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Abstract: CFC-113a (CF3CCl3), CFC-112 (CFCl2CFCl2) and HCFC-133a (CF3CH2Cl)  

are three newly detected molecules in the atmosphere that are almost certainly emitted  

as a result of human activity. It is important to characterise the possible contribution of 

these gases to radiative forcing of climate change and also to provide information on the 

CO2-equivalence of their emissions. We report new laboratory measurements of absorption 

cross-sections of these three compounds at a resolution of 0.01 cm−1 for two temperatures 

250 K and 295 K in the spectral range of 600–1730 cm−1. These spectra are then used to 

calculate the radiative efficiencies and global warming potentials (GWP). The radiative 

efficiencies are found to be between 0.15 and 0.3 W·m−2·ppbv−1. The GWP for a 100 year 

time horizon, relative to carbon dioxide, ranges from 340 for the relatively short-lived 

HCFC-133a to 3840 for the longer-lived CFC-112. At current (2012) concentrations, these 

gases make a trivial contribution to total radiative forcing; however, the concentrations of 

CFC-113a and HCFC-133a are continuing to increase. The 2012 CO2-equivalent emissions,  
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using the GWP (100), are estimated to be about 4% of the current global  

CO2-equivalent emissions of HFC-134a. 

Keywords: chlorofluorocarbons; hydrochlorofluorocarbons; absorption cross-section; 

absorption intensity; radiative efficiency; global warming potential (GWP) 

 

1. Introduction 

The emission of halogenated compounds from human activity can cause stratospheric ozone 

depletion and climate change. Recently, the first atmospheric detection of a further four such 

halogenated compounds has been reported [1]. The four compounds are CFC-112 (CFCl2CFCl2) (with 

concentrations measured at Cape Grim, Tasmania of 0.44 ppt in late-2012), CFC-112a (CF2ClCCl3) 

(0.07 ppt), CFC-113a (CF3CCl3) (0.48 ppt) and HCFC-133a (CF3CH2Cl) (0.37 ppt). CFC-113a 

concentrations increased between 1978 and 2012. HCFC-133a in general increased, with an 

interruption in the increase between 2008 and 2010. CFC-112 concentrations peaked in 1997, and have 

been falling slowly since then; CFC-112a concentrations (measured since 1999) are believed to have 

behaved in a similar way. These compounds continue to be emitted as a result of human activity 

(possibly contravening the United Nations Montreal Protocol on Substances that Deplete the Ozone 

Layer) [1]. The emission sources are uncertain. 

On a molecule-per-molecule basis, such halocarbons are potent greenhouse gases (e.g., [2]). 

Although at existing concentrations these particular CFCs and HCFCs contribute insignificantly to 

radiative forcing of climate change, it is necessary to quantify this contribution, particularly for those 

whose concentrations are increasing, and may become significant in the future. It is also necessary to 

provide values for metrics such as the Global Warming Potential (GWP) which is used within  

the Kyoto Protocol to the United Nations Framework Convention on Climate Change for placing 

emissions of different greenhouse gases on a CO2-equivalent scale. 

This work presents, for the first time, quantitative spectrally-resolved infrared spectra for these new 

molecules, and the radiative efficiencies and GWPs that result from using these spectra in a radiative 

transfer model. Although some infrared measurements of these molecules have been published [3–6], 

these were not reported in the detailed spectrally-resolved form which is required for their incorporation 

into radiative transfer models. 

This paper reports new laboratory measurements of the infrared absorption cross-sections of three 

of these four compounds (Sections 2–4), and presents for the first time calculations of radiative 

efficiencies (Section 5) and GWPs (Section 6) using these cross-sections together with atmospheric 

lifetimes recently reported by Laube et al. [1]. 

2. Experimental Setup 

Spectra were measured at the Rutherford Appleton Laboratory Molecular Spectroscopy Facility 

using a Bruker IFS 125 HR Fourier transform spectrometer. Measurements were performed over the 

wavenumber range of 600–1730 cm−1. The gas was contained in a 5 cm path length stainless-steel 
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coolable cell with potassium bromide windows. Four platinum resistance thermometers were attached 

to the outside of the cell and a National Instruments data logger (NI4351) recorded the temperature.  

