Next Issue
Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Atmosphere, Volume 4, Issue 3 (September 2013), Pages 237-314

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-4
Export citation of selected articles as:

Research

Open AccessArticle Extension Agrometeorology as the Answer to Stakeholder Realities: Response Farming and the Consequences of Climate Change
Atmosphere 2013, 4(3), 237-253; doi:10.3390/atmos4030237
Received: 29 June 2013 / Accepted: 13 August 2013 / Published: 20 August 2013
Cited by 6 | PDF Full-text (231 KB) | HTML Full-text | XML Full-text
Abstract
Extension agrometeorology is applied in agrometeorological extension work to advice and serve farmers. In agrometeorology, response farming has been developed decades ago. Climate change complicates response farming, but does not alter it. This paper reports on new operationalization of that response farming [...] Read more.
Extension agrometeorology is applied in agrometeorological extension work to advice and serve farmers. In agrometeorology, response farming has been developed decades ago. Climate change complicates response farming, but does not alter it. This paper reports on new operationalization of that response farming in new educational commitments in agroclimatology. It is explained how “Science Field Shops” are an example in Indonesia. This was based on a thorough analysis of what climate change means for farmers in Asia. For Africa, we report on eying the training of agrometeorological extension trainers (“product intermediaries”) in West Africa, based on a thorough analysis of what climate change means for farmers in Africa. We also compare experience with reaching farmers in South Africa and farmer communities in Zambia, as new forms of supporting response farming, all under conditions of a changing climate. The paper, for the first time, connects results from four different programs the senior author is taking part in. There is first and foremost the need for training material to make it possible for the product intermediaries to participate in training extension intermediaries. This should, particularly, bring new knowledge to farmers. With what is presently available and with new approaches, climate extension should be developed and tested with farmers in ways that improve farmer preparedness and decision making. Full article
(This article belongs to the Special Issue Agrometeorology: From Scientific Analysis to Operational Application)
Open AccessArticle Representation of Extreme Precipitation Events Leading to Opposite Climate Change Signals over the Congo Basin
Atmosphere 2013, 4(3), 254-271; doi:10.3390/atmos4030254
Received: 6 July 2013 / Revised: 26 August 2013 / Accepted: 28 August 2013 / Published: 4 September 2013
Cited by 8 | PDF Full-text (5236 KB) | HTML Full-text | XML Full-text
Abstract
We investigate the reasons for the opposite climate change signals in precipitation between the regional climate model REMO and its driving earth system model MPI-ESM over the greater Congo region. Three REMO simulations following three RCP scenarios (RCP 2.6, RCP 4.5 and [...] Read more.
We investigate the reasons for the opposite climate change signals in precipitation between the regional climate model REMO and its driving earth system model MPI-ESM over the greater Congo region. Three REMO simulations following three RCP scenarios (RCP 2.6, RCP 4.5 and RCP 8.5) are conducted, and it is found that the opposite signals, with REMO showing a decrease and MPI-ESM an increase in the future precipitation, diverge strongly as we move from a less extreme to a more extreme scenario. It has been shown that REMO simulates a much higher number of extreme rainfall events than MPI-ESM. This results in higher surface runoff and thus less soil infiltration, which leads to lower amounts of soil moisture in REMO. This further leads to less moisture recycling via evapotranspiration, which in turn results in less precipitation over the region. In the presence of a strong radiative forcing, the hydrological cycle becomes less intense in REMO and a downward trend in hydrological variables is observed. Contrary to this, the higher amounts of soil-moisture due to the lack of extreme rainfall events in MPI-ESM enhance the hydrological cycle. In the presence of strong radiative forcing, higher amounts of soil moisture result in increased evapotranspiration which in turn results in the higher amount of precipitation. It is concluded that the land-atmosphere coupling over the Congo region is very sensitive to the change in soil moisture amounts, which is likely to play a major role in global warming conditions. Therefore, adequate and improved representation of soil processes in climate models is essential to study the effects of climate change. However, the better representation of extreme rainfall events in REMO compared to MPI-ESM can be regarded as an added value of the model. Full article
Open AccessArticle On the Current and Future Dry Spell Characteristics over Africa
Atmosphere 2013, 4(3), 272-298; doi:10.3390/atmos4030272
Received: 24 June 2013 / Revised: 30 July 2013 / Accepted: 24 August 2013 / Published: 9 September 2013
