Archimedean copula function are more commonly used (Table 2). As 

a parameter of copula function, θ is calculated by Copula function non-parametric estimation method as 

proposed by Genest and Rivest [34] (Table 2); τ is the Kendall rank correlation coefficient of random 

sample, and could be calculated as follows [35]: 
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where, sgn(·) is a sign function; xi and yi are random samples (i = 1, 2, …, n); n represents the random 

number of samples. 

Table 2. Common types of Copula function and parameter estimation formula. 

Copula Function C(u,v) Parameter Space τ and θ 
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3.5. Goodness of Fit Test 

3.5.1. Kolmogorov-Smirnov (K-S) Test 

K-S test method [36] is used to verify the distance DI between empirical distribution function Fn(x) 

and hypothetic overall distribution function F0(x). DI is calculated as follows: 
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 (13)

3.5.2. Graphic Test 

This method gives intuitive description of the goodness of fit through graphics. Theoretical joint 

probability and empirical joint probability are indicated in a scatter diagram. If the pitches are evenly 

distributed in the vicinity of 45° line, it means the joint probability distribution model built is reasonable. 

Bivariate empirical joint probability distribution is calculated as follows [34]: 
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where, Femp means empirical joint probability distribution; ng,k represents the number of joint 

observations that satisfy X ≤ xi1, X ≤ xi2; n stands for sequences length. 
  



Atmosphere 2014, 5 855 

 

 

4. Results and Discussion 

4.1. Seasonal Distribution of Regional Precipitation 

This paper makes statistics of the mean annual precipitation and its seasonal distribution (Table 3) 

observed at each meteorological station on the NCP from 1960 to 2012. According to the results, 

summer contributed the major part of precipitation on the NCP, which accounted for 56.45%–72.02% of 

mean annual precipitation. The precipitation in autumn and spring came the second. Winter precipitation 

was the smallest (less than 4%). Meanwhile, it is hardly that the drought or flood events happen in winter 

according to the statistical results of historical drought and flood events in the Haihe River Basin [22]. 

Therefore, this paper principally addresses the characteristics of DFCEs in spring, summer and autumn. 

Table 3. Seasonal distribution of mean annual precipitation at meteorological stations in NCP. 

Sub-Region 
Meteorological 

Stations 

Mean Annual 

Precipitation/mm 

Seasonal Distribution of Precipitation/% 

Spring Summer Autumn Winter

I 

53798 516 13.72 64.61 18.81 2.86 

53898 561 14.64 62.56 19.43 3.36 

53986 567 15.88 60.33 20.71 3.09 

54727 637 15.14 63.69 17.93 3.24 

57091 630 17.92 56.45 21.35 4.28 

54705 479 14.07 63.95 18.79 3.19 

54511 556 11.74 71.72 14.68 1.86 

II 

54534 611 11.87 71.60 14.53 2.00 

54602 518 11.76 70.24 15.92 2.08 

54606 521 12.14 69.01 16.40 2.45 

54449 644 12.82 70.74 14.74 1.70 

54518 514 10.58 72.08 15.46 1.88 

54525 586 10.40 73.07 14.79 1.74 

54527 540 11.87 71.20 14.92 2.01 

54535 611 11.79 72.02 14.13 2.06 

54539 610 12.93 70.67 14.27 2.13 

54623 582 11.40 71.51 14.95 2.14 

54624 591 11.70 71.73 14.34 2.23 

54725 572 13.34 67.70 15.94 3.02 

4.2. Results of Homogenous Regional Identification Based on L-moments 

Four indicators of 19 meteorological stations on the NCP, including longitude, latitude, elevation and 

mean annual precipitation, are selected to identify the potential homogenous sub-region through  

K-Means cluster analysis. The regionalization results are shown in Figure 2. Discordancy test is 

performed respectively on the chosen seasonal precipitation (seasonal precipitation refers to the sum of 

precipitation of the three months in each season) of spring, summer and autumn at meteorological 

stations of each sub-region. This paper works out regional heterogeneity measure using Equations (7) 

and (8) through 1000 cycles of Monte Carlo simulation to test the regional heterogeneity. Finally,  

best-fit distribution functions are screened, including Generalized Extreme-Value (GEV), Generalized 
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Logistic (GLO), Generalized Normal (GNO), Generalized Pareto (GPA), and Pearson III (P-III) [29,37]. 