A mercury-cadmium-telluride (MCT) detector measured the spectra of sample gas. The spectral 

resolution of measurements was 0.01 cm−1 at some pressures, and 0.015 cm−1 at others. Measurements 

were performed with a pure sample at various gas pressures at 250 K and 295 K. At least two cycles of 

freeze-pump-thaw were performed to remove any atmospheric contamination from the liquid samples 

of CFC-112, CFC-112a and CFC-113a; the gas sample of HCFC-133a was used without further 

purification. Measurements were also made at 295 K in the presence of a broadening gas (artificial 

air—Air Products zero air, 79.1% nitrogen, and 20.9% oxygen) at different pressures. For these 

measurements, the required amount of pure gas was admitted to a mixing bulb and artificial air was 

added up to 1000 Torr. The bulb was left overnight to mix well; the next day the mixture was 

introduced into the cell for measurements. Pressure was measured by one of three MKS Baratron type 

690 (1000, 10 or 1 Torr full scale) with readings logged once a second. The measurements presented 

here focus on the highest pressure pure gas cases where measurements were made at 0.01 cm−1, as 

these were the most detailed and the least contaminated by noise (particularly at lower wavenumbers 

where the MCT detector response decreases). The lower pressure measurements were mostly used to 

ensure that the peak absorption varied linearly with absorber amount, to ensure that saturation of signal 

was not a problem for these higher pressure cases. The maximum value of the optical depth (at  

1227 cm−1) of CFC-113a for different sample gas pressure is examined (Figure 1) which confirms a 

linear increase with zero intercept and demonstrates there is no saturation during the experiments. 

Figure 1. Maximum value of optical depth of CFC-113a versus pressure at 1227 cm−1. 

 

3. Data Analysis 

The absorption spectrum was measured in two steps: the background spectrum was obtained using a 

cell which was evacuated to less than 10−3 Torr and then the cell was filled with the sample gas up to 

the specified pressure and the second spectrum was obtained. This method has been widely used in the 

past (e.g., [7,8]). From the measured value of I(ν) (background intensity with the evacuated cell)  

and I0(ν) (intensity with sample), where ν is wavenumber, and using the Beer-Lambert-Bouguer Law 

I(ν) = I0(ν)exp[−τ(ν)], the optical depth (absorbance) τ(ν) can be derived using 
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The absorption cross-section can then be derived using  

( ) ( )τ ν σ ν nL=  (2)

where L is the path length in (cm), σ(ν) is the absorption cross-section in (cm2·molecule−1) and n is the 

number density of the absorbing molecule in (molecule·cm−3). The value of n is obtained from = (273.13	 × 	 ) (1013.0	 × 	 )⁄ 	where P is the pressure of the absorber in hPa, T is the gas 

temperature in Kelvin and L0 is Loschmidt’s number 2.69 × 1019 molecule·cm−3. The integrated 

absorption cross-section S is derived by integration of the absorption cross-section σ over the whole 

range of wavenumbers ν 
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Measurement uncertainties are estimated for the higher pressure cases which are of most 

importance here: path length (less than ±0.1%), temperature (±0.5%), pressure (±2%), sample purity 

(±1%) and noise in the spectra (±1.5%). A baseline correction was not necessary. The overall  

root-sum-square error is ±2.7%. For lower pressures, the smaller absorption increases the relative 

contribution of the noise significantly; these measurements are less reliable for deriving S. The 

absorption between the main bands was set to zero to exclude contamination of S from noise in  

these regions. 

Absorption cross-sections for each gas are provided in digital form in the supplementary information. 

4. Infrared Absorption Cross-Section 

4.1. CFC-113a 

Spectra for pure CFC-113a were obtained at 295 K for pressures from 0.267 to 4 Torr. Figure 2a 

presents the spectrum at 2.7 Torr taken at 0.01 cm−1 resolution. It shows five distinct bands located in 

three main regions: 703–725 cm−1, 840–920 cm−1 and 1180–1290 cm−1. These results agree well with 

the findings of Nielsen et al. [3] and Olliff and Fischer [4]. The bands centred at 1227 and 1255 cm−1 

have been associated with C-F stretching, the band at 909 cm−1 with C-C stretching and bands at 859 

and 714 cm−1 with C-Cl stretching [3]. 

For the pure gas sample at 2.7 Torr, S = 1.35 ± 0.036 × 10−16 cm2·molecule−1·cm−1, about 4% larger 

than the result of Olliff and Fischer [4]. Measurements at different pressures do not change the value  

of S by more than 3.5%, and hence the measurements at different pressures are within the  

stated experimental uncertainties. In the three sub-bands S is 4.97 × 10−18 cm2·molecule−1·cm−1  

(703–725 cm−1), 4.30 × 10−17 cm2·molecule−1·cm−1 (840–920 cm−1) and 8.76 × 10−17 cm2·molecule−1·cm−1 

(1180–1290 cm−1). 

