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Abstract: The aim of our study is to estimate the parameters M (water content), R (rain 

rate) and Z (radar reflectivity) with raindrop size distribution by using the neural network 

method. Our investigations have been conducted in five African localities: Abidjan 

(Côte d’Ivoire), Boyele (Congo-Brazzaville), Debuncha (Cameroon), Dakar (Senegal) and 

Niamey (Niger). For the first time, we have predicted the values of the various parameters 

in each locality after using neural models (LANN) which have been developed with locally 

obtained disdrometer data. We have shown that each LANN can be used under other 

latitudes to get satisfactory results. Secondly, we have also constructed a model, using as 

train-data, a combination of data issued from all five localities. With this last model called 

PANN, we could obtain satisfactory estimates forall localities. Lastly, we have 

distinguished between stratiform and convective rain while building the neural networks. 

In fact, using simulation data from stratiform rain situations, we have obtained smaller root 

mean square errors (RMSE) between neural values and disdrometer values than using data 

issued from convective situations. 
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1. Introduction 

The most important property of the Earth’s atmosphere is the great variability of its parameters [1,2]. 

Scientists in the world are searching for theoretical and practical means to investigate these variations 

in order to conceive some models which are able to predict the evolution of climate. Taking advantage 

of the technological progress in several domains, meteorological instruments used for the measurement 

of these parameters are now very reliable while obtaining direct and punctual measurements. 

Nevertheless, the installation of this equipment in a given region, for a spatio-temporal survey, needs 

enormous human and financial means. This constitutes a handicap in mastering the spatio-temporal 

evolution of the atmospheric parameters in these regions, particularly in developing countries like the 

sub-Saharan ones. 

The use of atmospheric remote sensing with the help of radars and satellites can be considered as a 

good alternative or complementary to the ground-based equipment. The characterization of the 

atmosphere can be realized everywhere, but the measurements are not direct. The determination of the 

indirectly measured physical parameter means that data, obtained in situ, must be taken into account in 

the calibration process of the instrument [3]. 

Remote sensing has paved the way for the development of powerful applications in the domain of 

atmospheric physics in order to understand the complexity of some atmospheric perturbations. 

However, the most important difficulty encountered lies in the different relationships issued from the 

calibration. That is the case when measurements are processed on convective systems with 

meteorological radars. In this example, the aim is to find a relationship between the radar reflectivity 

Z (dBZ) and the rain rate R (mm·h−1) (Z-R relationship). The observed precipitation’s variability is due 

to the raindrop size distribution whose instability is reliable for some factors like speed, collision or 

agglomeration of rain drops [4,5]. 

An automatic adjustment of the Z–R relationship dependent on the type of precipitation is 

extremely difficult to put in place in operational conditions [6]. The raindrop size distribution diversity 

of precipitations and the different phases of the hydrometers, solid or liquid, have an influence on this 

relationship. There are a lot of relationships between Z and R [7–12]. 

The use of only one relationship cannot generally represent the natural variability of precipitations. For 

example (see Figure 1), for a value of R, one can get several values corresponding to Z and vice versa. 

Several studies have been conducted for the modelling of the size of rain drops under different 

latitudes [13]. The theoretical distribution functions evaluated are many but likely are not easy to 

manipulate [6]. The disdrometer allows measuring automatically and continuously the extent of rain 

drop distribution. 

In this study, we want to adapt the neural network technique to the Rain Drop Size Distribution 

(RDSD) of precipitations in order to conceive a model which could take into account the distinct types 

of rain perturbations under different latitudes, with the RDSD. The liquid water content (M), the rain 

rate (R) and the radar reflectivity (Z) are considered as outputs. 

