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Abstract: In several cases (e.g., thermal noise, weather echoes, …), the incoming signal to 

a radar receiver can be assumed to be Rayleigh distributed. When estimating the mean 

power from the inherently fluctuating Rayleigh signals, it is necessary to average either the 

echo power intensities or the echo logarithmic levels. Until now, it has been accepted that 

averaging the echo intensities provides smaller variance values, for the same number of 

independent samples. This has been known for decades as the implicit consequence of two 

works that were presented in the open literature. The present note deals with the deriving 

of analytical expressions of the variance of the two typical estimators of mean values of 

echo power, based on echo intensities and echo logarithmic levels. The derived expressions 

explicitly show that the variance associated to an average of the echo intensities is lower 

than that associated to an average of logarithmic levels. Consequently, it is better to 

average echo intensities rather than logarithms. With the availability of digital IF receivers, 

which facilitate the averaging of echo power, the result has a practical value. As a practical 

example, the variance obtained from two sets of noise samples, is compared with that 

predicted with the analytical expression derived in this note (Section 3): the measurements 

and theory show good agreement. 
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List of Symbols 

In order of appearance in the text: 

M Total number of available samples. 

N Equivalent number of independent samples. 
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P Echo power. 

P0 Mean echo power. 

u(x) Step function, defined as 1 if x  0, and 0 otherwise. 

L Power logarithmic Level in dBm (that is, the reference value is set to 1 mW) 

ln(x) Natural logarithm of x. 

L0 Level of the mean echo power. 

Log(x) Base-10 logarithm of x. 

Pi Echo power sample. 

Li Level of the echo power sample (dBm). 

βML Maximum likelihood estimate of the parameter β. 

E Mean value of an estimator. 

 Standard deviation of an estimator. 

EML Mean value of the Log-transformed ML estimator.  

ML Standard deviation of the Log-transformed ML estimator. 

EL Mean value of the level samples based estimator 

L Standard deviation of the level samples based estimator. 

 Euler’s constant. 

(p,q) Riemann’s zeta function. 

1. Introduction 

When interpreting a fluctuating echo from a randomly distributed target, the usual problem is to 

estimate the long-term mean echo power, in order to obtain an estimate of the scatterers contained in 

the volume sampled by the radar pulse (e.g., Doviak and Zrnic [1]). In the case of weather targets, 

since scatterers move with respect to each other as a result of turbulence, shear and varying terminal 

fall velocities, their radar echo fluctuates from one echo to the next. Thus, the problem arises of 

estimating the mean echo power from the volume observed, on the basis of a certain number of echoes. 

This problem has been investigated since the beginning of radar meteorology, see e.g., Marshall and 

Hitschfeld [2], Wallace [3] and Smith [4], among others. The aim of the present note is to demonstrate, 

in closed form, that averaging the echo intensities in the radar receiver (i.e., averaging samples 

proportional to the square of the amplitude of the receiver signal) to obtain the mean echo power is 

more advantageous than averaging echo logarithmic levels (i.e., averaging samples proportional to the 

logarithm of the echo amplitude), since the estimate of the mean echo power that is based on the 

former method has a lower variance. 

The derived formulas can also be useful to estimate the variance of radar receiver thermal noise, 

given the number of averaged samples. Prior to the envelop detector (rectification), which means 

energy detection in the electronic circuit, receiver thermal noise is expected to have a Gaussian 

distribution with a zero mean. After rectification, noise has an exponential one-sided probability 

distribution that fluctuates around a mean, which is the root-mean-squared value of the unrectified 

fluctuations. In other words, the results by Marshall and Hitschfeld [2], which were related to the 

treatise on sound by Lord Rayleigh [5], also apply to the thermal noise of the receiver. Actually, the 

assumption of Rayleigh fluctuations for thermal noise is probably even less controversial than for 
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precipitation scatterers: the assumption of “all nearly equal scatterers” (i.e., no few scatterers 

dominate) for hydrometeors, in fact, requires “near statistical stationarity” or, equivalently, “near 

statistical homogeneity” of the hydrometeors in space. Furthermore, in the case of thermal noise, it is 

possible to assume that the number of available samples, M, coincides with the equivalent number of 

independent samples, N, which, throughout this note, has been used to express, in a simple way, the 

reduction in estimate variance that can be achieved by averaging. However, in the case of weather 

echoes, a considerable correlation may exist from sample to sample and with the typical pulse 

repetition frequency of meteorological radar. For example, Doviak and Zrnic (Section 6.3.1.2) [1], 

presented the variance reduction factor for the square-law receiver as a function of the  

raindrop Doppler velocity spectrum width, the unambiguous velocity, and the total number of 

weighted samples, M. 

Section 2 briefly shows the mathematical background at the basis of the problem (Rayleigh 

scattering), while Section 3 shows that the variance of the estimator, associated to the average of 

intensities, is lower than that associated to the average of power levels on a logarithmic scale. Finally, 

a practical example and application of the derived analytical formulas are presented in Section 4, 

which deals with real noise data derived from a civil marine radar. 