Results of regional discordancy test, heterogeneity test and best-fit distribution function screening are 

shown in Tables 4–6, respectively. 

As shown in Figure 2, the NCP is divided into two sub-regions. Sub-region I and sub-region II have 6 

and 13 meteorological stations, respectively. The critical values of discordancy measure D are 

respectively 1.648 and 2.869 in sub-region I and II. As can be seen from Table 4, the discordancy 

measure D of meteorological stations in both sub-region I and sub-region II is smaller than respective 

critical values, which indicates that there is no singular station. 

Figure 2. Identification of homogenous sub-regions in the NCP. 
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Table 4. Results of region-specific seasonal precipitation discordancy measure D. 

Sub-Region I Sub-Region II 

Meteorological 

Stations 

Discordancy Measure D Meteorological

Stations 

Discordancy Measure D 

Spring Summer Autumn Spring Summer Autumn

53798 1.08 1.47 0.36 
54511 0.62 1.12 1.15 

54534 2.03 1.32 0.15 

53898 1.64 0.1 0.95 
54602 2.07 2.69 1.40 

54606 0.8 0.16 0.56 

53986 0.81 0.22 0.95 
54449 0.49 0.66 0.43 

54518 0.09 1.46 2.11 

54727 1.32 1.64 1.13 
54525 0.94 0.57 1.50 

54527 0.29 0.41 0.75 

57091 0.48 1.61 1.38 
54535 0.67 0.09 1.05 

54539 0.34 0.41 1.72 

54705 0.65 0.95 1.25 

54623 0.45 0.42 1.61 

54624 1.92 2.02 0.20 

54725 2.30 1.68 0.36 

Table 5. Results of regional heterogeneity measure H. 

Sub-Region Seasons 
Heterogeneity Measure 

H1 H2 H3 

I 

Spring 0.86 −0.88 −1.69 

Summer 0.41 0.23 0.44 

Autumn −0.23 −1.03 −0.88 

II 

Spring −1.01 −2.10 −2.54 

Summer −0.25 0.24 0.10 

Autumn −1.85 −2.24 −1.54 

Table 6. Calculation of statistics ZDIST for distribution fitting function of seasonal 

precipitation within sub-region. 

Sub-Region Distribution Spring Summer Autumn 

I 

GLO 2.11 1.00 4.15 

GEV 0.59 −1.50 2.38 

GNO 0.14 −1.25 1.87 

P-III −0.75 −1.45 0.87 

GPA −3.01 −6.48 −1.81 

II 

GLO 4.13 5.84 2.15 

GEV 1.76 2.07 −0.48 

GNO 1.11 2.16 −0.79 

P-III −0.20 1.59 −1.64 

GPA −3.81 −5.75 −6.30 

Best fit 
Sub-region I GNO GLO P-III 

Sub-region II P-III P-III GEV 
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According to the result of regional heterogeneity test (Table 5), the values of heterogeneity measure 

H for sub-region I and sub-region II in spring, summer and autumn are all smaller than 1, which meets 

the consistency test requirement. Therefore, it is reasonable that the meteorological stations of  

sub-region I and sub-region II are regarded as being in one region, respectively. 

Figure 3. The comparison between empirical frequency and the best-fit distributions’ 

theoretical frequency of seasonal precipitation at meteorological stations 53798 and 54511 

(station 53798: (a) for spring; (b) for summer and (c) for autumn; station 54511:  

(d) for spring; (e) for summer; (f) for autumn.). 
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The statistics values ZDIST are calculated for distribution GLO, GEV, GNO, P-III and GPA in spring, 

summer and autumn, respectively. The results (Table 6) are shown that the best distribution fitting 

functions for spring, summer and autumn in sub-region I are GNO, GLO and P-III distributions, 

respectively. In sub-region II, the best distribution fitting functions for spring, summer and autumn are 

respectively P-III, P-III and GEV. 

Besides, this paper compares the empirical frequency with the best-fit distributions’ theoretical 

frequency of seasonal precipitation in spring, summer and autumn at each meteorological station 

through graphic test. Figure 3 further demonstrates that the selected best-fit distributions are reasonable. 

Figure 4. The comparison between empirical frequency and the best-fit distributions’ 

theoretical frequency of precipitation anomaly percentage at meteorological stations 53798 

and 54511 (station 53798: (a) for spring; (b) for summer and (c) for autumn; station 54511: 

(d) for spring; (e) for summer and (f) for autumn). 
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Table 7. Parameter estimates and K-S test values of the best-fit distribution for precipitation anomaly percentage in spring, summer and autumn 

in NCP. 

