

Supplementary Information

Comparison of Atmospheric Travel Distances of Several PAHs Calculated by Two Fate and Transport Models (The Tool and ELPOS) with Experimental Values Derived from a Peat Bog Transect. *Atmosphere* 2014, *5*, 324–341.

Sabine Thuens¹, Christian Blodau^{1,2}, Frank Wania³ and Michael Radke^{1,4,*}

- ¹ Department of Hydrology, BayCEER, University of Bayreuth, D-95440 Bayreuth, Germany; E-Mails: sabine.thuens@gmail.com (S.T.); c.blodau@uni-muenster.de (C.B.)
- ² Hydrology Group, Institute of Landscape Ecology, University of Münster, D-48149 Münster, Germany
- ³ Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C1A4, Canada; E-Mail: frank.wania@utoronto.ca
- ⁴ Department of Applied Environmental Science (ITM), Stockholm University, 10691 Stockholm, Sweden
- * Author to whom correspondence should be addressed; E-Mail: michael.radke@itm.su.se; Tel.: +46-8674-7136.

Received: 19 December 2013; in revised form: 17 April 2014 / Accepted: 18 April 2014 / Published: 23 May 2014

Supporting Material

Comparison of atmospheric travel distances of several PAHs calculated by two fate and transport models (The Tool and ELPOS) with experimental values derived from a peat bog transect.

Site Name	Latitude	Longitude	Distance from Superstack (km)
Sudbury (Superstack)	N 46.48011	W 81.056506	-
Giant Bog *	N 46.42422	W 79.937056	81
Eagle Lake Bog	N 45.80572	W 79.444830	140
Spruce Bog	N 45.59050	W 78.373055	220
Green Lake Bog	N 45.68517	W 77.151194	310

 Table S1. Coordinates of Greater Sudbury and sampling locations.

Note: * While the names of the other sampling sites have previously been reported, the name Giant Bog was assigned to this site as no previous description and thus no established name was available.

	Temperature	Temperature Area of Water Dep		Wind Speed	Height of Air	Precipitation Rate
	(K)	(%)	(m)	$(\mathbf{km} \cdot \mathbf{h}^{-1})$	(m)	(mm·a ⁻¹)
original	298.15	71	100	14.4	6000	850
adjusted	276.95	10	10	13.1	1000	1008

Table S2. Original and adjusted settings in The Tool.

Table S3. Original and adjusted settings in ELPOS.

I	Length of Study Region	Wind Speed	Precipitation Rate	Area of Water	Depth of Water	Area of Industry
	(m)	$(\mathbf{km} \cdot \mathbf{h}^{-1})$	$(\mathbf{mm}\cdot\mathbf{a}^{-1})$	(%)	(m)	(%)
original	200,000	14.4	760	3	3	10
adjusted	450,000	13.1	1008	10	10	3

Table S4. Input values for The Tool at 4 °C. Partition coefficients were taken from Ma *et al.* (2009) [24] and temperature adjusted as described in the manuscript, half-life times were calculated with AOPWIN [40] and adjusted for OH-radical concentration and daytime length. Partition coefficients and degradation rates for particles are hypothetical values.

	Molar Mass	r Mass log K _{AW}			log K _{OW}	V	Half-Life Air	Half-Life Water	Half-Life Soil	
	(g/mol)	0 °C	4 °C	13 °C	0 °C	4 °C	13 °C	(h)	(h)	(h)
Phen	178.23	-4.27	-4.14	-3.86	4.68	4.58	4.39	14.44	1440	2880
Flt	202.26	-4.95	-4.82	-4.53	5.31	5.19	4.95	6.42	1440	2880
B[a]A	228.30	-7.06	-6.89	-6.53	4.86	4.74	4.50	1.49	1.49 1440	
Chry	228.29	-5.38	-5.24	-4.91	6.61	6.46	6.17	3.76	1440	2880
B[b]F	252.31	-6.27	-6.11	-5.76	6.58	6.47	6.25	10.12	1440	2880
B[a]P	252.31	-6.27	-6.11	-5.76	7.03	6.87	6.55	3.76 1440		2880
Ind	276.33	-7.15	-6.99	-6.62	7.33	7.14	6.76	2.91 1440		2880
particles	63.55	-9.00	-9.00	-9.00	10.00	10.00	10.00	$10\times 10^9 \qquad \qquad 10\times 10^9$		10×10^9