The most important property of the neural networks is the nature of their adaptation, which may be 

deducted from samples. This characteristic provides some tools, which are able to solve high non-linear 

relationships [14]. The neural network is an alternative tool for modelling and describing complex 

relationships between physical or technical parameters [15]. It is considered as an “engine” delivering 



Atmosphere 2014, 5 456 

 

 

to its entries an “answer” which is inaccessible or not easily accessible with existing analytical 

methods. In the following work, we describe briefly the theory of neural networks, presenting the Feed 

Forward Back Propagation (FFBP) and the Cascade Forward Back Propagation (CFBP) models. We 

will then situate the five African localities which were subject to our experimental work and where the 

collection and the classification of the rain drops were realized, while using the disdrometer. Lastly, 

we will describe how the different neural network models have been constructed, trained and used for 

the estimation of the water content, the rain rate and the radar reflectivity. We present the results in the 

form of curve comparisons and calculated root means square errors (RMSE). 

Figure 1. Radar reflectivity factor Z vs. rain rate R as deduced from the 1-min rain RDSD 

(Rain Drop Size Distribution) observed with the JWD (Joss-Waldvogel Disdrometer) in 

Dakar (Senegal), during 1997–2002, and fitted curve. 

 

2. Theoretical Background on Artificial Neural Networks 

2.1. Basic Principles 

An artificial neural network is organized into several layers. One layer contains some neurons 

which are connected to those of the following layer. Each connection is weighed. A neuron is 

described with its own activation level, which is responsible for the propagation of the information 

from the input layer to the output layer. However, to obtain reliable weights, the neural network must, 

first of all, learn about the known input- and output-samples. During the learning process, an error 

between theoretical and experimental outputs is computed. Thus, the weight-values are modified 

through an error back propagation process which is executed on several sampling data, until achieving 

as small error as possible. After this last step, the neural network can be considered as trained and able 

to be used in calculating other responses to new entries that have never been presented to the network. 

It is important to emphasize that the learning speed of the neural network depends not only on the 

architecture but also on the algorithm used. 
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2.2. Model of a Neuron in a Neural Network 

The neuron is considered as an elementary cell in which some computational operations are realized 

(see Figure 2a). It is composed of an integrator (∑) which calculates the weighted sum of the entries. 

The activation level n, with b as bias, of this integrator, is transformed by a transfer function f in order 

to produce an output a. The matrix representation of the neuron is shown on Figure 2b, with S supposed 

to be equal to the unity, to signify that there is only one neuron [16]. 

Figure 2. Representation of a neuron: (a) model; (b) matrix representation for S = 1. 

 

The R entries of the neuron correspond to the vector ܲ = [ ଵܲ	 ଶܲ …	 ோܲ]் while ܹ = [ ଵܹଵ	 ଵܹଶ …	 ଵܹோ]் represents the vector weights of the neuron. The output n of the integrator is 

then described by Equation (1):  

1
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If the argument of the function f becomes zero or positive, the activation level reaches or is superior 

to the bias b, if not, it is negative [16,17]. 

The output of the neuron is given by the Equation (2): 

( ) ( )= = −Ta f n f W P b  (2)

2.3. Construction of a Neural Network and its Learning Process 

To build a neural network, it is sufficient to combine the neural layers. Each layer has its own 

matrix weight Wk, where k designates the index of the layer. Thus, the vectors bk, nk and ak are 

associated to the layer k. To specify the neural network structure, the number of layers and the number 

of neurons in each layer must be chosen. The learning step is a dynamic and iterative process which 

consists in modifying the parameters of the network after receiving the inputs from its environment. 

The learning type is determined by the way the change of the parameters occurs [14]. In almost all 

neural architectures encountered, the learning results in the synaptic modification of the weights 
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connecting one neuron to the other. If ݓ௜௝(ݐ) designates the weight connecting the neuron i to its entry 

j and at time t, a change ∆ݓ௜௝(ݐ) of the weights can simply be expressed by the Equation (3):  

( ) ( ) ( )1ij ij ijw t w t w tΔ = + −  (3)

where ݓ௜௝(ݐ + 1) represents the new entry value of the weight ݓ௜௝. 
A set of well-defined rules that allow realizing a weight adaptation process is designated by a 

learning algorithm of the neural network. There are a lot of rules that can be used. We can enumerate 

among others: the method of learning by error correction, the so-called Least Mean Square (LMS) 

method; the feed forward back propagation in a multilayer neural network; and the method of the back 

propagation of error sensitivities. In our study, we focalize on the method based on a small 

modification of the feed forward back propagation method. 