Seasons Spring Summer Autumn 

Sub-r

egion 

I 

Best-fit distribution 

Parameter/Statistic 

GNO GLO P-III 

ξ α k K-S ξ α k K-S ξ β α K-S 

Meteorological 

stations 

53798 −18.0588 58.4344 −0.5694 0.0688 −9.1975 21.9138 −0.2385 0.0550 −139.5923 0.0373 5.2070 0.0693 

53898 −9.2467 48.2550 −0.3702 0.0565 −3.8273 21.4678 −0.1070 0.0563 −182.1496 0.0471 8.5867 0.1006 

53986 −11.1264 47.9706 −0.4416 0.0759 −3.5532 21.7771 −0.0981 0.0645 −145.0157 0.0408 5.9120 0.0830 

54727 −9.1277 51.0613 −0.3469 0.0712 −0.5261 18.1884 −0.0176 0.0653 −100.7213 0.0247 2.4881 0.0898 

57091 −12.3213 50.2480 −0.4644 0.0337 −0.9850 21.1229 −0.0283 0.0715 −146.8917 0.0535 7.8616 0.0890 

54705 −14.4809 57.8962 −0.4728 0.0697 −1.6266 20.8702 −0.0472 0.0797 −103.6220 0.0219 2.2695 0.0649 

Sub-r

egion 

II 

Best-fit distribution 

Parameter/ Statistic 

P-III P-III GEV 

ξ β α K-S ξ β α K-S ξ α k K-S 

Meteorological 

stations 

54511 −88.8633 0.0227 2.0169 0.0507 −373.1322 0.2892 107.9153 0.0743 −23.3955 48.5116 0.1051 0.0614 

54534 −104.9823 0.0384 4.0270 0.0559 −207.6734 0.2079 43.1766 0.0677 −24.5054 41.0608 −0.0195 0.0506 

54602 −88.1920 0.0179 1.5810 0.0603 −159.0345 0.0771 12.2663 0.0863 −27.3803 42.1948 −0.0679 0.0584 

54606 −123.6783 0.0317 3.9160 0.0551 −177.7901 0.1282 22.7881 0.0561 −23.6675 44.2714 0.0448 0.0644 

54449 −127.4946 0.0452 5.7573 0.0413 −75.7425 0.0524 3.9695 0.0600 −23.7160 38.0654 −0.0444 0.0557 

54518 −126.5779 0.0397 5.0303 0.0473 −87.5464 0.0524 4.5891 0.0600 −28.1047 47.1006 −0.0194 0.0419 

54525 −120.2312 0.0368 4.4193 0.0403 −220.0703 0.1549 34.0958 0.0712 −22.4098 47.3171 0.1156 0.0688 

54527 −123.3882 0.0409 5.0426 0.0598 −153.9328 0.1290 19.8613 0.0660 −22.1711 41.8291 0.0499 0.0746 

54535 −89.4351 0.0222 1.9896 0.0638 −142.8562 0.1001 14.3053 0.0729 −23.4979 35.9935 −0.0714 0.0661 

54539 −104.3600 0.0304 3.1702 0.0797 −150.9863 0.1161 17.5369 0.0731 −23.2573 40.0777 −0.0031 0.0918 

54623 −125.3790 0.0322 4.0405 0.0458 −94.3140 0.0638 6.0195 0.0824 −24.5883 39.9580 −0.0372 0.0689 

54624 −128.0802 0.0353 4.5151 0.0886 −88.6065 0.0532 4.7131 0.0616 −24.0894 39.3210 −0.0347 0.0506 

54725 −144.6437 0.0514 7.4316 0.0755 −82.7962 0.0570 4.7227 0.0595 −22.4426 40.9570 0.0304 0.0703 
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4.3. Parameter Estimation and Goodness of Fit Test of the Best-Fit Distribution 

According to Equation (11), the precipitation anomaly percentage and precipitation of a  

certain period are subject to the same distribution, so the fitting is possible with the same distribution 

fitting function. Therefore, the precipitation anomaly percentages in spring, summer and autumn  

are fitted with GNO, GLO and P-III distributions in sub-region I, respectively. In sub-region II,  

the precipitation anomaly percentages in spring, summer and autumn are, respectively, fitted with P-III, 

P-III and GEV. Moreover, the parameters of each distribution are estimated by L-moments method. 