2. Signal Statistics of Meteorological Targets and Noise 

It has been shown (Kerr and Goldstein [6]) that the probability density function of the power p from 

Rayleigh scatterers can be modeled by means of an exponential distribution, namely 

 
 

0 0

expP

u P P
f P

P P

 
   

 
 (1) 

where p0 is a parameter that characterizes the exponential decay rate and which is coincident with the 

mean and standard deviation of the distribution; u(x) is the so-called step function, which is defined as 1 

if x  0, and 0 otherwise. Because of the broad dynamic range of the power that has to be detected by a 

radar, it is often convenient to measure its logarithm compared to a reference power Pm; logarithmic 

amplifiers are used for this purpose. In what follows, the reference value pm has been chosen to be 

equal to 1 mW and a decimal logarithmic scale is used. Consequently, the logarithmic power level L is 

expressed in dBm, namely L = 10 Log(p/pm), where pm = 1 mW and [L] = dBm. 

The probability density function of the logarithmic power level L is (see Wallace [3]): 
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ln10 ln10
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  
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where the most probable value, L0, is coincident with the mean power E{P} = P0, once it is expressed 

on a decimal logarithmic scale and multiplied by 10; in other words, the most probable value, L0, is the 

mean power expressed in dBm: 

L0=10  Log(EP/Pm)=10∙Log(P0/Pm) (3) 

As shown in the sketch presented on page 966 in Marshall and Hitschfeld [2], in the 1st column and 

4th row of Table 1, the logarithmic transformation applied to the exponential distribution causes fL(L) 

to be left-skewed. As can be seen in the 4th column and 4th row of the above-mentioned Table 1, the 
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most probable value, L0, is 2.51 dB larger than the mean logarithmic power level, regardless of the 

mean power value p0. While the standard deviation that characterizes the probability distribution 

function fP(p) coincides with the mean power that is p0, the standard deviation of the probability 

distribution function fL(L) is independent of it. After logarithmic amplification, an increased mean 

power simply means a “rigid”, right-shift of the curve fL(L); furthermore, the standard deviation of a 

single radar echo, characterized by Rayleigh fluctuation (thermal noise, randomly distributed 

scatterers, …), has an intrinsic value of 5.57 dB (see next Section 3). In order to reduce this variance, 

N independent samples can be averaged: Is it better to average intensities or logarithmic levels? In both 

cases the variance of the estimator decreases as 1/N. As we will show in Section 3 (with the help of 

Appendix), averaging (power) intensities always leads to smaller variances. 

3. The Estimators 

On the basis of the two kinds of samples, namely intensity, pi, and logarithmic level, Lj, two 

estimators of the mean echo power can be constructed. The estimator based on the intensity samples, pi, is 

0 ML

1

1
{ }

N

i

i

P P
N 

   (4) 

where the braces {}ML indicate that this estimator is the maximum-likelihood one. The estimator based 

on the logarithmic level samples, Lj, is 

  0

1

1
10 Log / 2.51

N

m j

j

P P L
N 

    , (dBm units) 
(5) 

where the 2.51 dBm term is introduced to obtain an unbiased estimator (see Section 2, just after  

Equation (3)). As the braces in Equation (4) indicate, P0 is estimated in dBm. 

The uncertainty in the estimates of the mean echo power, starting from intensity or logarithmic 

level samples, is quantified by determining which of the two estimators has the smaller variance. Since 

the two estimators are for different (although directly related) parameters, the dBm value of the 

estimator in Equation (4) is computed: 
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i
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The performance index 2 /E is computed as a criterion for comparing the estimators in  

Equations (5) and (6), where E is the average value of the estimator and  is its standard deviation. 

This means that the performance index characterizes the relative uncertainty of the estimator and is 

related to the confidence intervals normalised to the mean value. It is shown, in the Appendix, that the 

mean values of the estimators in Equations (5) and (6) are 

 010 Log /L mE P P   (7) 

and 
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where  is Euler’s constant (Gradshtein and Ryzhik [7]). 
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The standard deviation of the estimators in Equations (5) and (6) are 

             
  

 
 
 

 
  (9) 

and 

               
  

 
  

 

  

   

   

 (10) 

Equation (7) tends to Equation (8) for large values of N; from an operational viewpoint, a direct 

comparison between ML and L is particularly meaningful in the central part of Figure 1, with N 

ranging from 5 to 50) A comparison between the standard deviation of the two estimators is still 

possible for small values of N, as long as the known bias in Equation (8), the 1st term, is removed.  

As Figure 1 shows, the ML estimator has a smaller standard deviation for any number of independent 

samples, N. This result is not new: Similar conclusions can be derived from Figure 2 in the paper by 

Zrnic [8]; however, to the best of our knowledge, this note for the first time presents the analytical 

expressions for both, ML and L (as well as their derivation in Appendix). In the next Section, these 

formulas are applied to two large sample radar noise measurement data sets: The retrieved values from 

the ensembles are consistent with those predicted by the theory. 