2.4. The Feed Forward Back Propagation Method Used by a Multilayer Neural Network 

Let us now consider the multilayer neural network (composed of M layers) whose synoptic 

graphical representation is given in Figure 3 for three layers. The equation describing the outputs of the 

layer k is:  

1 , 1, ,− = − =  k k k k ka f W a b k M  (4)

In the presence of sample-data combinations entries/outputs൛൫ ௤ܲ, ݀௤൯ൟ, ݍ = 1,… , ܳ, where ௤ܲ 

designates an entry-vector and ݀௤ a desired output-vectors, we can forward propagate at each instant t, 

an entry-vector P(t) through the neural network in order to get an output-vector a(t). 

Figure 3. An example of synoptic representation of a 3 layer-neural network in a feed 

forward back propagation form. 

 

Given here are e(t), the error produced by the network calculation for an entry, and the 

corresponding desired output d(t):  

( ) ( ) ( )= −e t d t a t  (5)

The performance function F that permits minimizing the root mean square error is defined by the 

following expression:  
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( ) ( ) ( ) = ⋅ 
TF X E e t e t  (6)

where E[ ] and X are respectively the mean and the vector grouping the set of the weights and the 

biases of the neural network. F will be approximated on a layer with the instantaneous error:  

( ) ( )ˆ ( ) TF X e t e t= ⋅  (7)

The method of the steepest falling gradient is used to optimize X with the help of the  

following equations:  

( ) ( )
ˆ ˆ
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∂ ∂
 (8)

where η designates the learning rate of the neural network. To calculate the partial derivatives of ܨ෠ the 

rule of composition functions is used:  
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The activation levels ݊௜௞ of the layer k depend directly on the weights and biases on this layer, and 

can be expressed by the following relation:  
1
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Now, for the first terms of the Equation (9), we define the sensitivities ߜ௜௞ of ܨ෠ in relation with the 

changes of the activation level ݊௜௞ of the neuron i belonging to the layer k by the equation:  

ˆ
k

i k
i

F

n
δ ∂=

∂
 (11)

The expressions of ∆ݓ௜௝௞   :become (ݐ)and ∆ܾ௜௞ (ݐ)

( ) ( ) ( ) ( ) ( ) ( )1 Tk k k k kW t t a t and b t tη δ η δ−Δ = − ⋅ ⋅ Δ = ⋅  (12)

Equation (12) is responsible for the modification of the weight connections and biases and the 

different iteration learning steps of the neural network presented in Section 4. 

3. Localities and Data Used for the Study 

The applications of our study have been realized after using the RDSD. These data have been 

collected under different latitudes in Sub-Saharan Africa (see Figure 4). Their main characteristics are 

grouped in the Table 1. The disdrometer used for the data collection is a mechanical one and was 

developed by Joss and Waldvogel [18,19]. This instrument produces the RDSD minute by minute. The 

technical description of its functions is given by [18–21]. 

The principle of data processing of the disdrometer consists in classifying repeatedly in an interval 

of one minute the rain drops according to their diameter. During the collection period, some values are 

computed with the data by minute in order to obtain the values of some rain parameters such as the 



Atmosphere 2014, 5 460 

 

 

total number of rain drops, the distribution of the rain drop size, the rain rate, the radar reflectivity, the 

liquid water content and the median volume diameter. 

Figure 4. Location of the data collection sites. 

 

Table 1. Database and localities studied in sub-Saharan Africa. 

