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Abstract: For many gasses and aerosols, dry deposition is an important sink of 

atmospheric mass. Dry deposition fluxes are also important sources of pollutants to 

terrestrial and aquatic ecosystems. The surface fluxes of some gases, such as ammonia, 

mercury, and certain volatile organic compounds, can be upward into the air as well as 

downward to the surface and therefore should be modeled as bi-directional fluxes. Model 

parameterizations of dry deposition in air quality models have been represented by simple 

electrical resistance analogs for almost 30 years. Uncertainties in surface flux modeling in 

global to mesoscale models are being slowly reduced as more field measurements provide 

constraints on parameterizations. However, at the same time, more chemical species are 

being added to surface flux models as air quality models are expanded to include more 

complex chemistry and are being applied to a wider array of environmental issues. Since 

surface flux measurements of many of these chemicals are still lacking, resistances are 

usually parameterized using simple scaling by water or lipid solubility and reactivity. 

Advances in recent years have included bi-directional flux algorithms that require a  

shift from pre-computation of deposition velocities to fully integrated surface flux 

calculations within air quality models. Improved modeling of the stomatal component of 

chemical surface fluxes has resulted from improved evapotranspiration modeling in land 

surface models and closer integration between meteorology and air quality models. 

Satellite-derived land use characterization and vegetation products and indices are 

improving model representation of spatial and temporal variations in surface flux 
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processes. This review describes the current state of chemical dry deposition modeling, 

recent progress in bi-directional flux modeling, synergistic model development research 

with field measurements, and coupling with meteorological land surface models.  

Keywords: dry deposition; bi-directional fluxes  

 

1. Introduction  

Atmospheric modeling systems that simulate meteorology, chemistry, or climate include model 

algorithms for air-surface exchange processes. Surface fluxes of heat, moisture, and momentum are 

critical elements of meteorology and climate models while chemistry/air quality models also require 

algorithms for surface fluxes of trace chemical species. Vertical flux of any quantity in the atmospheric 

surface layer is well described by gradient turbulent diffusion. Momentum flux can be modeled simply 

by means of turbulent surface layer similarity theory since momentum goes to zero at some finite 

height, known as the roughness length (zo), which depends on the characteristics of the surface and 

vegetation. Sensible heat flux is slightly more complex than momentum flux since thermal exchange 

processes must interact directly with the surface and turbulent flow cannot extent all the way to the 

surface because of the “no-slip” condition. Thus, for heat there is an additional consideration of 

laminar molecular diffusion over a very thin layer in contact with all ground and canopy surfaces. 

Modeling moisture fluxes adds another element of complexity because of the multiple sources of 

surface moisture, via evapotranspiration (ET), which is regulated by leaf stomata, soil moisture, which 

requires diffusion through soil, and surface wetness from rain and dew. The surface fluxes of many 

chemical species that are involved in air quality modeling have similarities to moisture fluxes, since 

they may also involve multiple pathways for exchange with the surface, including stomatal, ground, 

water, built surfaces, and leaf cuticles. For example, in two different field experiments where both 

moisture fluxes and ozone fluxes were measured by eddy covariance, one for a vineyard and cotton 

field in California [1] and another for a soybean field in Kentucky [2], the stomatal pathway for ozone 

and water vapor fluxes were shown to be highly correlated. Thus, modeling chemical dry deposition 

and bi-directional surface fluxes involve many of the same physical processes and can use many 

common algorithms with moisture flux calculations in the land surface models of meteorology and 

climate models, especially for the stomatal component. 

While chemical constituents of the atmosphere can undergo a variety of chemical and physical 

transformations, dry and wet deposition are the ultimate removal mechanisms of mass emitted to the 

atmosphere. Surface fluxes of some chemical species, notably ammonia [3–5], mercury [6,7], and 

certain volatile organic compounds (VOCs) [8] are often bi-directional, such that the surface may be 

alternately a source or sink of atmospheric mass. For other chemicals, particularly biogenic VOCs such 

as isoprene, terpenes, and alcohols the surface emissions from biological processes are very important 

atmospheric sources [9].  

In addition to their roles as sources and sinks of atmospheric constituents, surface fluxes also have 

important effects on vegetation, ecosystems, and human health. Risk assessments and setting standards 

for protecting vegetation and ecosystems from damage by air pollutants has usually involved 
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concentration based indexes such as AOT40 (Accumulated Over a Threshold of 40 ppb) which is used 

for assessing ozone impacts. A new flux based index called AFstY (Accumulated stomatal Flux above 

a flux threshold Y) has been proposed to estimate O3 dose to leaf interiors where damage occurs rather 

than in the air outside the leaf [10]. A recent study in Europe used the Deposition of Ozone and 

Stomatal Exchange (DO3SE) model to compute the AFstY index to assess the O3 impacts on key 

European tree species [11,12]. Their results showed that the AFstY index differed significantly from 

the AOT40 over different regions and species.  

Until recently, secondary standards for protecting ecosystems from damage caused by NOx and 

SOx in the U.S. have been based on ambient concentrations even though flux based standards were 

proposed more than 10 years ago [13]. Recently, however, new SOx-NOx secondary standards are 

being considered to protect both terrestrial and aquatic ecosystems from acidification and nutrient 

enrichment. Although the U.S. Clean Air Act requires that regulations must be based on ambient 

concentration levels, the newly proposed standards include linkages to deposition of SOx and NOx [14] 

to be computed by the Community Multiscale Air Quality CMAQ model [15]. Therefore, chemical 

surface flux modeling has become a more important process in air quality models used for regulation 

assessment and enforcement because environmental standards are now being promulgated that include 

assessments of deposition effects on ecosystems. 

Since industrialization, atmospheric reactive nitrogen concentrations and deposition have increased 

tremendously [16–18]. Deposition of reactive nitrogen including, ammonia, NO2, nitric acid, ammonium 

and nitrate containing aerosols, and organic nitrates has serious deleterious impacts on terrestrial and 

aquatic ecosystems [19–21]. Thus, modeling anthropogenic and natural emissions, chemical 

transformations, wet deposition, and surface fluxes is important not only for air quality studies but also 

for ecosystem impact assessments. Ammonia from fertilizer and livestock operations contribute the 

largest portion of excess nitrogen emissions to the environment [22]. Accurate accounting of fertilizer 

sources of ammonia requires development of new modeling techniques such as bi-directional surface 

fluxes, as well as integration with agricultural management models (see Section 3.3).  

