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Abstract: The air quality in Taiwan, at present, is determined by a pollution standard index 

(PSI) that is applied to areas of possible serious air pollution and Air Quality Total Quantity 

Control Districts (AQTQCD). Many studies, both in Taiwan and in other countries have 

examined the characteristics and levels of air pollution with PSI. This study uses air quality 

data collected from eight automatic air quality monitoring stations in an AQTQCD in central 

Taiwan and discusses the correlation between air quality variables with statistical analysis in 

an attempt to accurately reflect the difference of air quality observed by each monitoring 

station as well as to establish an air quality classification system suitable for the whole 

Taiwan. After using factor analysis (FA), seven air pollutants are grouped into three factors: 

organic, photochemical, and fuel. These three factors are the dominant ones in regards to the 

air quality of central Taiwan. Cluster analysis is used to classify air quality in central Taiwan 

into five clusters to present different characteristics and pollution degrees of air quality. This 

research results should serve as a reference for those involved in the review of air quality 

management effectiveness and/or the enactment of management control strategies. 

Keywords: statistical analysis model; factor analysis; air quality total quantity control 

district; PSI 
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1. Introduction 

At present, the status of Taiwan’s air quality is communicated to the public with the Pollution 

Standards Index (PSI) which is based on a similar system created by the US Environmental Protection 

Agency (EPA). Taiwan first used the PSI in 1993 to measure air pollution levels by the ROC 

Environmental Protection Administration. PSI calculates the sub-index of pollutants based on the 

influence of five pollutants: particulate matter with a particle size below 10 microns (PM10), sulfur 

dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3), all of which are 

measured on a daily basis. The maximum values of the daily sub-index then are used as the PSI value 

measured by the monitoring station. The main purpose is to monitor the integral air quality of central 

Taiwan and suggest areas for improvement. Through the evaluation of PSI, local air quality statuses can 

be fully understood. The concentration levels of the five air pollutants are used to determine PSI which is 

then relayed as a number between 0 and 500 and classified into Good (0~50), Moderate (51~100), 

Unhealthy (101~199), Very Unhealthy (200~299), and Hazardous (≥300) levels. The ranges for PSI and 

pollutant concentration levels as well as PSI are shown in Tables 1. 

Table 1. Comparison table of pollutant concentration and pollution sub-index. 

Pollutant PM10 SO2 CO O3 NO2 

Statistics 
24-hour 

average  

24-hour 

average 

Maximum 8-hour average 

within a 24-hour period 

Maximum and minimum 

within a 24-hour period 

Maximum and minimum 

within a 24-hour period 

Unit μg/m3 ppb ppm ppb ppb 

PSI  

50 50 30 4.5 60  

100 150 140 9 120  

200 350 300 15 200 600 

300 420 600 30 400 1,200 

400 500 800 40 500 1,600 

500 600 1,000 50 600 2,000 

Multivariate monitoring methods that consider all available data simultaneously can extract key 

information about the relationships and combined effects of air pollutants. When failures occur in air 

quality management systems, univariate monitoring methods are often inadequate in identifying causes 

because the signal-to-noise ratio is very low in each air pollutant measurement. However, multivariate 

monitoring can improve the signal-to-noise ratio through averaging, resulting in a more realistic 

evaluation of the environmental context [1–4]. In the field of chemometrics, multivariate statistical 

techniques have become one of the most active research tools in modeling and analysis over the last 

decade [5,6]. However, to the authors’ knowledge, only limited research on the effectiveness  

of multivariate models for the assessment and management of air pollution has been conducted  

thus far [7–9]. 

Air pollution is a well-known environmental problem associated with urban areas around the world. 

Various monitoring programs have been used to determine air quality by generating vast amounts of 

data on the concentration of each of the previously mentioned air pollutant in different parts of the world. 

The large data sets often do not convey air quality status to the scientific community, government 

officials, policy makers, and in particular to the general public in a simple and straightforward manner. 
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This problem is addressed by determining the Air Quality Index (AQI) of a given area. AQI, which is 

also known as the Air Pollution Index (API) [10] or Pollutant Standards Index (PSI) [11], has been 

developed and disseminated by many agencies in the U.S. Canada, Europe, Australia, China, Indonesia, 

Taiwan, etc. [12,13]. 