Figure 1. Expected standard deviation from an ensemble of N independent samples of 

Rayleigh-distributed echoes. When the power is linearly averaged, the corresponding 

variance (dB scale), is smaller than the variance obtained by averaging power on a decibel 

(dB) scale. In the picture, N, spans from 2 to 200. As can be seen from both Equations (8) 

and (10), when N  1, the intrinsic uncertainty tends to 5.57 dB. 
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4. An Example Based on Noise Measurements from a Civil Marine Radar 

As a practical example of Rayleigh-distributed (in amplitude, hence exponential-distributed in 

power) signals, radar noise measurements have been analyzed at the output of a radar receiver. The 

principal contribution at weather radar frequencies is found to be receiver thermal noise. Prior to the 

envelop detector (rectification), which means energy detection in the electronic circuit, receiver 

thermal noise is expected to have a Gaussian distribution with a zero mean. After rectification, the 

noise has an exponential one-sided probability distribution, fluctuating around a mean that is the  

root-mean-squared value of the unrectified fluctuations. Both presented data sets have been derived 

from the output of a low-cost and easily achievable civil marine radar. The main features of the system 

are described in Table 1 of the paper by Gabella et al. [9]. The present analysis is based on two sets 

made of slightly more than ten thousands noise measurements derived once per minute (one week of 

data). The standard deviation of these two noise measurement sets resulted to be 0.13 dB and 0.12 dB, 

respectively. Are such average values of the two realizations consistent with the mathematical 

prediction obtained in Section 3? Before answering this question, it is necessary to describe, in more 

detail, how the time-averaged, 1-minute-sampled noise measurements were derived: 8 contiguous 

pulses at far ranges (and at the zenith) were acquired for 9 consecutive shots: the 8 contiguous pulses 

were separated by the pulse length, which is 400 ns; the 9 consecutive shots are separated by the pulse 

repetition time, which is 1,250 s. The antenna performs 22 revolutions each minute; however, only data 

from the first 16 revolutions (out of 22) were averaged on a linear power scale (algebraic average: dBm 

values are antilog transformed, then averaged, then transformed again on a decibel logarithmic scale). We 

assume that all such noise samples were independent. This would mean N = 1,152 (8 times 9 times 16) 

independent samples. If the noise measurements were the results of averaging logarithmic levels 

(geometric average), then the expected standard deviation would be 5.57/1,152
0.5

 = 0.16 dB, as can 

easily be derived from Equation (10). However, this is not the case, since it is known that intensities 

were averaged (algebraic average). Consequently, in order to predict the expected  

standard deviation, we would better use Equation (8), which in fact gives 0.13 dB. This value of 

standard deviation is much closer to those which were derived using the two civil marine radar 

experimental data sets. 

5. Conclusions 

When the incoming signal envelope to a radar receiver is Rayleigh-distributed, how is the variance 

reduced by the geometric or algebraic average of N independent samples? Analytical expressions of 

the variance of the two estimators have been given, and these have enabled a quantitative comparison 

to have been made between them. Confirming previous studies, we find that averaging echo 

intensities, rather than echo logarithmic levels, leads to smaller variance. 
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Appendix  

A1. Mean and Variance of the Log-Transformed Maximum Likelihood Estimator 

We obtain the standard deviation of the estimator {10  Log(P0/Pm)} in Equation (6). 

We know that the random variable in Equation (4) has the following distribution of probability (see 

Wallace [3]; u(x) is the step function, see also list of symbols at the end ): 

 
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 01

0

1
e
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x

PNN
f x x u x

P N


 
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 (A1) 

since the random variable obtained by Log-transformation (base-10 Logarithm) has the following 

probability distribution function: 



Atmosphere 2014, 5 99 

 

   
1

10 10
Log e

x x

Logg x f    (A2) 

then we can conclude then that the estimator 
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Hence the standard deviation of the right therm in Equation (6) will be 
2

1210 II  , where: 
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A2. Computation of I1 

We have: 
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substituting in Equation (A6)  = 10
x
 and using Equation (4.352.1) in Gradshteyn and Ryzhik [7], page 

576, we obtain that: 
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where  = Euler’s constant (Gradshteyn and Ryzhik [7], Equation (8.367.1) page 946). 

A3. Computation of I2 

Since: 
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substituting again
x10  in the above-listed equation and using (see Gradshteyn and Ryzhik [7], 

Equation (4.538.2) page 578, Equations (8.365) and (8.366) page 945, and Equation (8.339.1) page 

938) we obtain: 
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where (see Gradhstein and Ryzhik [7], Equation (4.251.4) page 537 and Equation (8.366.11) page 946). 
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A4. Conclusions 

From Equations (A7), (A9) and (A10) we conclude that the estimator in Equation (6) has the 

following mean and variance: 
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