This article presents an overview of the current state of science and modeling for surface flux 

processes in air quality modeling systems. We start with a presentation of the governing principles and 

equations of air-surface exchange that are applicable to moisture, heat, and momentum in meteorology 

models and chemical surface fluxes in chemical transport models in Section 2. Then, in Section 3 we 

focus on modeling techniques for chemical surface fluxes, including gas and aerosol dry deposition 

and bi-directional fluxes. Section 4 gives an overview of recent advances in dry deposition and  

bi-directional modeling along with a few examples of model results. Section 5 contains a concluding 

discussion of limitations of current models and future research and model development directions. As 

developers of land surface models (LSM) [23,24], dry deposition [25], and bidirectional models [26] 

we often use the formulation of these models as they are applied in the Weather Research and Forecast 

(WRF) model [27] and the CMAQ model as examples of parameterization techniques and to illustrate 

some of the characteristics of model results. Note that much of the description of the dry deposition 

model used in CMAQ has not been previously published. 

 



Atmosphere 2011, 2              

 

 

274

2. Governing Principles of Surface Fluxes Modeling  

Turbulent fluxes of any atmospheric quantity, including heat, moisture, momentum and trace 

chemical species, can be computed according to Monin-Obukov similarity theory in the atmospheric 

surface-layer which relates fluxes at height z near the surface to the mean vertical profile: 

ሻݖఈሺܨ ൌ ԢߙԢݓ ൌ
ݖ݇כݑ

߶ ቀݖ
ቁܮ

ߙ߲
ݖ߲

 (1) 

where Fα is the vertical flux of any quantity α, which can be measured as the mean value of the 

turbulent covariance of w and  wherever stationarity and horizontal homogeneity can be reasonably 

assumed. Also, u* is the surface friction velocity, k is the von Karman constant, m and h are  

non-dimensional profile functions derived empirically from observed data, and L is the Monin-Obukov 

length scale which is defined as: 

where <w’To’> represents the kinematic heat flux and Τo represents the average temperature in the 

surface layer. Assuming constant flux between some reference height zr within the surface layer and 

the surface, Equation 1 can be vertically integrated to give: 

where hn is the non-dimensional temperature profile constant for neutral conditions, h is the stability 

correction function for heat, and αο is the value of α at a micro-distance above the surface where 

turbulence cannot penetrate. Equation (3) can be rewritten as: 

where Rα is generally known as the aerodynamic resistance. However, Equation (4) by itself is not very 

useful because of the difficulty in measuring or modeling quantities at a tiny distance above the 

surface. We would rather replace αο with αs (the quantity at the surface) which can be measured, 

estimated from surface properties, or assumed to equal zero, as for dry deposition. Again assuming that 

the flux is constant down to the surface, we can define two more resistances for the quasi-laminar 

boundary layer (Rb), which is the non-turbulent micro layer adjacent to all surfaces, and a surface 

resistance (Rs): 

where αδ represents the quantity α in the air at the surface. Combining Equations (4) and (5) yields: 
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For dry deposition αs is assumed to be zero and Equation 6 is expressed as: 
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For bi-directional surface flux Eq 6 can be more complicated because αs may be different for various 

components of the surface such as the ground and vegetation canopy as described in section 3.3. 

Ra represents the resistance to flux by turbulent diffusion through the turbulent surface layer while 

Rb represents molecular or Brownian diffusion across a very thin quasi-laminar boundary layer 

adjacent to the surface. A general form of Rb for any scalar quantity was recommended by Wesely and 

Hicks [28] as: 
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where Sc is the Schmidt number (Sc = ν/D), with  representing the kinematic molecular viscosity, and 

D is the molecular diffusivity of the scalar quantity. Pr is the Prandtl number, which is the analogous 

quantity for heat (Pr = ννθ), where νθ is the molecular thermal diffusivity. The parameter B−1 is the 

inverse Stanton number, a dimensionless heat transfer coefficient. The value of B−1 may depend on the 

Reynolds number as well as the type of surface roughness. For example, Garratt and Hicks [29] 

suggested a value of kB−1 = 2 for fully turbulent flow over fibrous vegetative canopies. 

Note that, since Ra represents the aerodynamic properties of the turbulent surface layer which 

depends purely on meteorological parameters and surface characteristics (i.e., surface roughness) it is 

independent of the chemical or physical properties of the transported scalar. Thus, Ra, once computed, 

can be used in the surface flux calculations of any scalar. Rb, however, combines meteorological and 

fluid flow parameters (i.e., כݑ and B) with properties of the transported scalar (i.e., molecular diffusivity) 

and must be computed individually for each chemical species.  

3. Chemical Surface Fluxes  

Chemical surface fluxes are partially analogous to moisture fluxes, especially for the stomatal 

conductance, which can be adapted to any gas by scaling by the ratio of molecular diffusivity of the 

chemical species to the molecular diffusivity of water vapor.  

3.1. Dry Deposition Modeling 

For chemical species which are dominated by one-way flux to the surface, the surface concentration 

is assumed to be zero. Thus, for such chemical scalars the gradient flux across the air-surface interface 

is always directed toward the surface no matter how low the air concentration. This special case is 

simplified as shown by Equation 7, where the flux is a simple linear combination of air  

concentration near the surface and the deposition velocity Vd. The surface resistance Rs represents all 

pathways for sinks of atmospheric chemical species to the surface. The major pathways for trace 

gasses include stomatal uptake, deposition to leaf cuticles, and deposition to ground surfaces. The 

relative importance of these pathways for any particular chemical species depends on their chemical 

and physical properties, such as solubility, reactivity, and molecular diffusivity. For example, nitric 

acid is both highly soluble and highly reactive such that its surface resistance is effectively zero  

(compared to Ra and Rb) [30,31]. Therefore, the deposition velocity of nitric acid can be estimated 
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reasonably well as: 1/(Ra + Rb). For other less reactive gasses the surface resistance is more important 

and each of the main pathways may contribute significantly to the surface flux. The simplest 

representation of Rs for a single layer or “Big Leaf” model is represented as a combination of parallel 

resistances given by: 

where Rst is stomatal resistance, Rw is cuticular resistance, and Rg is ground resistance. 