Although more vigorous air pollution emission standards have been implemented in Taiwan to 

reduce emission of air pollutants, increasing numbers of manufacturing plants and various vehicles lead 

to no obvious improvement of the air quality in regions with concentrated sources of air pollution. As a 

result, it is necessary to promote air quality total quantity control strategies for further improvement in 

air quality. At present, the EPA in Taiwan has established 72 automatic air quality monitoring stations 

and divided Taiwan into seven Air Quality Total Quantity Control Districts. In the northern part, there is 

Hsinchu-Miaoli and the central part consists of Yunlin-Chiayi-Tainan, Kaohsiung-Pingtung, Yilan and 

Hualien-Taitung. It is expected that with the air quality total quantity control scheme of each district, 

seriously increasing air quality problems can be solved. Among these districts, the central part includes 

Taichung City, Changhua County and Nantou County. 

This study explores eight existing air quality monitoring stations in central Taiwan. In accordance 

with the multivariate statistics method, this study selects seven important air pollutants to examine 

pollution levels, status, and air pollution characteristics and corresponding PSI as well as discusses the 

correlations between pollutants and distribution characteristics of air pollution at each monitoring 

station to accurately reflect the differences in air quality between monitoring stations. It is expected to 

serve as a reference to establish evaluations suitable to pollution characteristics and classification 

systems for air quality monitoring stations in Taiwan. 

In accordance with the air population characteristics of the Air Quality Total Quantity Control 

District, as promulgated by the Environmental Protection Administration, Executive Yuan, Taiwan, 

seven air pollutants were selected in this study in order to comply with the Administration’s goal of 

formulating the emission standards policy. The research results also make it more legitimate and 

practicable for various air quality total quantity control districts in Taiwan to carry out air control in the 

future. Furthermore, the applied multivariate statistical analysis can determine the features of air 

pollution in each Air Quality Total Quantity Control District and the distribution characteristics among 

various clusters. Meanwhile, it can also prove the data collected from the original investigation. The 

statistical model, after investigation and verification, can be used to evaluate whether the effect of 

implementing air quality management achieving the target or not. 

2. Methodology 

2.1. Selection of the Air Quality Monitoring Stations 

The EPA in Taiwan assigns Air Quality Total Quantity Control Districts according to geographic 

condition, industrial type, weather conditions and groups of municipalities or cities, as one district may 

be affected by the same air pollutants. This study selects eight automatic air quality monitoring stations 

in the part of the central district shown in Figure 1. Figure 2 is the geographic location of Taiwan in Asia. 

Its administrative areas include Taichung City (Xitun station, Fengyuan station, Shalu station, Dali 

station), Changhua County (Changhua station, Erlin station) and Nantou County (Nantou station, 

Zhushan station). The air quality in this Air Quality Total Quantity Control District has long been ranked 
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as a third air quality protection class while at present there is one major air pollution source, Taichung 

Thermal Power Plant, the world’s largest coal-fired power plant as well as one of the top two carbon 

emitters in the world. In addition, there are many factories located in Changhua Coastal Industrial Park, 

Changhua County; it brought impact on the air pollution quality in this area seriously. 

Figure 1. Geographic locations of the eight Air Quality Monitoring Stations established by 

Environmental Protection Administration (Taiwan) in the study region. 

 

2.2. Statistical Analyses—Factor Analysis 

In order to select the elements to be included in the FA, a minimum of 70% of the samples need to 

have measurable levels of an element. In principle, FA actually groups the elements whose 

concentrations fluctuate together from one sample to another and separates these elements into  

factors [4,14–16]. Factor analysis is used for source apportionment in environmental data with the 

argument that elements that fluctuate together have some common characteristics. Ideally, each 

extracted factor represents a source affecting the samples. The factor analysis was conducted with the 