Goodness of fit test is performed on each distribution by K-S method with statistically significance  

(α = 0.05, n = 53, D < 1.87). The results of parameter estimation and K-S test are shown in Table 7. 

Furthermore, this paper uses the graphic test again to compare the empirical frequency with the best-fit 

distributions’ theoretical frequency of precipitation anomaly percentage in spring, summer and autumn at 

each meteorological station. Figure 4 further demonstrates that the selected best-fit distributions 

are reasonable. 

4.4. Bivariate Copula Distribution Parameter Estimation and Fitting Test 

For the precipitation anomaly percentage sequence in spring, summer and autumn at meteorological 

stations in each sub-region, this paper works out Kendall rank correlation coefficient τ with  

Equation (12), and estimates the parameter θ in bivariate Gumbel copula, Clayton copula, and Frank 

copula distribution functions based on the relation between θ and τ as shown in Table 2. By comparing 

the calculated value and its value range of parameter θ, Frank copula is suitable for using by the positive 

and negative correlation. Hence, this paper seeks the probability of seasonal DFCEs only through Frank 

copula distribution function. Refer to Table 8 for the Kendall rank correlation coefficient τ and the 

parameter θ of spring-summer and summer-autumn precipitation anomaly percentage sequence, as well 

as the results of K-S test. As shown in Table 8, K-S test has passed α=0.05 significance test (n = 53,  

D < 1.87). Furthermore, this paper compares the spring-summer and summer-autumn empirical 

frequency at each meteorological station with the theoretical frequency of Frank copula distribution 

through graphic test. Figure 5 further demonstrates that the selected Frank copula distribution function  

is reasonable. 

4.5. Analysis of the Occurrence Frequency of DFCEs 

According to the two inquations Pa < −25% and Pa > 25%, the precipitations of spring, summer and 

autumn at each station are divided into “drought”, “normal” and “flood” states based on  

single-station drought & flood indicators division criteria (Table 9) [38]. As shown in Table 9,  

Pa < −25% means “drought”; −25% ≤ Pa < 25% stands for “normal”; Pa ≥ 25% represents “flood”. 

DFCEs between seasons could be divided into the following 4 categories (X and Y respectively refer  

to the spring-summer or summer-autumn precipitation anomaly percentages at a certain  

meteorological station). 
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Figure 5. The comparison between empirical frequency and the theoretical frequency of 

Frank copula distribution at meteorological station 53798 and 54511 (station 53798: (a) for 

spring-summer; (b) for summer-autumn; Station 54511: (c) for spring-summer; (d) for 

summer-autumn). 

 

Table 8. Computation of Kendall rank correlation coefficient τ, parameter θ and K-S test in 

spring-summer and summer-autumn. 

Sub-Regions 
Meteorological 

Stations 

Spring-Summer Summer-Autumn 

τ θ K-S τ θ K-S 

I 

53798 −0.1176 −1.0701 0.1010 0.0261 0.2354 0.0633 
53898 −0.0225 −0.2026 0.0893 −0.0530 −0.4780 0.1352 
53986 0.0094 0.0849 0.1025 −0.0290 −0.2616 0.0691 
54727 0.0261 0.2353 0.0728 0.0987 0.8953 0.0750 
57091 −0.0044 −0.0392 0.0835 0.0225 0.2026 0.1053 
54705 −0.1001 −0.9087 0.0604 0.0290 0.2616 0.0802 
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Table 8. Cont. 

Sub-Regions 
Meteorological 

Stations 

Spring-Summer Summer-Autumn 

τ θ K-S τ θ K-S 

II 

54511 0.0624 0.5635 0.0901 −0.0131 −0.1177 0.0617 
54534 0.1713 1.5792 0.0814 −0.0377 −0.3400 0.0886 
54602 0.1046 0.9496 0.0842 0.1089 0.9892 0.0667 
54606 0.0203 0.1829 0.0606 −0.0690 −0.6231 0.0611 
54449 0.1880 1.7425 0.0697 −0.0566 −0.5108 0.1033 
54518 0.0639 0.5771 0.0563 0.2890 2.7943 0.0607 
54525 0.0501 0.4521 0.0643 −0.0298 −0.2681 0.0883 
54527 0.0124 0.1112 0.0941 −0.0145 −0.1306 0.0969 
54535 0.1147 1.0431 0.0734 0.1220 1.1115 0.0758 
54539 0.0145 0.1306 0.0554 0.2395 2.2619 0.1014 
54623 0.1611 1.4813 0.0818 0.0726 0.6559 0.0669 
54624 −0.0065 −0.0588 0.0758 0.0363 0.3269 0.0903 
54725 0.0922 0.8355 0.0643 0.0276 0.2483 0.0842 

Table 9. Drought & flood grade standard of precipitation anomaly percentage (M). 