However, since leaves are displaced above the ground there should be additional resistance for the 

ground pathway to account for transport through the plant canopy. Furthermore, some models account 

for concentration gradients within the canopy by using a multilayer approach to account for the vertical 

distribution of leaf surface area [32,33]. Multilayer models can also calculate the light attenuation 

within the canopy and thereby more accurately represent the fraction of sunlit and shaded leaves at 

each level which has significant influence on stomatal resistance (see below the section on Scaling 

from Leaf to Canopy). For large scale air quality modeling, however, the complication of multi-layer 

models is usually not desired since the variety of vegetation contained within the large areas 

represented by each model grid cell is not amenable to realistic representation of canopy structure. 

Alternatively, a simple in-canopy resistance can be added in series with the ground surface resistance. 

For example, Erisman et al. [34] suggested: 

where LAI is the one-sided leaf area index, hc the canopy height and b an empirical constant taken as 

14 m−1. Zhang et al. [35] developed a similar parameterization for Rac related to LAI and u* that 

includes variations by land use category and day of the year to account for changes in canopy structure. 

Another complication is that there may be an additional resistance to absorption into the mesophyll 

tissue inside the stomatal cavity of the leaf for some chemicals. Thus, including a mesophyll resistance 

Rm and Rac, the total Rs becomes: 

Thus, dry deposition velocity Vd can be represented by resistances in series and parallel as shown  

in Figure 1. 
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Figure 1. Schematic of dry deposition model for soil and leaf. 

 

3.1.1. Stomatal Resistance 

All gasses diffuse through stomata when they are open. The stomatal pathway is particularly 

important for some chemical species such as O3, NH3, CO2, NO2, and SO2. While O3 and SO2 deposit 

readily via the stomatal pathway with little or no mesophyll resistance, stomatal uptake of other less 

soluble gasses, such as NO, NO2, and CO, is limited by various magnitudes of mesophyll resistance. 

Several biologically active chemicals such as CO2 and NH3 can flux through the stomata in both 

directions depending on the concentration gradient between the stomatal cavity and the external air. 

Techniques for modeling bidirectional flux are discussed in Section 3.3. 

Stomatal resistance or conductance (gst = 1/Rst) controls the flux of gasses, including CO2 and water 

vapor, into and out of leaves. Since stomatal resistance is the primary regulatory process for 

evapotranspiration, it is a key parameter for LSMs that are included in meteorology models. Thus it 

makes sense to use the same parameterization of the stomatal pathway for the meteorological and 

chemical components of air quality modeling systems [25]. 

The primary function of leaf stomata is to allow the intake of CO2 for photosynthesis while 

minimizing the cost of water vapor loss to the atmosphere. In addition, the diffusion of water out of 

stomata into the atmosphere (leaf transpiration) is the major mechanism for mass flow of liquid water 

with any dissolved mineral nutrients from the roots to the leaves through the xylem. Stomatal opening 

responds to environmental conditions, including sunlight, humidity, temperature, soil moisture, CO2 

concentration, and nutrient availability. Stomatal conductance, which is directly related to the degree 

of stomatal opening, is usually modeled in LSM and dry deposition models following either the 

empirical approach of Jarvis [36] or photosynthesis-based semi-empirical models [37–40].  

The Jarvis model uses a series of empirical functions as linear coefficients to the maximum stomatal 

conductance gsmax (conductance at maximum opening), which is a characteristic of each plant 

reflecting the size and density of stomata. For example, Pleim and Xiu [41] used this approach in their 

LSM that is in the WRF model and for dry deposition in the CMAQ model to model bulk (canopy level) 

stomatal conductance gsb as: 
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where the functions F1–4 represent the fractional degree of stomatal closure caused by the 

environmental stresses: photosynthetically active radiation PAR, root-depth soil moisture w2, relative 

humidity at the leaf surface RHs, and air temperature in the canopy Ta. Note that the scaling up  

from leaf to canopy appears from Equation (12) to be simply a linear dependence on LAI. There is,  

however, an additional dependence on LAI in the F1 term that accounts for increased shading in denser 

canopies [42]. Discussion of simple and more detailed techniques for scaling from leaf to canopy is 

presented below. The Jarvis-type empirical stomatal conductance model has been widely used in LSM 

components of meteorology [23,43,44] and dry deposition models [32,45,46]. 

The photosynthesis approach solves for stomatal conductance assuming that CO2 diffusion through 

the stomata is equal to the net CO2 assimilation rate for photosynthesis minus respiration. These 

models originated in plant biochemical studies [38,39] and are widely used in ecology and hydrology 

models and were later adapted for use in atmospheric models [40,47]. Based on the optimality 

hypothesis of the study by Cowan [37] plants optimize their stomatal conductance for maximizing 

photosynthesis at a given amount of transpiration. Photosynthesis-based models are used in the third 

and fourth generations of LSMs in Global Climate Models (GCM) for modeling ET and the carbon 

cycle [48–51]. The semi-empirical Ball-Berry model [39] computes stomatal conductance based on: 

where Fh is an empirical function of humidity, A is the CO2 assimilation rate, cs is the CO2 

concentration at the leaf surface, a1 is an empirical coefficient, and go is the minimum stomatal 

conductance. These models have the advantage of describing the rate of photosynthesis in a 

mechanistic fashion thereby providing a theoretical basis for stomatal response to environmental 

conditions such as temperature, solar radiation, water stress, and nutrient availability. However, there 

is no theoretical basis for response to air humidity or soil moisture. Since these models are 

combinations of theoretical biochemistry and empirical parameterizations, their predicted stomatal 

response to each independent environmental variable is not clearly evident. Thus the photosynthesis 

approach is semi-empirical, since the parameters a1 and go are empirically estimated for each plant 

type. Also, Fh is an empirical function of air humidity that is similar to F3 in Equation (12). While  

Jarvis-type models typically use simple functions of ambient vapor pressure deficit (Da = esat − ea) [43] 

the photosynthesis based models alternatively use Fh = RHs [39] or Fh = (1 + Ds/Do)
−1 as suggested by 

Lohammer et al. [52], where Ds is the vapor pressure deficit at the leaf surface (Ds = esat − es) and Do is 

an empirical constant. Note that the Lohammer humidity function results from a linear relationship 

between gs and ET, which has often been observed in laboratory experiments [40,53]. While Fh in 

Equation (13) and F3 in Equation (12) seem to be equivalent, Aphalo and Jarvis [54] pointed out that 

since the assimilation rate has an implicit dependence on humidity, Fh does not encapsulate the entire 

humidity dependence of these models. Pleim [55] analyzed the three humidity functions and found  

that for use in a Jarvis-type model F3 = RHs is most appropriate and, therefore, is now used in the 

Pleim-Xiu LSM [24]. 
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Recently, many LSM formulations in climate models [48,56,50] have used the photosynthesis 

approach to stomatal conductance. Such models have a distinct advantage over models using the Jarvis 

empirical approach because of the explicit dependence of stomatal conductance on CO2 concentration. 