Statgraphics Plus program package (Statgraphics Manual 3.1, 1997). The initial components were 

rotated using the varimax method to obtain final eigenvectors with the most representatives of individual 

sources of variation. Although there are no well-defined rules on the number of factors to be retained, 

usually either factors that are meaningful or factors with eigenvalues greater than one are retained. In 
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theory, irrelevant factors have zero eigenvalues and eigenvalues less than one indicate that a factor 

contributes less than a single variable. The physical meaning of the factors must be interpreted by 

observing which elements or variables display a high (≥0.25) loading within the factor. Loadings of less 

than 0.25 in absolute value may be dominated by random errors. There is not a set rule for the selection 

of the number of factors, but in application, the selected number of the factors must explain at least 70% 

of the total variance. Then the data are screened for outliers using their factor scores. The magnitude of a 

factor’s (i.e., source’s) influence on a specific sample is given by the factor score for that sample [17,18]. 

The factor score is the number of standard deviations from the mean of that factor as averaged over all 

the samples; in other words, it is the value of the factor. An average contribution from the factor results 

in a score of zero, a larger than average contribution results in a positive score and a lower than average 

contribution results in a negative score. Factor scores greater than one indicate a strong influence of that 

source or factor on that individual sample. 

Figure 2. The geographic location of Taiwan in Asia. 
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2.3. Cluster Analysis 

Cluster analysis is an exploratory data analysis tool for solving classification problems. Its objective 

is to sort cases into groups, or clusters, so that the degree of association is strong between members of the 

same cluster and weak between members of different clusters. Each cluster thus describes, in terms of 

the data collected, the class to which its members belong; and this description may be abstracted through 

use from the particular to the general class or type. Hierarchical agglomerative clustering is the most 

common approach as it provides intuitive similarity relationships between any one sample and the entire 

dataset. It is typically illustrated by a dendrogram (tree diagram) [19,20]. The dendrogram provides a 

visual summary of the clustering processes, presenting a picture of the groups and their proximity, with 

a dramatic reduction in dimensionality of the original data. Additionally, cluster analysis helps in 

grouping objects (cases) into classes (clusters) on the basis of similarities within a class and 

dissimilarities between different classes. The class characteristics are not known in advance but maybe 

determined from the analysis. The results of CA help in interpreting the data and indicate patterns [6,21]. 

2.4. Discriminant Analysis 

Discriminant analysis is used to determine the variables that discriminate between two or more 

naturally occurring groups. It uses raw data to construct a discriminant function for each group [22] as 

in Equation (1): 

+=
=

n

j
ijijii pwk)G(f

1
 (1)

where i is the number of groups (G), ki is the constant inherent to each group, n is the number of 

parameters used to classify a set of data into a given group, wj is the weight coefficient assigned by DA 

to a given selected parameter (pj). In this case study, three groups of temporal (three seasons) and 

spatial (three sampling regions) evaluations have been selected and the number of analytical 

parameters used to assign a measure from a monitoring site into a group (season or spatial) has been 

taken as n. Discriminant analysis is applied to the raw data by using the standard, forward stepwise and 

backward stepwise modes to construct discriminant functions to evaluate both the spatial and temporal 

variations in air quality. The temporal (season) and the spatial (site) were the grouping (dependent) 

variables, while all the measured parameters constituted the independent variables. 

3. Results and Discussion 

3.1. Selection Time and Range of Monitoring Data 

In order to obtain complete and diversified pollutant data, this study considers seven pollutants 

including SO2, NO2, CO, PM10, O3, total hydrocarbon compounds (THC) and non-methane hydrocarbon 

compounds (NMHC) for factor analyses to identify the major factors of air quality statuses in the Air 

Quality Total Quantity Control District. The selected series data mainly come from the website of 

Taiwan’s EPA (http://www.epa.gov.tw) for the period between 1 January 2010 and 30 September 2011. 

During this period, some data are incompletely collected because of un-expected instrument down time 

for repair and maintenance; all of the incomplete data sets are deleted so that there are 610 sets of daily 

air pollution samples. All statistical analyses were carried out with SPSS for Windows, version 17.0. 
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3.2. Results of the Factor Analysis 

3.2.1. Selecting the Factor Analysis Results 

In the factor analysis implemented in this study, the maximum varimax rotation is used to carry out 

orthogonal rotation to explain the number characteristics of factors. As shown in the analysis results, 

there are three factors with the eigenvalues greater than one in Table 2. Their accumulated total 

variance explained is 66.212%. The eigenvalues of the three factors are 1.837, 1.522 and 1.013, 

respectively. These three factors are selected to illustrate the major factors that affect the air quality for 

the Air Quality Total Quantity Control District. 