Grade Anomaly Percentage Type of Drought & Flood 

1 M ≥ 75% Serious flood 

2 50% ≤ M < 75% Heavy flood 

3 25% ≤ M < 50% Relatively heavy flood 

4 −25% ≤ M < 25% Normal 

5 −50% ≤ M < −25% Relatively heavy drought 

6 −75% ≤ M < −50% Heavy drought 

7 M < −75% Serious drought 

Continuous drought in spring-summer (SSD)/continuous drought in summer-autumn (SAD): 

Pdro-dro=P(X < −25%, Y < −25%); 

Spring drought & summer flood (SDSF)/ summer flood & autumn drought (SDAF): 

Pdro-flo=P(X < −25%, Y ≥ 25%); 

Spring flood & summer drought (SFSD)/ summer flood & autumn drought (SFAD): 

Pflo-dro=P(X ≥ −25%, Y < 25%); 

Continuous flood in spring-summer (SSF)/ continuous flood in summer-autumn (SAF): 

Pflo-flo=P(X ≥ 25%, Y ≥ 25%). 

The frequency of above-noted 4 DFCEs is figured out based on the anomaly percentage marginal 

distribution of seasonal precipitation and the Frank copula joint distribution between seasons (see  

Table 10). As shown in Table 10: 
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Table 10. Computed result of joint distribution of DFCEs on the NCP. 

Sub-Region Meteorological Stations 
Seasonal Drought & Flood Joint Distribution Probability Probability of 

Spring-Summer
DFCEs 

Probability of 
Summer-Autumn 

DFCEs 
SSD SDSF SFSD SSF SAD SDAF SFAD SAF 

I 

53798 0.1128 0.0732 0.0624 0.0401 0.1340 0.0944 0.0907 0.0640 0.2885 0.3831 
53898 0.0904 0.0767 0.0651 0.0553 0.0970 0.0659 0.0820 0.0557 0.2875 0.3006 
53986 0.1011 0.0871 0.0691 0.0596 0.1016 0.0682 0.0872 0.0585 0.3169 0.3155 
54727 0.0802 0.0786 0.0597 0.0586 0.1039 0.0719 0.1020 0.0706 0.2771 0.3484 
57091 0.0935 0.0898 0.0620 0.0595 0.0905 0.0705 0.0869 0.0677 0.3048 0.3156 
54705 0.0823 0.0765 0.0508 0.0472 0.1173 0.0700 0.1097 0.0655 0.2568 0.3625 

II 

54511 0.1727 0.1269 0.1190 0.0877 0.1313 0.1084 0.0946 0.0780 0.5063 0.4123 
54534 0.1174 0.1115 0.0859 0.0817 0.0746 0.0530 0.0704 0.0500 0.3965 0.2480 
54602 0.1832 0.1419 0.1128 0.0880 0.1578 0.1103 0.1227 0.0862 0.5259 0.4770 
54606 0.1208 0.1055 0.0792 0.0691 0.0833 0.0633 0.0720 0.0547 0.3746 0.2733 
54449 0.1451 0.1217 0.1106 0.0932 0.0868 0.0599 0.0708 0.0487 0.4706 0.2662 
54518 0.1406 0.1020 0.1015 0.0738 0.1946 0.1495 0.1461 0.1141 0.4179 0.6043 
54525 0.1157 0.1044 0.0857 0.0774 0.0884 0.0737 0.0793 0.0661 0.3832 0.3075 
54527 0.0969 0.0885 0.0702 0.0641 0.0820 0.0640 0.0748 0.0584 0.3197 0.2792 
54535 0.1437 0.1247 0.0968 0.0842 0.1232 0.0877 0.1071 0.0765 0.4494 0.3945 
54539 0.1096 0.0977 0.0731 0.0652 0.1406 0.1101 0.1270 0.0998 0.3456 0.4775 
54623 0.1584 0.1267 0.1135 0.0914 0.1216 0.0878 0.0963 0.0698 0.4900 0.3755 
54624 0.1177 0.0905 0.0880 0.0677 0.1176 0.0844 0.0912 0.0656 0.3639 0.3588 
54725 0.1316 0.1014 0.0978 0.0756 0.1072 0.0828 0.0817 0.0632 0.4064 0.3349 
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Figure 6. Spatial distribution of the probability of seasonal DFCEs on the NCP. (a,b) for 

continuous drought in spring-summer and spring drought & summer flood, respectively;  