Thus, feedbacks of increasing CO2 on ET can be included in future GCM projection simulations. 

While biochemical stomatal models have been developed and tested for LSM and dry deposition for 

use in meteorology and air quality models [33,57–59] they have yet to be applied in operational 

mesoscale models.  

3.1.2. Cuticle Resistance 

Leaf cuticles are impregnated with waxy substances that resist water loss. Thus, evaporative fluxes 

from leaf surfaces (non-stomatal) occur only from external wetness from rain or dew. For some trace 

chemicals, however, deposition to dry leaf cuticles is a significant process for removal. Chemical 

deposition to wet leaves scales with Henry’s law of solubility with a dependence on pH for species that 

readily dissociate in the aqueous phase (e.g., SO2 and NH3) [60,61]. Mechanisms for deposition to dry 

cuticles are less well understood. Some dry deposition models simply specify constant values for 

cuticle resistance or even total canopy resistance for each chemical species based on empirical fits to 

observations without attempting to hypothesize about the mechanism [62–64]. The problem with this 

approach is that it is limited to the few gasses for which field flux measurements have been made in a 

variety of landscapes. Other models generalize the calculation of cuticular resistance based on 

chemical properties such as a reactivity factor [35,60,61,65] so that estimates for Rw can be made even 

for species for which surface fluxes have not been measured in the field. Some models also include a 

dependence of Rw on Henry’s law coefficient and/or RH even for dry cuticles particularly for highly 

soluble chemicals like NH3 and SO2 [34]. Jones et al. [66] found that the Rw for ammonia is a linear 

function of NH3 concentration, suggesting an inhibiting effect caused by saturating the cuticular 

membrane. For hydrophobic organic chemical species it has been hypothesized that a small amount of 

mass may dissolve into the wax-like lipids in the leaf cuticle and then diffuse through the cuticle to the 

leaf interior. Thus, Rw for chemicals that have low water solubility but high lipid solubility may be 

parameterized using the octanol-water partitioning coefficient [33,67]. The Rw values computed by 

such parameterizations are usually quite high resulting in very small fluxes. However, for toxic organic 

chemicals, often known as persistent organic pollutants (POPs), absorption into leaf cuticle of even 

small quantities is an important pathway for contamination of vegetation that can subsequently enter 

the food chain [68].  

The dominant mechanism for cuticular deposition depends on the properties of chemical species. 

Soluble species such as SO2, H2O2, and NH3 quickly dissolve into water on leaves that are wetted by 

rain or dew. Cuticle resistance is very low for these species when leaves are wet but resistance for dry 

portions of the leaves can be quite high leading to low deposition velocities in dry areas. For example, 

Figure 2a shows the dry deposition velocity for SO2 from the WRF-CMAQ model system in  

mid-afternoon (20 UT) on July 25, 2006 on a 12 km model grid. Note that the distinct pattern of high 

deposition velocities closely follows the pattern of canopy water content shown in Figure 2b. Thus, it 

is important to account for parallel pathways to wet and dry portions of the leaves and couple the dry 

deposition calculation to a realistic treatment of canopy water. For the example shown in Figure 2 the 
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dry deposition model in CMAQ is coupled to the PX LSM in WRF which integrates canopy water as a 

prognostic variable.  

Figure 2. (a) Dry deposition velocity for SO2 (cm/s); (b) canopy water content (m) at 19 UT 

on 25 July 2006 simulated by WRF-CMAQ on a 12 km grid. 

 
(a) 

 
(b) 

3.1.3. Ground Resistance 

In heavily vegetated areas, leaf surfaces are the most important non-stomatal pathway because of 

their large surface area and because concentrations are much greater in the upper canopy than near the 

ground. However, in more sparsely vegetated areas deposition to ground and building surfaces can be 

important. Many dry deposition models parameterize soil resistance similarly to other non-stomatal 
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resistances such as cuticles. For example, Wesely [65] scales Rsoil like Rw by Henry’s law and 

reactivity but with a different base value. Pleim et al. [60] and Padro et al. [61] also scale ground 

resistance by reactivity with different magnitudes for cuticle and soil. For wet surfaces, the same 

Henry’s law scaling can be used for any surface. For un-saturated soils, resistance can depend on soil 

moisture content and pH, especially for SO2 and NH3, where SO2 has greater resistance to acidic soil 

and NH3 has greater resistance to alkaline soil. Erisman et al. [34] describes soil resistance values and 

dependencies for many chemical species. Functional dependences of SO2 deposition on pH and 

relative humidity are described by Baldocchi [69]. 

3.1.4. Snow Surfaces 

Observed deposition velocities to snow are generally lower than observed for soil and other 

surfaces. For example, Helmig et al. [70] found that deposition velocities of ozone to snow of less than  

0.01 cm/s gave the best fit to observations in the Arctic. This is at the low end of the range reported in 

the literature for ozone which is generally less than 0.1 cm/s [71,72] with decreasing deposition as  

the snowpack ages. However, a few studies showed higher deposition velocities [73–76]. For SO2, 

Erisman [34] suggests a surface resistance to snow of 500 s/m when the temperature is below −1 °C 

but decreasing to 70 m/s at +1 °C. For soluble species like SO2, resistance decreases markedly as the 

surface temperature rises above freezing and the liquid water portion of the snowpack increases. 

The dry deposition model in the CMAQ model represents snow resistance Rsnow as parallel 

resistances to the ice and liquid fractions of the snow pack when there is snow and the ground 

temperature is above freezing [77]: 

where Rice is the resistance to snow or ice, Rgw is the resistance to wet ground, Rsndiff is resistance for 

diffusion through the snowpack and the liquid water fraction xm is: 

where xm is limited to a maximum of 0.5 and is zero when the ground temperature Tg is below −1 °C. 