Table 2. Results factor analyses and the variances. 

Components Initial Eigenvalues % of Total Variance Cumulative Variance % 

1 1.837 27.931 27.931 

2 1.522 22.563 50.494 

3 1.013 15.718 66.212 

4 0.945 10.750 76.962 

5 0.750 9.807 86.769 

6 0.578 7.114 93.883 

7 0.287 6.117 100.000 

3.2.2. Determination of Factors 

The number of major factors can be decided from the number of eigenvalues greater than one. Table 3 

shows the component matrix table after orthogonal rotation in order to describe the characteristics of 

each factor. It can be used to describe differences between the concentration levels of each air pollutant 

in the Air Quality Total Quantity Control District. 

Table 3. Matrix of air quality factor loadings for the Air Quality Total Quantity Control District. 

Pollutants 
Factors 

1 2 3 

NMHC 0.876 −8.159E-02 −7.255E-02 

THC 0.807 0.146 0.466 

NO2 7.034E-02 0.866 4.625E-02 

PM10 9.265E-02 0.751 −5.322E-03 

O3 −4.046E-02 0.691 7.378E-02 

SO2 5.873E-02 −0.139 0.872 

CO −1.309E-02 0.232 0.754 

Factor 1 

Factor 1 is composed of NMHC and THC. Their total variance as shown in Table 2 reaches 27.931%. 

Factor loadings of NMHC in Factor 1 in Table 3 reach 0.876 while those of THC are 0.807. These 

two have very similar and approximate loading factors that show a relatively high correlation between 

these two pollutants. These volatile organic compounds mainly come from industrial activities and 
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vehicle fuel in the Air Quality Total Quantity Control District. Among them, non-NMHC generates 

photochemical reaction. They further form important air pollutant such as ozone and it is likely that they 

further react and form secondary PM10 and pose a serious threat to the respiratory systems of humans [23]. 

Under the reactions of active oxygen containing free radicals such as atomic oxygen, ozone, and 

hydrogen atoms, organic compounds including NMHC and THC generate a series of chemical 

compounds including aldehyde, ketone, alkane, alkene and the important intermediate free radicals that 

facilitate the production of NO2 via the oxidization of NO. This results in the production of the secondary 

pollutants of smog such as O3, aldehyde, and peroxyacyl nitrates (PAN). Additionally, NMHC produced 

from volatile or burning fuels will react with O3 or oxygen in atomic states to further produce aldehyde 

compounds [24]. In short, NMHC and THC are both volatile organic compounds and although they have 

low toxicity to humans, they do contribute to air pollution in the district. Therefore, Factor 1 has been 

called “Organic Pollution Factor.” 

Factor 2 

Factor 2 consists of NO2, PM10 and O3 with total variance in Table 2 reaching 22.563%. 

Among the factor loadings shown in Table 3, NO2 has the highest loading with 0866. The main 

source of NO2 comes from vehicle emissions, fossil fuel power plants and other industrial producers. 

During combustion, NO is generated and oxygen in the air immediately oxidizes NO to form NO2. NO2 

is also an important indicator of the source of air pollution. But when there is no wind, NO emitted by 

vehicles accumulates in the air to trigger a photochemical reaction resulting in the composition of  

smog pollutants. 

Among the loadings of Factor 2 in Table 3, PM10 is also found with a high level of 0.751 and is 

therefore an important indicator of air pollution. PM10 in the atmosphere comes mainly from two types: 

primary aerosols and secondary aerosols. Primary aerosols are emitted directly by human emission 

sources (factories and vehicle emissions) as well as from non-human emission sources (street and soil 

dust and salt from the nearby sea). These particles, due to the scattered sunlight, influence visibility [25]. 