Town (Country) Collection Period of the RDSD Total Number of the RDSD (min) 

Abidjan (Ivory Coast) June; September to December: 1986 23,126 
Boyele (Congo) March to June: 1989 18,354 

Debuncha (Cameroon) May to June 2004 39,113 
Dakar (Senegal) July to September: 1997, 1998 et 2000 15,145 
Niamey (Niger) July to September: 1989 4468 

Table 2. Values of the exponent factor p and of the multiplicative factor ap in relation to 
the parameter studied (ܲ = ܽ௣ ׬ ஶ଴ܦ݀(ܦ)௣ܰܦ ). 

Parameter Symbol P Exponent Factor p Unit Multiplicative Factor ap 

Rain rate R 3.67 mm·h−1 7.1 × 10−3 

Liquid water content W 3 g·m−3 (π/6) × 10−3 
Radar reflectivity factor Z 6 mm6·m−3 1 

The control parameters of the RDSD are calculated by different drop-diameter moments observed [10] 

and changes with particular used moments [22–26]. The parameters M, R and Z exploited in our study 

can be expressed in a generic form as follows:  

0
( ) ,

∞
=  p

pP a D N D dD  (13)

where N(D) is the number of rain drops per unit height and per volume (mm−1·m−3), D (mm) is the 

diameter of the equivalent sphere, and aP a coefficient which depends on the type of parameter 

considered and on the chosen units, so as shown in t Table 2. The stated disdrometer observation 

normally has large errors for small drop size and large drop size [27]. The coefficient p in 
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Equation (13) is issued from the definition of the parameters; Z and R are respectively defined as the 

moment of order 6 and 3.67 of the diameter D [28]. 

4. Methodology 

The modelling process of a neural network requires the disposal of an entry’s number R as well as 

the number of neurons in the output layer. These neural networks are defined by the specifications of 

the problem to be solved. The CFBP (Cascade Forward Back Propagation) model (see Figure 5) is one 

of the artificial neural network types, which is used for the prediction of new output data [29–31]. 

Figure 5. Model of Cascade Forward Back Propagation (CFBP). 

 

Taking into consideration the different analyses in, we will give an abstract of the methodology 

used in the learning process that we have implemented. 

1. Initialize the weights with small random values; 
2. For each combination (݌௤, ݀௤) in the learning sample:  

• Propagate the entries pq forward through the neural network layers:  

( )0 1; , 1, ,−= = − = k k k k k
qa p a f W a b k M  (14) 

• Back propagate the sensitivities through the neural network layers: 

( )( ) ( )( )' ' 1 12 ; , 1, ,1
TM M M M k k k k k

qF n d a F n W k Mδ δ δ+ += − − = = −   (15)

• Modify the weights and biases: 
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δηΔ
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3. If the stopping criteria are reached, then stop; if not reached, they permute the presentation 

order of the combination built from the learning database, and begin again at Step 2. 
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The diagram describing the different steps of the learning process of the neural network is given 

by Figure 6. 

Figure 6. Diagram of the learning process of the neural network. 

 

4.1. Description of the Databases and their Use in the Neural Models 

The classes of diameters are used as entries of the neural network models in order to estimate the 

water content, the rain rate and the radar reflectivity factor. Thus, the neural networks will then be 

constituted of 25 entries corresponding to the 25 classes and of one output. The samples presented to 

the entry of the neural network correspond each to the one-minute values that were calculated by  

the disdrometer. 

On the basis of the retrieval work, we then have two databases that we have named as “Base X” and 

“Base Y”. They are each made up of 23,126 samples. Each sample from the first database is a vector 

of 25 elements ܺ[ݔଵ, ,ଶݔ … ,  ଶହ]். The base Y is a matrix of 23,126 × 3 dimensions whose three rowsݔ

represent three different vectors, Y1, Y2 and Y3. These three last vectors are known as the water 

content (M(g·m−3)), the rain rate (R(mm·h−1)) and the radar reflectivity (Z(mm6·m−3)), each retrievable 

individually, from the X database. With each sample j of the first database is then associated a real 
number ݕ௜௝(݅ = 1,2,3; ݆ = 1,2, … ,23126). In this work, we have to retrieve these parameters. The 

different neural networks have as entries the parameters ݔ௞(݇ = 1,2,… ,25) and as outputs the 
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parameter ݕ௜(݅ = 1,2,3). The neural model is a cascade forward back propagation (CFBP) one, with a 

hidden layer of 20 neurons (Figure 7a,b). We develop for each locality a model which will be applied 

to other localities before building another model, which will integrate all five localities. This last 

model will be applied on all five localities. 