Table S5. Input values for ELPOS. Partition coefficients (25 °C) were taken from Ma *et al.* (2009) [24], half-life times were calculated with AOPWIN [40] and adjusted for OH-radical concentration and daytime length. The partition coefficients and degradation rates for particles are hypothetical values.

	Molar Mass (g/mol)	melting Point (°C)	log K _{AW}	log K _{OW}	log K _{OC}	Half-Life (h) Air	Half-Life (h) Water	Half-Life (h) Soil	Half-Life (h) Sediment
Phen	178.23	372	-2.76	4.47	3.65	14.44	1440	2880	1,3000
Flt	202.26	382.00	-3.27	4.97	4.52	6.42	1440	2880	1,3000
B[a]A	228.30	431.80	-3.59	5.83	4.61	1.49	1440	2880	1,3000
Chry	228.29	530.00	-3.82	5.67	5.06	3.76	1440	2880	1,3000
B[b]F	252.31	441.20	-4.58	5.86	5.73	10.12	1440	2880	1,3000
B[a]P	252.31	452.00	-4.51	6.05	5.73	3.76	1440	2880	1,3000
Ind	276.33	436.00	-4.70	6.57	6.40	2.91	1440	2880	1,3000
particles	63.55	1084.62	-9.00	10.00	-0.5	$10 imes 10^9$	10×10^9	10×10^9	$10 imes 10^9$

	l	log K _{AW} Half-Life (h) Air		Halt	f-Life (h) V	Water Half-Life (h) Sedi			liment	iment Half-Life (h) Soil					
	0 °C	4 °C	13 °C	0 °C	4 °C	13 °C	0 °C	4 °C	13 °C	0 °C	4 °C	13 °C	0 °C	4 °C	13 °C
Phen	-3.72	-3.56	-3.20	1.82	1.50	1.00	4359.06	3602.44	2392.04	3,9352.67	3,2522.02	2,1594.76	8718.13	7204.88	4784.07
Flt	-4.23	-4.07	-3.71	0.81	0.67	0.44	4359.06	3602.44	2392.04	3,9352.67	3,2522.02	2,1594.76	8718.13	7204.88	4784.07
B[a]A	-4.55	-4.39	-4.03	0.19	1.06	0.10	4359.06	3602.44	2392.04	3,9352.67	3,2522.02	2,1594.76	8718.13	7204.88	4784.07
Chry	-4.78	-4.62	-4.26	0.47	0.39	0.26	4359.06	3602.44	2392.04	3,9352.67	3,2522.02	2,1594.76	8718.13	7204.88	4784.07
B[b]F	-5.54	-5.38	-5.02	1.28	1.06	0.70	4359.06	3602.44	2392.04	3,9352.67	3,2522.02	2,1594.76	8718.13	7204.88	4784.07
B[a]P	-5.47	-5.31	-4.95	0.47	0.39	0.26	4359.06	3602.44	2392.04	3,9352.67	3,2522.02	2,1594.76	8718.13	7204.88	4784.07
Ind	-5.66	-5.50	-5.14	0.37	0.30	0.20	4359.06	3602.44	2392.04	3,9352.67	3,2522.02	2,1594.76	8718.13	7204.88	4784.07
particles	-9.96	-9.80	-9.44	3×10^{10}	2.5×10^{10}	$1.6 imes 10^{10}$	3×10^{10}	2.5×10^{10}	1.6×10^{10}	3×10^{10}	2.5×10^{10}	1.6×10^{10}	3×10^{10}	2.5×10^{10}	1.6×10^{10}

Table S6. Input values for ELPOS calculated by the implemented temperature adjustment; log K_{OW} and K_{OC} are not presented as they were not changed.