This is especially clearly observed when relative humidity is high. If NO2 and other irritant gases have 

high concentration levels, they combine with PM10 to jointly form brown smog, a serious indicator of air 

pollution. Among air pollutants, PM10 is considered a major indicator pollutant. In the Air Quality Total 

Quantity Control District that is the subject of this study, Taichung Thermal Power Plant is the greatest 

source of PM10 in the atmosphere. 

The O3 loading of Factor 2 in Table 3 is 0.691. In Taiwan, besides the contributing pollutant, PM10, to 

air pollution, O3 is also another leading pollutant. In busy cities, heavy traffic produces high 

concentration levels of ozone and sometimes, yellow-brownish “smog” can be observed due to the 

generation of nitrides caused by the fuel combustion of vehicles resulting in NO and NO2. O3, at the 

same time, reacts with NMHC and produces smog through a photochemical reaction. O3 is an important 

indicator of air pollution and greatly contributes to air pollution. 

To sum up, NO2, PM10 and O3 are major pollutants that tie closely with photochemical oxidization. 

Although some environmental engineering textbooks indicate that the production of PM10 is not directly 

related to the production of O3, Chou [25] has pointed out that the secondary aerosols of photochemical 

reactions cause high levels of atmospheric PM2.5 and PM10 in Taiwan. Chen and Lee [26] have observed 

that secondary organic aerosols and photochemical reactions of VOCs are closed related to the 
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formation of atmospheric O3. Based on these observations, the production of PM10 should be considered 

to be closely related to the photochemical reactions of atmospheric pollutants. The Factor 2 is called 

“Photochemical Pollution Factor.” 

Factor 3 

Factor 3 consists of SO2 and CO with a total variance reaching 15.718% as shown in Table 2. 

In Factor 3, SO2 has a relatively high loading of 0.872. SO2 is mainly produced from the combustion 

of fuel containing sulfur. In this study district, due to the popularity of diesel fuel vehicles as well as the 

influence of industrial discharged pollutants, SO2 has become a major contributor to air pollution. 

Additionally, SO2 is generated by Taichung Thermal Power Plant as it burns coal, thereby making it an 

important source of this type of air pollution. 

The CO loading of Factor 3 in Table 3 is 0.754. Statistical analysis shows that 86% of CO in the 

atmosphere is emitted from vehicles and only a small portion comes from the incompletely burned fuel 

of factories and the power plant due to gases generated from the incomplete combustion of carbon 

containing fuel. CO is also an important air pollution source indicator and the pollutant with the highest 

concentration level in the air. In the study district, air pollution sources are influenced by vehicles and 

point pollution and that leads to high CO levels in the atmosphere. 

In summary, SO2 and CO are the main results of fuel combustion. The fuel required during 

combustion is, in particular, a fixed pollution source such as creosote, coal, coking coal used for fuel in 

factories and the diesel engines of vehicles that generate the major pollutant, SO2. Due to a lack of oxygen, 

incomplete combustion leads to the production of CO. As a result, Factor 3 is called “Fuel Factor.” 

3.3. Analysis of Air Pollution Characteristics—Cluster and Discriminant Analysis 

For the cluster analysis, this study adopts a two-staged clustering algorithm to acquire approximate 

cluster results via hierarchical methods and then different cluster numbers are tested with the K-mean 

method. As a result, five clusters are selected to classify the differences in air quality. The relationship 

between clusters and factors are indicated in Figure 3. Among various air pollutants, there are some 

common characteristics. If these can be understood, it would benefit the analyses of the changes of 

characteristics of air quality pollution. Table 4 shows the characteristics listed below. 

3.3.1. Cluster 1 

This cluster is shown in Table 4 as having the highest concentration level of NO2 among all of the five 

clusters. However, the score in the photochemical pollution factor (Figure 3) ranks it third because the 

PSI range is between 0 and 100. According to Table 1, NO2, at present, has no corresponding 

environmental air quality standards. When NO2 concentration reaches 600 ppb, its corresponding PSI is 