Figure 7. ANN models: (a) description of the model; (b) the faster CFBP model, which 

was used for our simulations. 

 

- R entry’s number (25 in our case) 

- S1: Number of neurons in the first layer (hidden layer): 20 in our case 

- S2: Number of neurons in the output layer: 1 in our case 

- b1: Bias’ vector of the first layer with the dimension S1 × 1 (20 × 1 dimension in our case) 

- b2: Bias’ vector of the output layer with the dimension S2 × 1 (1 × 1 in our case) 

- W1: Matrix of weights according to the neurons of the first layer with the dimension S1 × R 

(20 × 25 dimension in our case);  

- W2: Matrix of weights according to the neurons of output layer with the dimension S2 × S1 

(1 × 20 dimension in our case) 

4.2. Construction and Use of the Different Neural Networks 

The databases are available for five studied localities, and two approaches are taken  

into consideration:  

First, we create for each locality three LANN-models corresponding to the three parameters ݕ௜. The 

initial 5000 entries and the primary 5000 desired outputs, except Niamey with only 4468 sample data, 
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are used for the training of the neural networks, and the 5000 following sample data (from the 5001st 

to 10,000th) have served as test data. After the training, we have obtained acceptable performance 

curves and have stored the LANN, that we designate by the indices, i, to confer them the role of 

retrieving the parameter ݕ௜. Each LANN i of a given locality is then invited to predict the parameters ݕ௜ over the other localities. In this case, we have used as LANN inputs the entries obtained in the 

locality subjected to the predictive process. We estimate for the samples from the 5001st–10,000th the 

outputs that we compare with the available experiment present in this locality. 

Secondly, we build for each parameter ௜ܻ(ܯ, ܴ, ܼ) a polyvalent model (PANN): we extract from the 

databases of each locality the first 1200 sample data and constitute a training set composed of 6000 

training data combinations. Each PANN i (i indicating its role of retrieval of parameter ௜ܻ) is then used 

to predict the parameters ௜ܻ over all localities. As follows, we use the designations from Table 3 and 

the notations M, R and Z, respectively, for the variables Y1, Y2 and Y3. 

Table 3. Model designation for each locality. 

Locality Neural Model Developed by Data from the Locality 

Abidjan (Ivory Coast) A 
Boyele (Congo Brazzaville) B 

Debuncha (Cameroon) C 
Dakar (Senegal) D 
Niamey (Niger) N 

All localities PANN 

5. Results and Discussions 

5.1. Capability of a Neural Network to Estimate the Parameters in Various Other Localities 

We have estimated the values of the three parameters (M, R and Z) over five localities with a 

LANN which has been trained only with the experimental RDSD values measured in Debuncha 

(Cameroon). For example, after using the first 500 training samples of this locality, we predicted in 

Abidjan (Côte d’Ivoire) 200 values for each parameter, corresponding to the sample data from the 

4801st to the 5000th and have obtained the approximations presented in Figure 8. The dots correspond 

to the experimental values and the squares to the estimated ones. 

The different approximations can be considered as very good because the values measured by the 

disdrometer are practically the same as those estimated by the LANN. 