Table S7. Maximum deposition rates of PAHs $(\mu g \cdot m^{-2} \cdot a^{-1})$ and metals $(mg \cdot m^{-2} \cdot a^{-1})$ in each of the sampled peat cores and calculated ETD (km).

	Chry	B[b+k]F	B[a]P	Ind	Cu	Zn
GB 1	15	30	15	33	6	55
GB 2	24	15	14	32	5	35
GB 3	24	22	6	17	4	71
ELB 1	31	13	7	15	2	42
ELB 2	10	14	5	30	2	40
ELB 3	10	15	6	28	2	31
SB 1	7	9	10	19	2	23
SB 2	14	10	7	11	2	37
SB 3	7	9	5	14	1	31
GLB 1	7	6	2	8	2	34
GLB 2	12	12	7	21	1	16
GLB 3	11	11	6	15	1	10
ETD (km)	292	281	321	310	173	222

Table S8. Empirically determined travel distances of several metals derived from other studies with standard error (SE), significance level (p), and coefficient of determination (\mathbb{R}^2).

Study	Metal	ETD (km)	SE (km)	р (-)	R ² (-)
	Ni	23.53	1.25	0.000	0.92
Freedman <i>et al.</i> [43]	Cu	22.36	1.12	0.000	0.91
	Cu	30.74	5.75	0.001	0.78
Nieboer et al. [44]	Ni	21.31	4.74	0.002	0.72
	Zn	67.15	24.64	0.026	0.48
	Cu	32.56	4.14	0.000	0.64
Kettles and Bonham-Carter [45]	Pb	21.32	2.69	0.000	0.64
	Zn	66.47	12.71	0.000	0.44

Figure S1. (A) Particle-CTD calculated by both models as a function of the air-water partition coefficient (K_{AW}); and (B) Particle-CTD (normalized to the CTD at 14 °C) calculated with ELPOS as a function of temperature for three air-water partition coefficients. The CTD of a completely particle bound substance should not depend on the air-water partition coefficient and also not on the temperature (as in both models, wet and dry deposition are not implemented as temperature-dependent processes). For The Tool, no dependence of CTD on K_{AW} was observed, whereas the CTD calculated by ELPOS was increasing with temperature for $\log(K_{AW}) > -9$. Therefore, we chose a K_{AW} of -9 to simulate the particle behavior in both models. Moreover, the temperature dependence of CTD in ELPOS was negligible for this $\log(K_{AW})$, whereas a clear dependence on temperature (caused by apparent partitioning into the gas phase) was observed for $\log(K_{AW}) > -9$.

Table S9. Characteristic travel distances of PAHs and particles, 95% confidence intervals (CI) and fraction bound to particles calculated by The Tool for different temperature scenarios and with regionalized settings.

		0 °C		_	4 °C	2			13 °C
	CTD	95%	Particle	CTD	95%	Particle	CTD	95%	
	(km)	CI	Fraction (%)	(km)	CI	Fraction (%)	(km)	CI	Particle Fraction (%)
Phen	1633	483–5514	0.7	325	51-2066	0.4	258	50-1329	0.2
Flt	596	212-1673	13.4	149	33-675	8.0	116	29-458	2.5
B[a]A	66	13-329	87.4	44	6–298	78.4	28	4-205	47.4
Chry	378	295–483	89.2	225	75-672	80.9	113	31-409	50.0
B[b]F	355	305-405	98.4	336	231-489	97.0	293	153-559	89.6
B[a]P	375	346-405	99.4	355	220-571	98.8	285	142-572	94.5
Ind	380	364–398	100	375	343-410	99.9	352	257-487	99.5
particles	388	388–388	100	388	388-388	100	388	388-388	100

Figure S2. Time trends of reconstructed deposition rates of Ind in the sampled bogs (Giant Bog (GB). Eagle Lake Bog (ELB). Spruce Bog (SB) and Green Lake Bog (GLB)). The three data series per bog represent the three replicate cores per site.