200. The study district has a high concentration level of NO2 at 497.9 ppb, yet there is no corresponding 

change to PSI. Therefore, it influences the level of photochemical pollution factor in this cluster less 

significantly than that in Clusters 4 and 5. However, if the concentration of NO2 is high, the 

concentration of NO is also high. For example, the emission of NO from vehicles accumulated in the 

atmosphere occur oxidation reaction in photochemistry and it has become one of the pollutants of 

photochemical smog. The resulting pollution level is significant. In addition, this cluster has the third 
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highest organic pollution factor and fuel factor with an average THC concentration level of 2.18 ppb and 

NMHC of 0.49 ppb while the average SO2 concentration level in the fuel factor is 20.74 ppb and CO is 

1.13 ppm. Scores of factors in this cluster are ranked third and lies in the air quality standard between good 

to unhealthy. Based on this cause, this cluster can be determined to experience “serious air pollution.” 

Figure 3. Factor scores of the five clusters. 

 

Table 4. The average and the extreme value of each pollutant among the clusters. 

Cluster 

Number 

Item 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

O3(ppb) 
34.87 

5~74.9 

23.89 

0.15~92.45 

42.34 

7.07~89.71 

37.16 

1.46~98.64 

165.91 

93.50~398.35 

NO2(ppb) 
422.14 

264.5~497.9 

38.28 

0.15~212.05 

48.40 

0.65~97.92 

74.69 

0.81~236.90 

56.81 

15.16~117.23 

PM10(μg/m3) 
98.97 

48~157.3 

78.36 

1.02~136.12 

107.99 

45.36~217.05 

167.03 

99.54~458.18 

125.91 

59.46~230.51 

SO2(ppb) 
20.74 

7.59~35.38 

19.32 

0.2~88.55 

102.27 

48.62~324.90 

27.88 

2.69~100.39 

19.79 

6.04~38.82 

CO(ppm) 
1.13 

0.6~1.74 

1.17 

0.01~8.60 

1.42 

0.75~4.07 

1.62 

0.45~25.86 

1.39 

0.72~6.10 

THC(ppb) 
2.18 

1.32~2.94 

2.02 

0.6~6.64 

2.09 

1.23~3.35 

2.22 

0.68~3.86 

2.06 

1.06~3.03 

NMHC(ppb) 
0.49 

0.17~0.94 

0.60 

0.008~5.44 

0.75 

0.24~1.78 

0.64 

0.006~2.15 

0.51 

0.11~1.52 

Air Quality 

Standards 

Good ~ 

Unhealthful 

Good ~ 

Meoderate 

Moderate ~ Very 

Unhealthful 

Moderate~ 

Hazardous 

Moderate ~ Very 

Unhealthful 

Daily Statistics 12 305 37 236 20 
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3.3.2. Cluster 2 

Figure 3 shows that the factor scores of this cluster have the lowest rankings for photochemical 

pollution factor and fuel factor as well as the second lowest ranking of organic pollution factor. This 

indicates good air quality within this cluster. As shown in Table 4, this cluster has lower concentration 

levels of air pollutants than other clusters and there have been no sudden increases. As a result, the air 

quality standards mostly fall between good and moderate, most of time it is the latter. If PM10 is between 

50 and 150 μm/m3, air quality standards are determined to be moderate. PM10 in this cluster is usually 

higher than 50 μm/m3 while concentration levels of other air pollutants remain low. The above analysis 

results categorize this cluster as “light air pollution.” 

3.3.3. Cluster 3 

As indicated by Figure 3, this cluster has the highest fuel factor score but the fourth highest 

photochemical pollution factor score. Table 4 shows that the average SO2 concentration level in the fuel 

factor in Cluster 3 is 102.27 ppb, the highest among all clusters and CO at 1.42 ppm, the second highest 

among all clusters. The concentration level of SO2 is between 48.62 and 324.90 ppb, indicating that it is 

significantly influenced by fuel factor to some degree. This cluster merely has the fourth highest 

photochemical pollution factor score with an average NO2 concentration level at 48.4 ppb, PM10 at 

107.99 μm/m3, and O3 at 42.34 ppb. This shows an insignificant increase in the concentration level of 

photochemical pollution factor in areas with high fuel factor loadings. The air quality standards of the 

cluster are between moderate and very unhealthy and are considered moderate most of the time. Winter 

is when the air quality standards are very unhealthy with an average concentration level of SO2 over 24 h 

reaching 324.9 ppb. In addition, this cluster also has some days when PM10 concentration is higher than 

150 μm/m3 resulting in unhealthful air quality standards. The above analysis allows to conclude that this 

cluster experiences “serious fuel factor air pollution.” 