5.2. Estimation of the Values of M, R and Z with the PANN 

We have shown that a LANN which has been trained with disdrometer parameters issued only from 

a given locality, in order to estimate the parameters M, R and Z, was also able to estimate the same 

parameters in another locality, which is far different from the first. For ameliorating this type of 

estimation, we have created another ANN that we have qualified as a polyvalent one (PANN) and, 

which takes into account, while it is in development, data issued from all the localities where it will be 

used for prediction. For our concrete case, we have put together the first 1200 sampling data of each 
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locality in order to obtain training values. The trained PANN has been used to estimate 5000 values of 

M, R and Z over all five localities, namely those from the 1201st to the 6200th. 

Figure 8. Neural prediction in Abidjan (Ivory Coast) of the liquid water content M (a), the 

rain rate R (b) and the radar reflectivity Z (c) by a LANN constructed with data issued only 

from Debuncha (Cameroon). 

 

 

 

5.3. Evaluation of the Root Mean Square Errors (RMSE) 

We have evaluated the root mean square errors produced by the LANN and the PANN estimation, 

while comparing the estimates to the disdrometer measures. Equation (17) has been used:  
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(17)

where Ei: Error (observed value−Neural Network estimate); and N: Number of observed values. 

5.3.1. RMSE between Measured Parameters in the Localities and Estimates Delivered by the LANN 

A, B, C, D and N 

We present in Table 4 the RMSE between values measured by the disdrometer and those estimated 

by the different LANN. 

If the estimates over a given locality are delivered by a LANN trained with data issued from another 

locality, N is equal to 5000 (except the estimations realized in Niamey (Niger), only 4468 values were 

available). The estimations produced locally by the LANN concern the sample data from the 5001st to 

the 10,000th. 

Table 4. Comparisons between RMSE after use of the different LANN (A, B, C, D and N). 

LANN 
Abidjan Boyele Debuncha 

Y1 (M) Y2 (R) Y3 (Z) Y1 (M) Y2 (R) Y3 (Z) Y1 (M) Y2 (R) Y3 (Z) 
A 0.01 0.01 0.58 4.87 0.35 870.16 17.60 1.25 3144.06 
B 0.04 0.14 1.27 0.01 0.01 0.24 0.02 0.03 0.58 
C 0.02 0.06 1.05 0.01 0.01 0.49 0.01 0.01 0.33 
D 0.83 0.15 1.91 0.17 0.01 0.36 0.48 0.06 0.66 
N 0.07 0.54 3.77 0.01 0.01 0.46 0.03 0.13 0.83 

LANN 
Dakar Niamey 

Y1 (M) Y2 (R) Y3 (Z) Y1 (M) Y2 (R) Y3 (Z) 
A 6.11 0.44 1091.45 3.57 0.26 638.14 
B 0.01 0.01 0.35 0.01 0.01 0.25 
C 0.01 0.01 0.62 0.01 0.01 0.45 
D 0.01 0.01 0.15 0.13 0.01 0.22 
N 0.02 0.02 0.38 0.01 0.01 0.13 

Table 5 gives the two best LANN for the retrieval of the parameters M, R and Z. 

Table 5. Choice of the two best LANN for retrieval of the parameters in the different localities 

(A, B, C, D and N). 

 

Abidjan Boyele Debuncha Dakar Niamey 

1st 
LANN 

2nd 
LANN 

1st 
LANN 

2nd 
LANN 

1st 
LANN 

2nd 
LANN 

1st 
LANN 

2nd 
LANN 

1st 
LANN 

2nd 
LANN 

M A C B C C B D C N C 
R A C B D C B D C N B 
Z A C B D C B D B N D 

Considering the results obtained in Tables 4 and 5, we observe that the best LANN for the estimation 

in a locality is logically the one which has been developed with data issued from that same locality and 
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shows that the LANN of Debuncha (Cameroon) is in almost all cases able to predict the parameters in 

other localities. 

5.3.2. RMSE between Values Measured by the Disdrometer and Estimates Delivered by the PANN 

We have constructed a polyvalent ANN model (PANN) with data issued from the five localities and 

have chosen the data-gathering order: A+B+C+D+N. The training entries and the desired outputs are 

constituted by the first 1200 sampling data from A, the initial 1200 sampling data from B, the primary 

1200 sampling data from C, the initial 1200 sampling data from D and lastly, the first 1200 sampling 

data from N. We have calculated and presented in Table 6 the RMSE between values measured by the 

disdrometer and those estimated by the PANN. 