Measurements at 250 K and 1.98 Torr show that S is within 3% of the 295 K measurements, and 

again within the stated uncertainties. Although S is little affected by temperature, the absorption band 

features change slightly. There is an increase in structure and the Q branch of absorption bands 

becomes sharper and more intense at lower temperature. The presence of the broadening gas was 
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found to change the value of S by less than 1.5% compared to the pure sample, which is again within 

the experimental uncertainties. A similar lack of sensitivity to broadening gas has been found for other 

similar molecules (see, for example, the measurements of Smith et al. [7] for HFC-134 and HFC-143a). 

These CFC-113a measurements can be compared with those of its isomer CFC-113 (CCl2FCClF2), 

the third most abundant chlorofluorocarbon in the atmosphere [9]. Recent laboratory measurements [10] 

indicate that S is about 1.35 × 10−16 cm2·molecule−1·cm−1 at 283 K, which is very similar to our value 

for CFC-113a. However, the spectral structure of CFC-113 is quite different, with 6 rather than  

4 distinct bands between 800 and 1300 cm−1. The origin of this difference is that for CFC-113a each 

carbon atom has bonds with either all fluorine or all chlorine atoms, while for CFC-113, the bonds 

with each carbon atom are a mixture of chlorine and fluorine. More specifically, CFC-113 (which has 

conformations with point group C1 and Cs) has only non-degenerate vibrations accessible by allowed 

transitions, while CFC-113a (which belongs to the C3v point group) gives rise to degenerate (E) 

vibrations, along with an A2 vibration that cannot be accessed in allowed transitions. 

Figure 2. Absorption spectrum at 295 K for: (a) 2.7 Torr of CFC-113a; (b) 6.96 Torr of 

HCFC-133a; and (c) 8.1 Torr of a 90.8%/9.2% mixture of CFC-112/112a within the range 

of 690–1600 cm−1. 

(a) (b) 

(c) 
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4.2. HCFC-133a 

The spectrum of pure HCFC-133a was measured at 295 K for pressures from 0.94 to 9.53 Torr. 

Figure 2b shows its spectrum for a pressure of 6.96 Torr taken at 0.01 cm−1 resolution. There is a series of 

bands between 690 and 1730 cm−1 that are divided into 2 main regions: 780–920 cm−1 and  

1070–1530 cm−1. 

The different absorption features have been associated by [5] as follows: C-Cl stretching  

(801 cm−1), C-C stretching (855 cm−1), CH2 wagging and rocking (905 and 1110 cm−1), C-F stretching 

(1159, 1267, 1277 cm−1) and –CH2 deformation and twisting (1339 and 1443 cm−1). 

For the pure gas sample at 6.96 Torr, S = 1.21 ± 0.033 × 10−16 cm2·molecule−1·cm−1. For 

measurements at different pressures S changes by no more than 5.5%. In the two distinct regions identified 

above S is 9.02 × 10−18 cm2·molecule−1·cm−1 (780–920 cm−1) and 1.12 × 10−16 cm2·molecule−1·cm−1  

(1070–1530 cm−1). We are unaware of any previous literature to compare our values with. 

Measurements at 250 K and 4.99 Torr show that S is within 1% of the value at 295 K, and so within 

the stated experimental uncertainty. Although S is little affected by temperature, the features of 

absorption bands change slightly in the same way as found for CFC-113a in the previous subsection. 

The presence of the broadening gas was found to change the value of S by less than 1.7% compared to 

the pure sample, which is again within the experimental uncertainties. 

4.3. CFC-112/CFC-112a 

Separate samples of CFC-112 and CFC-112a are not available to us under Montreal Protocol’s 

import restrictions. Measurements were therefore limited to the only available mixture of CFC-112 

(90.8%) and CFC-112a (9.2%). The composition of this mixture is similar to the ratio found in the 

atmosphere [1], so that the measured cross-section could then be considered representative of this 

mixture. We analysed theoretical calculations (DFT, B3LYP) of the cross-sections of CFC-112 and 

CFC-112a (performed by David Nutt, University of Reading, personal communication, 2012) to see 

whether these could guide the derivation of separate cross-sections for the two species, by allowing us 

to attribute specific bands to each of the molecules. Although previous work had indicated that such  

ab initio calculations worked reasonably well for the perfluorocarbons [11], the calculations were 

insufficiently accurate for use to derive separate CFC-112 and CFC-112a cross-sections, and so this 

method was not pursued further here. 