3.3.4. Cluster 4 

This cluster in Figure 3 has a photochemical pollution factor score that is, abnormally high as well as 

the second highest organic pollution factor and fuel factor scores. This indicates seriously air pollution. 

Table 4 shows that the average concentration level of PM10 at 167.03 μm/m3 is the highest among all 

clusters, NO2 at 74.69 ppb is the second highest among all clusters, and O3 at 37.16 ppb is the third 

highest among all clusters. This study district is near the Taichung Thermal Power Plant, an area 

vulnerable to air pollution, especially PM10. Thus, PSIs are often at the high levels. In this cluster, on 

most days, the average 24-hour PM10 exceeds 150 μm/m3. Moreover, even higher PM10 concentration 

levels are identified between late autumn and early spring. The highest concentration level on these days 

reached 458.18 μm/m3 and the air quality standards are at a hazardous level. In this cluster, fuel factor 

also has high scores with an average SO2 concentration level at 27.88 ppb, the highest among all clusters 

as well as CO at 1.62 ppm, the highest among all clusters. Among them, the maximum average 8-hour 

CO once reached 25.86 ppm resulting in hazardous levels of air quality. In addition, this cluster has the 

second highest organic pollution factor score with an average THC concentration level at 2.22 ppb, the 

highest among all clusters as well as NMHC at 0.49 ppb, the second highest among all clusters. But 
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because organic pollution factor is not clearly defined in PSI, it only has a minor influence in air 

pollution. The air quality standards of this cluster are between moderate to hazardous, and on most days, 

they are considered hazardous. The above analysis allows us to conclude that this cluster has “very 

serious photochemical pollution.” 

3.3.5. Cluster 5 

Figure 3 shows that this cluster has the second highest photochemical pollution factor score, the third 

highest fuel factor score, and the lowest organic pollution factor score. In Table 4, this cluster has an 

average O3 concentration level in the photochemical pollution factor at 165.91 ppb, the highest score 

among all clusters. NO2, at 56.81 ppb, has the third highest score among all clusters and PM10, at 125.91 

μm/m3, has the second highest score among all clusters. In this cluster, O3 is a major air pollutant with a 

maximum hourly concentration level higher than 120 ppb resulting in air quality standards considered as 

unhealthy. The average concentration of NO2 in this cluster is not high and there are not many days in 

which the level of PM10 exceeds 150 μm/m3. In terms of fuel factor, the average NO2 concentration is 

19.79 ppb, the fourth highest score among all clusters. CO, at 1.39 ppm, has the second highest score 

among all clusters but it has less influence on air pollution than the photochemical pollution factor. It is 

worth noting that for photochemical pollution factors, Cluster 4 scored about 26.3 and Cluster 5 scored 

17.5; Cluster 4 has more influence on air pollution than Cluster 5 because in Cluster 4, PM10 is the major 

pollutant with more days at higher concentration levels (236 days) than those in Cluster 5 (20 days) with 

O3 as its primary pollutant. These two pollutants are major factors that contribute to serious air pollution 

and in Cluster 1 there were only 12 days that had higher concentration levels of NO2 than these two 

clusters. As mentioned above, the NO2 concentration range is between PSI 0 and 100 and at present, 

there are no corresponding environmental air standards. Therefore, it does not significantly influence the 

level of air pollution in Clusters 4 and 5 so the air quality standards are considered to be between 

moderate and very unhealthy for a total of 20 days. Among these days, 6 days were very unhealthy due 

to high O3 concentration levels. In short, this cluster is regarded as having “serious photochemical 

pollution” issues. 

3.3.6. Discriminant Analysis 

Discriminant analysis is a method used to determine objectively the category of a new sample based 

on a known classification and the collected characteristics of a certain quantity. It is carried out to 

calculate the centroid of each cluster, or the intersection of individual discriminant parameters, using the 

discriminant quantity obtained in a study. The value of this calculated centroid represents the unique 

characteristics of each cluster; the discriminant parameters in the cluster are then combined linearly to 

calculate the discriminant function. 