Cited by 7 | PDF Full-text (6048 KB) | HTML Full-text | XML Full-text
Abstract
Changes in precipitation frequency and intensity distribution over Africa will have a direct impact on dry spells and, therefore, will affect various climate sensitive sectors. In this study, the ability of the fifth generation of the Canadian Regional Climate Model (CRCM5) in [...] Read more.
Changes in precipitation frequency and intensity distribution over Africa will have a direct impact on dry spells and, therefore, will affect various climate sensitive sectors. In this study, the ability of the fifth generation of the Canadian Regional Climate Model (CRCM5) in simulating annual and seasonal dry spell characteristics is assessed for four precipitation thresholds (0.5 mm, 1 mm, 2 mm and 3 mm) over Africa. The dry spell characteristics considered are the number of dry days, number of dry spells and five-year return levels of maximum dry spell durations. The performance errors are assessed by comparing ERA-Interim driven CRCM5 with the Global Precipitation Climatology Project (GPCP) dataset, for the common 1997–2008 period. Lateral boundary forcing errors, i.e., errors in the CRCM5 simulation created by errors in the driving Canadian Earth System model (CanESM2) data—as well as the added value—of CRCM5 over CanESM2 are also assessed for the current climate. This is followed by an assessment of projected changes to dry spell characteristics for two future climates (2041–2070 and 2071–2100) simulated by both CRCM5 driven by CanESM2 and CanESM2 itself, for Representative Concentration Pathway (RCP) 4.5. Results suggest that CRCM5 driven by ERA-Interim has a tendency to overestimate the annual mean number of dry days and the five-year return level of the maximum dry spell duration in a majority of the regions while it slightly underestimates the number of dry spells. In general, the CRCM5 performance errors associated with the annual and seasonal dry spell characteristics are found to be larger in magnitude compared to the lateral boundary forcing errors. Projected changes to the dry spell characteristics for the 2041–2070 and 2071–2100 periods, with respect to the 1981–2010 period suggests significant changes in the tropics, with the mean number of dry days and the five-year return levels of maximum dry spell duration increasing, while the mean number of dry spell days decreases. Full article
Open AccessArticle Failure and Redemption of Multifilter Rotating Shadowband Radiometer (MFRSR)/Normal Incidence Multifilter Radiometer (NIMFR) Cloud Screening: Contrasting Algorithm Performance at Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) and Southern Great Plains (SGP) Sites
Atmosphere 2013, 4(3), 299-314; doi:10.3390/atmos4030299
Received: 3 July 2013 / Revised: 10 August 2013 / Accepted: 28 August 2013 / Published: 11 September 2013
Cited by 1 | PDF Full-text (760 KB) | HTML Full-text | XML Full-text
Abstract
Well-known cloud-screening algorithms, which are designed to remove cloud-contaminated aerosol optical depths (AOD) from Multifilter Rotating Shadowband Radiometer (MFRSR) and Normal Incidence Multifilter Radiometer (NIMFR) measurements, have exhibited excellent performance at many middle-to-low latitude sites around world. However, they may occasionally fail [...] Read more.
Well-known cloud-screening algorithms, which are designed to remove cloud-contaminated aerosol optical depths (AOD) from Multifilter Rotating Shadowband Radiometer (MFRSR) and Normal Incidence Multifilter Radiometer (NIMFR) measurements, have exhibited excellent performance at many middle-to-low latitude sites around world. However, they may occasionally fail under challenging observational conditions, such as when the sun is low (near the horizon) and when optically thin clouds with small spatial inhomogeneity occur. Such conditions have been observed quite frequently at the high-latitude Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) sites. A slightly modified cloud-screening version of the standard algorithm is proposed here with a focus on the ARM-supported MFRSR and NIMFR data. The modified version uses approximately the same techniques as the standard algorithm, but it additionally examines the magnitude of the slant-path line of sight transmittance and eliminates points when the observed magnitude is below a specified threshold. Substantial improvement of the multi-year (1999–2012) aerosol product (AOD and its Angstrom exponent) is shown for the NSA sites when the modified version is applied. Moreover, this version reproduces the AOD product at the ARM Southern Great Plains (SGP) site, which was originally generated by the standard cloud-screening algorithms. The proposed minor modification is easy to implement and its application to existing and future cloud-screening algorithms can be particularly beneficial for challenging observational conditions. Full article

Journal Contact

MDPI AG
Atmosphere Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
atmosphere@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Atmosphere
Back to Top