The absorption spectrum for the mixture of CFC-112 (90.8%) and CFC-112a (9.2%) at 8.10 Torr 

and 295 K, taken at 0.01 cm−1 resolution, is shown in Figure 2c. The bands are centred in two regions: 

740–960 cm−1 and 1010–1200 cm−1. For this sample, S = 1.12 ± 0.03 × 10−16 cm2·molecule−1·cm−1 and in 

the two regions S is 7.46 × 10−17 cm2·molecule−1·cm−1 (740–960 cm−1) and  

3.75 × 10−17 cm2·molecule−1·cm−1 (1010–1200 cm−1). In previous work, values of S of 1.08 × 10−16 and  

1.06 × 10−16 cm2·molecule−1·cm−1 were obtained for CFC-112 and CFC-112a separately [6]; by 

combining these individual values of S to give a value appropriate for the mixture used here, our 

results agree with these older measurements within 4%. A more detailed comparison of absorption 

features is not possible as [6] did not present resolved spectra. The measurements at different pressures 
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do not change the value of S by more than 3.5%, which is within the stated uncertainty of  

our measurements. 

Measurements at 250 K and 1.88 Torr show that S is within 1% of the measurements at 295 K, 

again within the uncertainty of our measurements. As with the other gases reported here, S is little 

affected by temperature. The presence of the broadening gas was found to change the value of S by 

less than 2% compared to the pure sample, and so within the uncertainty of our measurements. 

5. Radiative Efficiency 

Radiative efficiencies (RE) (W·m−2·ppbv−1) are calculated using an updated version of a  

narrow-band radiative transfer model (NBM) [12], broadly following the methodology of  

Sihra et al. [13]. Three cloudy-sky atmospheres (see Appendix B of Freckleton et al. [14]) are used to 

represent the tropics and extratropics, and stratospheric temperature adjustment is applied (which 

increases RE by about 10% for the molecules presented here). The halocarbon cross-sections are 

averaged onto the NBM’s 10 cm−1 grid. Calculations are performed for halocarbon mixing ratios of  

0.1 ppb, to ensure they are in their linear limit; these are multiplied by 10 to yield RE. HITRAN2004 [15] 

provides the spectral line data for water vapour, ozone, carbon dioxide, methane and nitrous oxide. 

Water vapour, ozone and cloud profiles are specified for each atmosphere [14]. Other gases are 

assumed to be well-mixed using 2010 concentrations of 389 ppm for CO2, 1800 ppb for CH4, and  

323 ppb for N2O. The 2010 concentration of main greenhouse gases is obtained from [16]. A fast 

method for calculating instantaneous RE has recently been presented [2], based on line-by-line 

calculations, which is an update to a previously-available method [17] but at finer spectral resolution. 

Using this fast method the instantaneous RE for CFC-113a and CFC-112 is within 0.5%, and  

HCFC-133a is within 1.5%, of the instantaneous RE calculated using the NBM. 

Table 1. Radiative efficiencies, mixing ratios in late-2012, present-day radiative forcings, 

atmospheric lifetimes, GWPs (for time horizons of 20, 100 and 500 years) and the GTP for 

a time horizon of 50 years, for the 3 gases considered here. 

Gas 
Radiative 
Efficiency 

(W∙m−2∙ppbv−1) 

Mixing 
Ratio 
(pptv) 

Radiative 
Forcing 
(W∙m−2) 

Lifetime 
(years) 

GWP 
(20) 

GWP 
(100) 

GWP 
(500) 

GTP 
(50) 

CFC-113a 0.23 0.48 1.10 × 10−4 51 4590 3310 1100 3920 
CFC-112 0.29 0.44 1.28 × 10−4 51 5320 3840 1270 4540 

HCFC-133a 0.15 0.37 5.60 × 10−5 4.3 1220 340 96 74 

Halocarbons are not well-mixed in the atmosphere because of stratospheric and tropospheric 

removal processes. There is no unique way of accounting for the effect of this on RE, especially for 

shorter lived species such as HCFC-133a, as the inhomogeneity depends on emission location. We 

applied the steady-state correction factors derived by Hodnebrog et al. [2] which assume the same 

geographical distribution as current emissions of CFC-11, using the lifetimes derived by Laube et al. [1] 

(see Table 1). The multiplicative factors to account for the inhomogeneity are 0.95 for the three CFCs 

and 0.91 for HCFC-133a, but the uncertainty in the correction factor for the shorter-lived HCFC-133a 

is greater, as it is more dependent on assumptions as to where it is emitted. Table 1 presents the  
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final RE values. It also shows that the radiative forcing for current (2012) concentrations given by 

Laube et al. [1] is trivially small (of order 0.1 mW·m−2), although, as noted earlier, the concentrations 

of CFC-113a and HFC-133a were found to be still increasing [1] and so could become significant if 

this growth were to be sustained. 