(c,d) for continuous drought in summer-autumn and summer flood & autumn  

drought, respectively). 
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On the time scale, the analysis results are as follows:  

(1) In sub-region I, SSD dominate in spring-summer DFCEs, and SDSF come second. The average 

probability values are 0.09 and 0.08, respectively. SAD prevail in summer-autumn DFCEs, and SFAD 

come next, which average probability values are respectively 0.11 and 0.09. While SDAF preponderate 

at meteorological station 53798; (2) SSD still dominate in spring-summer DFCEs in sub-region II, 

which average probability value is 0.13; SDSF come next with the average probability value 0.11. In  

summer-autumn DFCEs, SSD prevail over the other events with the average probability value 0.12; 

SDSF and SFSD come next, both of which average probability values are the same (0.09); (3) In  

sub-region I, the probability of spring-summer DFCEs is less than the summer-autumn DFCEs’, that 

means summer-autumn DFCEs prevail in this region. The probability of spring-summer DFCEs is 

greater than the summer-autumn DFCEs’ at most meteorological stations in sub-region II, which 

indicates spring-summer DFCEs dominate in this region. 

On the spatial scale, the analysis results are as follows:  

This paper uses Inverse Distance Weighting to analyze the occurrence frequency of DFCEs on the 

spatial scale (Figure 6). As shown in Figure 6a,b, SSD and SDSF most probably occur in the northwest 

and northeast as well as near the coastal areas of sub-region II. According to Figure 6c,d, the most 

probable events of SAD and SFAD occur in central area of northwestern part of sub-region II. Besides, 

the probability of occurrence of SFAD is also great in the northeast and near the coastal areas. 

5. Conclusions 

This paper has probed into the probability characteristics of DFCEs between seasons on the NCP by 

L-moments theory and bivariate copula distribution based on the daily precipitation data gathered in the 

period from 1960 to 2012 at 19 meteorological stations on the NCP. The principal research conclusions 

are as follows: 

(1) According to the mean annual precipitation on the NCP, summer contributed the major part of 

precipitation and accounted for 56.45%–72.02%. The precipitation in autumn and spring came the 

second. Winter exhibited the lowest precipitation, which accounted for no more than 4%. 

(2) The NCP is divided into two sub-regions. The best-fit distribution for precipitation anomaly 

percentages in the spring, summer and autumn at each meteorological station are GNO, GLO and P-III, 

respectively in sub-region I, and are P-III, P-III and GEV in sub-region II. 

(3) Comparing to the Gumbel copula and Clayton copula, Frank copula is more suitable for the  

spring-summer and summer-autumn precipitation anomaly percentage sequences on the NCP. The 

fitting results have passed the K-S test and graphic test. 

(4) On the time scale, SSD and SAD respectively dominate in spring-summer and summer-autumn 

DFCEs on the NCP. The average probability value (0.11) of SAD is greater in sub-region I, while the 

average probability value (0.12) of SAD is less than SAD’s. Furthermore, summer-autumn DFCEs 

prevail in sub-region I with the average probability value 0.34, while spring-summer DFCEs dominate 

in sub-region II, which average probability value is 0.42. 

(5) On the spatial scale, SSD and SDSF most probably occur in the northwest and northeast as well as 

near the coastal areas of sub-region II, while SAD and SFAD most probably occur in central area of 

northwestern part of sub-region II. 



Atmosphere 2014, 5 867 

 

 

This paper probes into the probability characteristics of DFCEs on the NCP from the perspective of 

meteorological drought & flood. It’s possible to use this method in subsequent researches to make 

further analysis of DFCEs from hydrological, agricultural and social perspectives, etc., so as to provide 

convincing reference frame for the comprehensive response to flood and drought disasters and water 

resource management. 
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