Since the value of Rice is relatively large, deposition to snow is most important for temperatures above 

−1 °C for soluble species. In CMAQ, Rice is parameterized for various chemical species similarly to 

ground and cuticle, by relative reactivity scaling. 

3.1.5. Scaling from Leaf to Canopy  

LSMs and chemical surface flux models require information on canopy structure for scaling from 

stomatal conductance at the leaf level to canopy conductance. While LAI accounts for the scaling of 

leaf area to ground area, the relationship between canopy conductance and stomatal conductance is 

complicated by leaf shading and different plant species in complex canopies. The simplest approach is 

the “big-leaf” model, such as described by Noilhan and Planton [43] and shown in Equation (12) 

where the effects of shading are parameterized in the radiation function. More sophisticated canopy 

models that are often used for field site studies and crop models [78] calculate radiation penetration 
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through multilayer canopies with discrimination of sunlit and shaded leaves and consideration of leaf 

angle [79]. However, these models require detailed descriptions of canopy structure and phenology 

that is not practical to obtain from the land use databases typically used in regional or global scale 

modeling systems. A study by De Pury and Farquhar [79] showed that the big-leaf model with sunlit and 

shaded canopy photosynthesis performs nearly as well as a multi-layer model and significantly better 

than the big-leaf model with a single canopy photosynthetic rate. A similar study by Zhang et al. [80] 

showed that the sunlit/shaded big-leaf approach also compares well to multi-layer models for 

representing the stomatal pathway in dry deposition models. Based on these findings a sunlit/shaded 

big-leaf model has been applied to dry deposition calculations in the AURAMS air quality model [46]. 

Parameters describing the fractional coverage of vegetation and the leaf area and canopy structure 

are crucial for accurate land surface modeling. Typically, vegetation parameters are specified in  

land-use related look-up tables and plant phenological dynamics are modeled using simple time-

dependent functions such as a single sinusoidal curve used in the LSM by Walko et al. [81] or deep 

soil temperature dependent functions used by Dickinson et al. [82] and Xiu and Pleim [24]. These 

generalized techniques, however, are not responsive to local conditions. Recently, modelers have used 

MODIS vegetation parameters to improve LSM performance. For example, Lawrence and Chase [83] 

used MODIS retrieved vegetation and land use products to modify land surface parameters and to 

improve plant phenology performance in the Community Land Model version 3.0 (CLM 3.0) resulting 

significant improvements for climate simulations. Moore et al. [84] assimilated MODIS dynamic LAI 

and vegetative fractional cover (FC) products into the Regional Atmospheric Modeling System 

(RAMS) for model simulations of East Africa. Their results show dramatic improvement in land 

surface temperature (LST) simulation both spatially and temporally for most of the year. Several other 

recent studies [84–87] have also used satellite vegetation products, such as LAI from satellite images, 

in land surface modeling for global circulation and mesoscale atmospheric modeling.  

An alternate approach to incorporating derived vegetation products such as LAI, fraction of 

photosynthetic active radiation fPAR, and FC, directly into LSMs, is to use vegetation indices (VIs), 

such as normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI), as 

indicators of canopy phenology and canopy structure. For example, by comparing MODIS VI data 

(NDVI and EVI) with four intensively measured test sites, Huete et al. [88] demonstrated that MODIS 

VIs represented seasonal phenology well over numerous biome types in North and South America. 

Zhang et al. [35] developed a method to estimate phenology events based on the curvature-change rate 

for MODIS time series data. In a study by Zhang et al. [89] they demonstrated vegetation phenological 

transition dates identified in the MODIS data are strongly correlated with MODIS land surface 

temperature (LST) and latitudes for all MODIS land cover types. Studies by Nagler et al. [90] and 

Glenn et al. [91] showed that VIs provide integrated information on leaf angles, fractional cover, 

canopy architecture, LAI, and chlorophyll content for vegetated areas. Therefore, assimilating MODIS 

VI data into a regional scale meteorology and air quality modeling system will help capture not only 

spatial patterns of LAI but also plant phenological and structural patterns over large regions.  

Since vegetation indices are sensitive to canopy structural variations they are highly correlated with 

ET and canopy-level stomatal conductance. Sellers et al. [92] suggested that spectral vegetation 

indices obtained from satellite sensors may provide good estimates for canopy photosynthesis and 

conductance. Glenn et al. [93] provide a review of techniques for estimation of ET directly from VIs 
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and numerous references to studies where various methods involving VI algorithms are applied to a 

wide variety of natural and cultivated ecosystems. Evaluations of these techniques often yield 

remarkably good agreement with surface flux measurements. However, since these are empirically 

derived algorithms that require calibration with ground based measurements they cannot be generalized 

but need multiple recalibrations for each biome. Another limitation is that VI methods for ET estimation 

are not responsive to short duration moisture stress (when plant physiology is not yet affected). Thus, 

combination of VI techniques with LSMs where soil moisture and meteorological parameters are 

explicitly modeled could be a way to improve canopy-level stomatal conductance for more accurate 

ET calculations in meteorology models and more accurate chemical fluxes in air quality models. 

3.2. Aerosols 

While turbulent flux through the atmospheric surface layer is similar for gases and aerosols, there 

are several key processes that are unique to aerosol dry deposition, including gravitational settling, 

Brownian diffusion, surface impaction, surface interception, and rebound. All of these processes are 

functions of particle diameter Dp, such that the dominant process depends on position in the particle 

size spectrum. For instance, Brownian diffusion dominates in the nano-range (Dp < 100 nm), where 

deposition efficiency increases with decreasing diameter, and gravitational settling and inertial 

impaction dominate in the super micron range, where their efficiencies increase with increasing 

diameter. Thus, there is a minimum of aerosol dry deposition velocity in the 0.1–1.0 m range which 

is aptly named the accumulation range (e.g., see Figure 3). Recent reviews by Pryor et al. [94] and 

Petroff et al. [95] provide comprehensive literature surveys and overviews of modeling and 

measurements of aerosol dry deposition. Therefore, this section provides a description of the equations 

and techniques used for aerosol dry deposition calculations in the CMAQ model as an example of a 

state-of-the-science formulation in a widely used operational model.  