Table 6. RMSE between values measured by the disdrometer and those estimated by  

the PANN. 

Abidjan Boyele Debuncha 

M R Z M R Z M R Z 
0.02 0.01 0.66 0.01 0.01 0.24 0.02 0.01 0.52 

Dakar Niamey 

M R Z M R Z 
0.01 0.01 0.25 0.01 0.01 0.15 

Observing the results obtained, the use of the PANN allows obtaining the best RMSE-values (Table 6). 

However, it is to be noted that while juxtaposing the training data, the order of the localities must be 

also respected in the fusion of the desired outputs. 

Table 7. Comparisons between RMSE after use of the different LANN: Case of 

stratiform rains. 

LANN 
Abidjan Boyele Debuncha 

Y1 (M) Y2 (R) Y3 (Z) Y1 (M) Y2 (R) Y3 (Z) Y1 (M) Y2 (R) Y3 (Z) 

A 0.010 0.010 0.130 0.940 0.052 67.49 1.730 0.125 118.5 
B 0.010 0.010 0.075 0.010 0.010 0.043 0.010 0.010 0.063 
C 0.010 0.010 0.130 0.010 0.010 0.098 0.010 0.010 0.075 
D 0.010 0.010 0.100 0.015 0.010 0.089 0.010 0.061 0.360 
N 0.020 0.010 0.092 0.010 0.010 0.066 0.012 0.058 0.220 

LANN 
Dakar Niamey 

Y1 (M) Y2 (R) Y3 (Z) Y1 (M) Y2 (R) Y3 (Z) 

A 1.100 0.074 52.45 1.450 0.089 124.0 
B 0.010 0.010 0.051 0.010 0.010 0.058 
C 0.010 0.010 0.120 0.010 0.010 0.120 
D 0.010 0.010 0.060 0.010 0.010 0.070 
N 0.010 0.010 0.110 0.010 0.010 0.05 
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5.3.3. Computation of the RMSE after Distinction of Stratiform and Convective Rains 

The RMSE calculated and presented in Tables 4 and 6 concern generally rainfall without a distinction 

between stratiform and convective rains. This has led us to obtain very small RMSE values. The 

differentiation between these two rains types enable understanding the importance of the different 

contributions brought by the two types during the rain period. For this purpose, we have constituted 

two value classes: the first database corresponds to the values ܯ < 410, ܴ < 10, ܼ < 10,810 

(stratiform situation), and the second database corresponds to the values ܯ ≥ 410, ܴ ≥ 10, ܼ ≥ 10,810 

(convective situation). A separate evaluation of the RMSE gives the results presented in Tables 7–10. 

• Stratiform Rainfall 

Table 7 gives the RMSE produced by the five LANN while estimating the parameters over all five 

localities. Here, only the stratiform rain is considered. 

Table 8 presents the RMSE produced by the PANN in the five localities. Here, only the stratiform 

situation is considered. 

Table 8. RMSE between values measured by the disdrometer and those estimated by the 

PANN: Case of the stratiform rains. 

Abidjan Boyele Debuncha 
M R Z M R Z M R Z 

0.010 0.010 0.065 0.010 0.010 0.060 0.010 0.010 0.016 
Dakar Niamey 

M R Z M R Z 
0.010 0.010 0.066 0.010 0.010 0.072 

Table 9. Comparisons between RMSE after using the different LANN: Case of the 

convective rainfall. 