This study uses various discriminant parameters combination tests as well as discriminant analyses. 

First, seven air pollutants are selected as discriminant parameters. The actual cluster levels are then 

decided according to the results of previous cluster analysis; the coefficient of the discriminant function is 

introduced to acquire the ratio of each monitoring station and the discriminant clusters. Cross comparisons 

of the discriminant clusters and actual clusters are conducted to determine how they are different. 
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Table 5 shows the test results for each cluster after discriminant analysis with a high fitness of 

discriminant clusters acquired with a discriminant function and actual clusters acquired with cluster 

analysis (the percentage of discriminant accuracy). Among them, Clusters 1, 2, 3, 4, 5, respectively 

reaches 100%, 93.44%, 86.48%, 97.45%, and 95.00%, with a total fitness of 94.75%, very accurate 

results. In particular, Clusters 1, 4, and 5 feature serious photochemical pollution with an accuracy 

percentage higher than 95.00%, indicating that the error percentage for the determination of serious 

photochemical pollution and very serious photochemical pollution is low. Hence, the cluster analyses 

are acceptable. 

Table 5. Results of discriminant analysis for each cluster. 

Discriminant  

Analyses 

Actual Cluster 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Discriminant Accuracy% 

Cluster 1 12 0 0 0 0 12/12*100 = 100 

Cluster 2 0 285 7 13 0 285/305*100 = 93.44 

Cluster 3 0 2 32 3 0 32/37*100 = 86.48 

Cluster 4 1 2 3 230 0 230/236*100 = 97.45 

Cluster 5 0 0 0 1 19 19/20*100 = 95.00 

Total 13 289 42 247 19 578/610*100 = 94.75 

4. Conclusion 

This study uses air quality data from eight automatic air pollution monitoring stations in central 

Taiwan as well as multivariate statistical methods to examine the correlation among air quality variables 

with the expectation of truly reflecting the difference of air quality surrounding each monitoring station. 

First, factor analysis shows that there are organic pollution, photochemical pollution and fuel factors that 

dominate air quality. In terms of cluster analysis, this study categorizes the air quality of the Air Quality 

Total Quantity Control District in central Taiwan into 5 clusters. All 5 clusters have an average 

discriminant accuracy of 94.75% after discriminant analysis. This study incorporates relevant PSI 

information released by the EPA of Taiwan in order to effectively assess the air quality of the Air 

Quality Total Quantity Control District in central Taiwan as well as serve as a reference for 

governmental authorities to manage applications and approvals regarding air quality models, make 

efforts to improve air quality, and enact other relevant strategies. 

When carrying out the factor analysis, the features and levels of air pollution in Air Quality Total 

Quantity Control District cannot be recognized. After applying the cluster analysis, the features and 

levels of air pollution in Air Quality Total Quantity Control District can then be known. PSI information 

can also determine the level of air pollution from each cluster. Finally, by using SPSS and cluster 

analysis, high recognition rate can be acquired and it verified the accuracy resulted in cluster analysis. 

The authors trust that applying the multivariate statistical analysis as well as the application of PSI in 

each cluster which explored the level of air pollution has to achieve the policy target of management 

system in Air Quality Total Quantity Control District. It also has to satisfy the indicator system purpose 

and management target of the accurate implementation so that required various management 

information can be exactly reflected in order to conform to the Air Quality Total Quantity Control 
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District. However, the results are also a practical methodology for readers who possess basic concept of 

statistics and multivariate statistical analysis. In this study, the ultimate objective is to establish the air 

pollution characteristics for each monitoring station and a system suitable for classifying the air quality 

in Taiwan. The results will be valuable references to be used by air quality monitoring stations for 

improving the monitoring of air quality in Taiwan. Besides, the results obtained in this study by coping 

with the PSI data published by Taiwan Environmental Protection Administration are effective in judging 

the air quality of the Central Taiwan Total Quantity Control District; they are also valuable references to 

assist in future management. 
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