Figure 3. Modal integrated aerosol dry deposition velocity for CMAQv4.4 and CMAQv4.5 

(see text for explanation). 
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To cast aerosol deposition in a resistance and velocity form, the simultaneous turbulent and 

sedimentation fluxes can be combined as derived by Venkatram and Pleim [96]: 

where the gravitational settling velocity is: 

ρ is the density of the aerosol, μ is air dynamic viscosity, and the Cunningham slip correction factor is: 

where λ is the mean free path of air. Unlike gas deposition the quasi-laminar boundary layer resistance 

Rb is usually the limiting resistance for aerosols because Brownian diffusion is much slower for 

particles than molecular diffusion is for gases. However, the effects of inertial impaction and 

interception by protruding micro-scale roughness elements can partially bridge the diffusion layer such 

that Rb is inversely related to three collection efficiencies [97]: 

where Ff is an empirical correction factor to account for increased deposition in convective conditions 

as suggested by Binkowski and Shankar [98]: 

where כݓ is the convective velocity scale. The first term in Equation (19) represents the collection 

efficiency by diffusion across the quasi-laminar boundary layer, which is similar to Equation (8) for 

gasses except that the Schmidt number for aerosols is defined as Sc = ν/DB, where DB is Brownian 

diffusivity which is a function of particle diameter. Slinn [97] suggested a formulation for the 

interception collection efficiency Ein that depends on the characteristic size of microscale structures 

such as tiny hairs on leaves and the characteristic size of the leaves. However, since it is difficult to 

specify realistic estimates of these parameters over the area of typical grid cells used by air quality 

models (i.e. ~4–20 km) on the basis of available land use data the interception efficiency is not used in 

the CMAQ model.  

Pryor [94] summarized many formulations for the impaction efficiency Eim and compares their 

magnitudes over a range of aerosol sizes. Slinn [99] suggested: 

where Stokes number is: 
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Equation (21) was the form of Eim originally used in CMAQ. However, Slinn [97] noted that  

Equation (21) was derived from empirical fits to smooth surfaces and therefore may not be appropriate 

for complex canopies where there is a wide range of wind speeds and length scales of collectors 

(leaves). Thus, for vegetated surfaces, Slinn [97] recommended a form of Eim with weaker dependence 

on St: 

This form of Eim was recently adopted for the CMAQ model, using the recommendation by  

Giorgi [100] that c = 400, so that aerosol deposition to heavily vegetated regions is better represented.  

Air quality models that consider aerosol size distributions either by discrete size bins (sectional 

models) or by log-normal modes (modal models) compute aerosol dry deposition velocities as 

functions of particle diameter. Thus, for sectional models Equations (16–23) are evaluated using  

the mass mean diameter of each section. For modal models an integrated Vd is computed for each 

mode by integrating these equations over each log-normal size distribution as described by Binkowski 

and Shankar, [98] and Feng [101]. Figure 3 shows an example of modal integrated Vd as a function  

of modal mass mean diameter Dg and the results of the change in the impaction efficiency from 

Equation (21) that was used in CMAQv4.4 to the formulation shown by Equation (23) as used in 

CMAQv4.5 and later versions. This change in impaction efficiency has a profound effect on increasing 

the deposition velocity in the size range where the Dg for the accumulation mode typically resides.  

3.3. Bidirectional Surface Flux Modeling 

While most gas-phase atmospheric chemical constituents predominantly deposit to the surface  

(e.g., O3, SO2, HNO3) and some chemicals are predominantly emitted from the surface (e.g., isoprene 

and terpenes), a few chemicals such as ammonia, mercury, and certain oxidized VOCs exhibit 

distinctly bi-directional behavior where they alternately deposit and emit on diurnal, seasonal, or 

sometimes longer time-scales. Generally, air quality models include simultaneous emissions and dry 

deposition fluxes of these materials that are estimated using entirely unrelated techniques. This is 

clearly a less realistic treatment of the salient physical processes than a bi-directional gradient driven 

flux model that is responsive to changes at the model time step level. Thus, air quality modelers have 

recently been replacing separate representations of emissions and dry deposition with bi-directional 

flux calculations.  

The development and application of bi-directional modeling of ammonia is particularly important 

since it allows for more accurate surface fluxes from fertilized fields which is a major contributor  

to excess nitrogen pollution that has adverse effects on human health, biodiversity, and climate  

change [18,22]. Ammonia fluxes can vary widely in magnitude and direction on spatial scales down to 

agricultural fields and temporally over diurnal, multi-day, and seasonal time-scales. In areas of 

unfertilized natural vegetation, ammonia flux is predominately deposition although small evasive 

fluxes can be driven by the thermodynamics of the equilibrium between ambient NH3 and NH4 in the 

leaf apoplastic solution when ambient concentrations are low and ambient temperatures are sufficiently 

high. Conversely, for heavily fertilized crops such as corn, ammonia fluxes are mostly upward 
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(evasion), with the greatest fluxes immediately after fertilization and gradually decreasing over 

subsequent weeks and months. For minimally fertilized crops such as soybeans, fluxes can be truly  

bi-directional on a diurnal basis as shown in Figure 4 [26,102]. 

Figure 4. Average ammonia surface flux measured in a soybean field in Warsaw, North 

Carolina and modeled by the bi-directional flux scheme in the CMAQ model averaged 

over 2 months in summer 2002. 

 

Sutton et al. [3] provided an extensive review of measurements and modeling techniques for 

ammonia surface exchange processes. In this section we outline the model for bi-directional flux 

modeling in the CMAQ modeling system developed initially following Sutton et al. [103] and  

Nemitz et al. [104] with further refinement through comparison to field study measurements in corn 

and soybean [102] fields. Personne et al. [105] and Burkhardt et al. [106] developed and evaluated 

similar bi-directional ammonia flux models in comparison to measurements in fertilized grassland during 

the GRAMINAE intensive measurement campaign in spring 2000 near Braunschweig, Germany. 

Although bi-directional flux modeling has many commonalities with dry deposition modeling there 

are also important differences that stem from the complications of compensation concentrations in 

surface reservoirs. Hence, the simplicity of the linear flux-concentration relationship for dry 

deposition, which allows Vd to be computed for each chemical species upstream of the execution of the 

chemical transport model, is usually not feasible for bi-directional calculations because compensation 

points may differ for different pathways. For ammonia and mercury, compensation point 

concentrations are usually very different at the soil, stomata, and cuticle.  