Figure S3. Average maximum PAH deposition rates along the transect; error bars indicate standard deviation of the three peat profiles per bog.

		0 °C		4 °C	13 °C			
	CTD (km)	Particle Fraction (%)	CTD (km)	Particle Fraction (%)	CTD (km)	Particle Fraction (%)		
Phen	2376	0.2	345	0.1	266	0.1		
Flt	704	1.7	158	1.2	120	0.5		
B[a]A	378	21.1	142	15.4	54	7.4		
Chry	480	23.9	282	17.6	133	8.6		
B[b]F	457	73.6	432	65.6	373	45.7		
B[a]P	482	78.6	456	71.6	366	52.6		
Ind	490	95.0	483 92.8		454	85.0		
particles	517	100.0	517	100.0	517	100.0		

Table S10. Characteristic travel distances of PAHs and metals and fraction bound to particlescalculated by ELPOS for different temperature scenarios and with regionalized settings.

Table S11. Sensitivity of the CTD to model input parameters estimated with The Tool.

	Windspeed	Height of Air	Aerosol Deposition Velocity	Rain Rate	t _{1/2} in Air	t _{1/2} in Water	t _{1/2} in Soil	K _{AW}	K _{OW}
Phen	1.00	0.05	0.00	0.02	0.93	0.01	0.00	0.03	0.00
Flt	1.00	0.08	0.01	0.06	0.91	0.00	0.00	0.02	0.06
B[a]A	1.00	0.58	0.02	0.54	0.38	0.00	0.00	0.18	0.71
Chry	1.00	0.36	0.10	0.26	0.60	0.00	0.00	0.41	0.47
B[b]F	1.00	0.92	0.25	0.62	0.07	0.00	0.00	0.05	0.15
B[a]P	1.00	0.91	0.27	0.60	0.08	0.00	0.00	0.07	0.11
Ind	1.00	0.99	0.30	0.64	0.01	0.00	0.00	0.01	0.03
particles	1.00	1.00	0.31	0.64	0.00	0.00	0.00	0.00	0.00

Table S12. Sensitivity of the CTD to model input parameters estimated with ELPOS.

	Temperature	Wind speed	Height of Air	Aerosol Deposition Velocity	Rain Rate	Vapor Pressure	t _{1/2} in Air	t _{1/2} in Water	t _{1/2} in Soil	t _{1/2} in Sed	K _{AW}	K _{OW}	K _{OC}
				velocity					Son	Seu			
Phen	0.18	1.00	0.02	0.00	0.02	0.00	0.97	0.00	0.00	0.00	0.02	0.00	0.00
Flt	0.07	1.00	0.02	0.00	0.02	0.00	0.96	0.00	0.00	0.00	0.01	0.00	0.00
B[a]A	0.09	1.01	0.04	0.00	0.02	0.00	0.98	0.00	0.00	0.00	0.11	0.14	0.00
Chry	0.08	1.00	0.08	0.01	0.08	0.00	0.90	0.00	0.00	0.00	0.08	0.13	0.00
B[b]F	0.03	1.00	0.64	0.05	0.57	0.00	0.32	0.00	0.00	0.00	0.00	0.22	0.00
B[a]P	0.08	1.00	0.43	0.04	0.39	0.00	0.52	0.00	0.00	0.00	0.25	0.37	0.00
Ind	0.05	1.00	0.71	0.08	0.61	0.00	0.25	0.00	0.00	0.00	0.19	0.25	0.00
particles	0.00	1.00	1.00	0.12	0.01	0.00	0.00	0.00	0.00	0.00	0.05	0.00	0.00

 \bigcirc 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).