We adopt the Hodnebrog et al. [2] uncertainties (5%–95% confidence range) which are about 13% 

for CFC-113a and CFC-112 and approximately 23% for HCFC-133a because of its less certain 

lifetime correction. 

6. Global Warming Potentials 

The GWP is one method for placing the climate effect of emissions of different gases on a common 

CO2-equivalent scale (e.g., [18]). It is the time-integrated radiative forcing of a pulse emission of a unit 

mass of gas, integrated over a time horizon H, divided by the same quantity for a pulse emission of the 

same mass of CO2. The GWP for H = 100 years (GWP (100)) is used by the Kyoto Protocol.  

The absolute GWP for CO2 used here are from [2] and are 2.495 × 10−14, 9.171 × 10−14 and  

32.17 × 10−14 W·m−2·year (kgCO2)
−1 for the horizons of 20, 100 and 500 years, respectively, and are 

based on emissions with a 2011 background of CO2 and the impulse response function of Joos et al. [19]. 

Table 1 presents the GWP for H = 20, 100 and 500 years. An alternative emission metric, the Global 

Temperature change Potential (GTP) [20] computes the temperature change at some time H after a 

pulse emission (relative to an emission of the same mass of CO2). To calculate the GTP it is necessary 

to represent the surface temperature response to the radiative forcing pulse, and values are sensitive to 

this representation (e.g., [20]). We use the methodology in Hodnebrog et al. [2] and present the GTP 

for H = 50 years for illustration. 

The GWP and GTP values in Table 1 are typical of similar molecules, with HCFC-133a being the 

smallest, mostly on account of its much shorter lifetime, but also because of its lower RE. The  

GTP (50) is similar to the GWP (100) for the two CFCs, but much smaller for HCFC-133a, on account 

of the short lifetime (the climate system retains relatively little memory of the short-lived pulse of 

radiative forcing following the emission). The GWP (100) and GTP (50) for CFC-113a are only  

65%–70% of the values found for its isomer CFC-113 [2] on account of both the larger RE for  

CFC-113 (0.3 W·m−2·ppbv−1) and its longer lifetime (85 years). 

Hodnebrog et al. [2] estimated the GWP uncertainties (5%–95% confidence range) for CFC-11 

(which has a lifetime of 45 years) to be about 25%, 40% and 50% for a H = 20, 100, and 500 years 

respectively, and these uncertainty estimates are appropriate for CFC-113a and CFC-112. They did not 

present detailed error estimates for shorter-lived species, but noted that gases with lifetimes of less 

than 5 years (and hence HCFC-133a is in this category) would have errors approximately double those 

estimated for CFC-11. 

Using estimates of the 2012 emissions [1] of CFC-113a, CFC-112, and HCFC-133a, which are 2, 

0.01, and 3.10 Gg·year−1 respectively, yields CO2-equivalent emissions of 6620, 38, and 1050 Gg·year−1 

respectively, using the GWP (100) given in Table 1. The time variation of the CO2-equivalent emissions 

is shown in Figure 3. For comparison, the estimated 2010 CO2-equivalent global emissions of the 

most-abundant HFC in the atmosphere, HFC-134a, are 195,000 Gg·year−1 using the emission estimates 

and GWP (100) from [18]; hence the emissions of the new species considered here constitute, in  
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CO2-equivalent terms, about 4% of global HFC-134a emissions and about 0.02% of the global CO2 

emissions from fossil-fuels and other industrial sources [18]. At their peak in 1992 [1], the estimated 

emissions of CFC-112 were about 2.2 Gg·year−1, or 8640 Gg·year−1 in CO2-equivalent terms. 

Figure 3. Time series of CO2 equivalent emissions of the CFC-113a, HFC-133a, CFC-112 

and CFC-112a, using the emission values in [1] and the GWP (100) values given in Table 1.  

 

7. Conclusions 

Detailed absorption cross-sections of three newly detected gases in the atmosphere, CFC-113a, 

HCFC-133a and mixture of CFC-112/CFC-112a (predominantly CFC-112), are presented at 295 K 

over the wavenumber range of 690–1730 cm−1. These are used to calculate, for the first time, radiative 

efficiencies and global warming potentials for the three gases. This allows the quantification of the 

radiative forcing due to these gases and the CO2-equivalence of their emissions. Although their current 

contribution to radiative forcing is trivial, they are nevertheless powerful greenhouse gases on a 

molecule-per-molecule basis and their GWP (100) values range from 340 to 3380. It would be 

desirable to produce separate values of absorption cross-section, radiative efficiency and GWP for 

CFC-112a, if a pure sample of that gas becomes available. 
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