The total flux between the plant canopy and the overlying atmosphere is the sum of two  

bi-directional pathways, to the leaf stomata Fst and the soil Fg, and one uni-directional deposition 

pathway to the leaf cuticle Fcut (Figure 5). Because each bidirectional flux pathway depends on 

concentration difference across resistances, an in-canopy concentration χc is computed at the junction 

of the ground, stomatal, and cuticle pathways, which is often referred to as the net canopy 

compensation point [104]. Thus the total flux is defined as: 
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where χa is the concentration in the air above the canopy and the component fluxes are: 

Figure 5. Schematic of bi-direction flux model for soil and leaf. 

 

The resistances Ra, Rac, Rb, and Rst are essentially the same as used for gas dry deposition with 

adjustments to Rb and Rst for molecular diffusivity. The resistances Rbg, Rsoil, and Rw, however, required 

specific derivation for ammonia based on comparisons to field data and previous research described in 

the literature. In heavily fertilized fields ammonia concentrations in the soil can be extremely large, 

thus the parameterizations for Rbg and Rsoil are critical for simulation of realistic fluxes from the soil. 

The cuticle resistance is also crucial since a large fraction of the soil flux can be absorbed by the leaves 

thereby greatly reducing the flux at the top of the canopy. A study by Bash et al. [107] using a 

combination of in-canopy concentration measurements, above-canopy flux measurements, and an 

analytical model, estimated that a corn canopy was a sink for up to 70% of ammonia emitted from the 

soil approximately one month following fertilization.  

Air concentrations of ammonia in soil pores and stomatal cavities are assumed to be in Henry’s Law 

equilibrium with aqueous concentrations of ammonium and hydrogen ion in the soil moisture and 

apoplast leaf tissue, respectively. Hence, the soil and stomatal compensation points (χg and χst) can be 

computed as [108]: 

where A (2.746 × 1015) and B (4507) are constants derived from the equlibria constants, Tg,st is the 

soil and leaf temperature (K), and Γg,st is the dimensionless NH3 emission potential from the soil and 

leaf stomata where: 
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Thus, ammonia bi-directional flux models depend on methodologies for estimating stomatal and 

soil gamma values for all land use and vegetation types. Zhang et al. [109] proposed a model where 

gamma values are specified according to land use category and season based on an extensive review of 

measurement studies. Massad et al. [5] proposed a more dynamic methodology for estimating gamma 

values, also based on extensive review of measurement studies, where Γst for unmanaged ecosystems  

is computed based on nitrogen input from deposition while for managed ecosystems Γg and Γst  
are functions of nitrogen fertilizer application with a decay function by time since fertilization.  

Cooter et al. [110] demonstrated that NH3 flux from managed agricultural soils can be reasonably 

estimated by integrating the bi-directional resistance-based flux model in CMAQ with components of 

the Environmental Policy Integrated Climate (EPIC) model [111] to compute soil gamma values. 

Preliminary annual model simulations show improved estimates of NHx wet deposition over the 

eastern US in general (reduction in mean error), with regions of significant bias reduction as well as 

regions of moderate increase in bias [112]. A more complete agricultural fertilizer modeling system 

that takes daily meteorological and nitrogen deposition data from WRF/CAMQ output and uses site, 

soil, crop, and management information to estimate fertilizer application method, timing, amount,  

and rate for specific pastures and crops on the model grid is being integrated with EPIC and CMAQ on 

a continental scale [113]. Future scenarios, such as increased bio-fuel production or climate change 

that may impact crop yields and fertilizer use, can be simulated with this system to assess their impacts 

on air quality.  

Mercury is another important pollutant that exhibits strong bi-directional surface flux behavior. 

Unlike ammonia, however, the main source of surface mercury that volatilizes to the air is deposition 

from the air. Thus, bi-directional flux modeling is necessary to account for the hop-scotching  

of depositing and re-emitting mercury. Bash et al. [6] provided an overview of the processes and  

issues of bi-directional mercury exchange between the air and soil, vegetation, and surface waters. 

Zhang et al. [7] provided a review of measurements and modeling techniques. Bash [107] described  

a bi-directional elemental mercury exchange model that has been implemented and tested in the  

CMAQ system. 

Semivolatile organic compounds (SOCs), such as polycyclic aromatic hydrocarbons (PAHs), 

polychlorinated biphenyls (PCBs), and other hazardous chemicals, transfer from air to the soil by 

particle or gas dry deposition and by wet deposition where they can accumulate over long periods of 

time [114]. If concentrations in soil become sufficiently high, these compounds can volatilize back to 

the air. In addition, residual organochlorine pesticides (OCPs), such DDT and Chlordane are still high 

enough in some agricultural soils to still be an atmospheric source [115]. Air-surface exchange of 

SOCs is modeled by estimation of equilibrium partitioning with bi-directional fluxes controlled by 

deviations from the equilibrium state [116].  
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4. Recent Advances in Chemical Surface Flux Modeling  

In the early 1980s, two comprehensive reviews of gas and particle dry deposition were published by 

Hosker and Lindberg [117] and Sehmel [118]. Later, Wesely and Hicks [119], reviewed the state of 

knowledge on dry deposition. At that time the major processes controlling the deposition of the  

major inorganic species such as SO2, O3 were well understood because of the relative abundance of  

flux measurement studies of these species. For example, many flux measurements, mostly of ozone but 

also some of SO2 and NO2, have been made by gradient and eddy correlation methods going back 

several decades, starting in the 1970s [120,121], with many more in the 1980s and 1990s [122–126]. 

Note that reliable eddy correlation measurements over forest canopies were not feasible until the  

1990s [127–129]. Because of the extensive measurement data in the published record the modeling of 

these species has been somewhat constrained. Significant improvements in the modeling gas dry 

deposition in recent years have resulted from advances in land surface modeling and closer coupling 

between air quality and meteorology models. Since stomatal resistance, aerodynamic resistance, quasi-

laminar boundary layer resistance, surface and canopy wetness, and snow cover are important 

parameters for both latent heat flux and dry deposition of many gases, air quality modeling systems 

that are comprised of meteorology and chemical transport models, such as the WRF-CMAQ system, 

can use the same parameters for both dry deposition and land surface modeling [25].  