LANN 
Abidjan Boyele Debuncha 

Y1 (M) Y2 (R) Y3 (Z) Y1 (M) Y2 (R) Y3 (Z) Y1 (M) Y2 (R) Y3 (Z) 
A 0.011 0.010 0.140 13.91 1.030 2916.0 42.35 3.160 9009.7 
B 0.076 0.310 3.040 0.020 0.015 0.7731 0.045 0.053 1.6500 
C 0.030 0.130 2.510 0.015 0.020 1.6100 0.020 0.010 0.9500 
D 1.670 0.316 4.610 0.480 0.010 1.150 0.480 0.010 1.6000 
N 0.134 1.150 9.110 0.025 0.027 1.500 0.065 0.280 2.3000 

LANN 
Dakar Niamey 

Y1 (M) Y2 (R) Y3 (Z) Y1 (M) Y2 (R) Y3 (Z) 
A 14.80 1.120 3410 10.17 0.760 2051.6 
B 0.025 0.026 1.070 0.025 0.010 0.7700 
C 0.020 0.017 1.890 0.020 0.010 1.4000 
D 0.020 0.015 0.400 0.390 0.010 0.6700 
N 0.040 0.187 1.130 0.014 0.012 0.3720 

Observing the results obtained in Tables 7 and 8, we note that the RMSE, if considering only the 

stratiform situation, remains very small. This is proof that this rain type has been dominant during the 
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rain period. Comparing Tables 7 and 8, respectively, to Tables 4 and 6, we can perceive that the values 

remain in the same level order. 

• Convective Rainfall  

We have only considered the data issued from the convective rainfall and calculated the RMSE 

produced by the LANN while estimating the parameters M, R and Z over each locality. Table 9 gives 

these errors for the five LANN and Table 10 presents them for the PANN. 

Table 10. RMSE between values measured by the disdrometer and those estimated by the 

PANN: case of the convective rainfall. 

Abidjan Boyele Debuncha 

M R Z M R Z M R Z 
0.022 0.020 1.600 0.020 0.010 0.770 0.030 0.010 1.420 

Dakar Niamey 

M R Z M R Z 
0.020 0.010 0.750 0.020 0.010 0.420 

Considering the results from Tables 9 and 10, and comparing them respectively to Tables 7 and 8, 

we observe that the RMSE concerning the convective situation is higher. 

6. Conclusions 

Our study concerns the estimation of water content (M), rain rate (R) and radar reflectivity (Z). 

For this purpose, we have used RDSD data measured by a disdrometer installed in five African 

sub-Saharan localities. We have developed and trained for each locality a LANN with the disdrometer 

data of the same locality and have used the trained LANN to estimate the parameters M, R and Z over 

all localities. We have also developed a polyvalent ANN model (PANN) whose training was realized 

with a combination of data issued from all the localities where it will be used for estimating the 

parameters over each locality.  

We have, first of all, considered the precipitations generally before taking into account their 

stratiform and convective structures. For appreciating the capability of the developed and trained 

LANN and PANN to estimate the parameters, we have calculated the RMSE produced by them during 

their use over the distinct localities. Observing the different results and comparisons obtained, we have 

perceived that the PANN is very capable of predicting over all the localities the values of the 

parameter for which it has been developed. 

The RMSE produced by the PANN, while considering stratiform structures, is generally lower than 

those induced while considering the convective ones. After our investigation, we can thus consider the 

LANN and the PANN as models, which are able to predict rainfall values under different latitudes. 

In areas of low coverage measurement networks of meteorological parameters, as in our study area 

(sub-Saharan Africa), the implementation of a PANN in a chain of radar measurements for rainfall 

could provide better understanding and describe the precipitations independently of their form and 

locality of occurrence. 
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The neural network technique is known to be difficult to manipulate. However, the implementation 

of such a technique in modern data acquirement instruments like rain radars may constitute a very 

interesting method to be investigated. Putting in place such a technology could permit a simultaneous 

measurement of DSD and the computing of rain parameters. 

In our future works, we will also conduct a sensitivity study that consists of evaluating the 

significance of the RMSE between disdrometer measurement, rain gauge observations and NN 

estimates taking into account the disdrometer errors caused by rain drop size limitation during the 

measurement process. 
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