Examination of dry deposition velocities modeled by CMAQ along with concurrent parameters 

from the LSM in WRF demonstrates the close relationships between these processes. Figure 6 shows 

ozone dry deposition on a 12 km grid simulated by CMAQ for a summer afternoon (19 UT), which is 

within the range usually measured in the field with peak values of about 1.1 cm/s. The spatial pattern 

illustrates that ozone deposits primarily through the stomatal pathway since the highest values are in 

the most vegetated areas. It is interesting that high deposition velocities are simulated for both heavily 

forested areas in the East and agricultural areas in the Midwest because forests generally have higher 

LAI than crops but crops have much lower minimum stomatal resistance. Thus, ozone dry deposition 

velocity closely follows the latent heat flux (Figure 7) except where there is evaporation from  

rain wetted canopies. Note, however, that there is some enhancement of Vd for wet canopies  

(e.g., in southern Quebec) because the cuticular resistance for ozone is set to a lower value than would 

result from Henry’s law scaling (also lower than dry cuticular resistance) on the basis of a study 

comparing measured ozone flux and latent heat flux [2]. CMAQ’s dry deposition model has been 

evaluated through comparison to measurements over soybeans in Kentucky and mixed forest in upstate 

NY [130] as shown in Figure 8. While there is some lag in the morning increase of Vd for the 

soybeans, and overprediction at night, the gradual afternoon decline which is caused by stomatal 

response to lower RH is well represented. 
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Figure 6. Ozone dry deposition velocity (cm/s) from a 12 km grid resolution CMAQ 

simulation on 25 July 2006 at 19 UT. 

 

Figure 7. Latent heat flux (W/m2) from a 12 km grid resolution WRF simulation on 25 July 

2006 at 19 UT. 

 

The dry deposition velocity for SO2 is far more influenced by surface wetness as shown in Figure 2a 

because of its high effective Henry’s law solubility. The highest values of Vd for SO2 are all in the 

same areas where LE is high from evaporating surface wetness (see also Figure 2b). In these areas, 

where rain is occurring currently or recently, peak values are 3–4 cm/s, which indicates that there is 

very little surface resistance in these areas. Dry deposition of NO2 and NO were studied in relationship 

to O3 and ET in a series of gas exchange experiments involving tobacco and sunflower plants 

described by Neubert et al. [131]. These experiments showed that NO2 deposition is almost entirely 

stomatal with negligible mesophyll resistance, while NO had considerable mesophyll resistance that 

changed with light intensity. These experiments also showed that ozone deposition occurs by stomatal 

uptake with negligible mesophyll resistance and destruction at cuticle surfaces. A field measurement 

study of PAN fluxes over grassland by Doskey et al. [67] found that PAN deposition is mostly via the 
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stomatal pathway but with a non-zero mesophyll resistance resulting in Vd values 0.5–0.3 of Vd for O3, 

which is in concurrence with previous studies. However, leaf level measurements reported by  

Sparks et al. [132] suggest unimpeded stomatal uptake of PAN, indicating insignificant mesophyll 

resistance and higher deposition velocities. Furthermore, recent eddy covariance flux measurements 

over loblolly pine by Turnipseed et al. [133] show total surface conductance about twice the stomatal 

conductance, which suggests significant cuticular uptake. On the basis of these measurement studies 

the CMAQ was revised in 2007 with higher values of surface reactivity scaling parameter for PAN 

resulting in maximum deposition velocities close to the values for O3. 

Figure 8. (a) Modeled and measured dry deposition velocity for ozone over soybean in 

Keysburg, KY, 1 August–15 September, 1995; (b) mixed forest in Sand Flats, NY,  

13–30 July, 1998. 

 
(a) 

 
(b) 

Recently, many more chemical species are being added to dry deposition models as measurement 

techniques improve in detection capability and response time and the needs of the modeling 

community extend to more environmental issues such as air toxics and ecosystem impacts. For 
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example, many toxic gases have been added to the CMAQ model in recent years, thereby requiring 

estimates of dry deposition velocity for these chemicals. However, the lipid solubility scaling 

discussed in Section 3 has yet to be applied to the CMAQ dry deposition model. A recent study by 

Karl et al. [134] promotes the importance of the dry deposition of oxygenated VOCs, many of which 

are oxidation products of biogenic VOCs. They found that Methyl vinyl ketone (MVK) and 

Methacrolin (MAC), which account for about 80% of the initial oxidation products of isoprene,  

have deposition velocities of similar magnitude as O3. On the basis of this study CMAQ is being 

updated to include dry deposition of MVK and MAC. The dry deposition model in AURAMS 

described by Zhang et al. [46] already includes dry deposition of these species although with small 

values of Vd than suggested by Karl et al. [134]. 

5. Conclusions  

Modeling of surface fluxes for air quality modeling involves micrometeorology, plant physiology 

and biology, surface chemistry, soil hydraulics and physics, agricultural management, spatial 

descriptions of geophysical characteristics, and most importantly, surface flux measurements for  

a variety of chemical substances over a variety of landscapes. Uncertainties in parameterizations, 

incomplete knowledge of processes, limitations to theory, and paucity of detailed data and 

measurements, combine to limit the realism and accuracy of surface flux models used in large-scale 

(mesoscale to global) air quality modeling systems. Progress is being made on many of these fronts but 

significant uncertainties remain. Even for ozone dry deposition, which is the most widely measured 

substance, current model results still show substantial errors compared to observations (Figure 8). 

Some of the errors in chemical fluxes have their source in common with the meteorological fluxes 

(heat, moisture, and momentum), such as the aerodynamic resistance, while other errors are due to 

incomplete understanding of chemical interactions with surfaces and leaf tissue. Further errors can be 

attributed to insufficient detail and accuracy in the spatial and temporal representations of landscape, 

land use, and vegetation in meso to global scale grid models.  

Surface flux modeling relies on flux-profile relationships in accordance with Monin-Obukov 

similarity theory (MOST) in the atmospheric surface layer [135] (Equation 1). The MOST 

relationships are defined by dimensionless universal profile functions that have been empirically 

determined from the 1968 KANSAS experiment [136]. Thus, the validity of MOST is limited to flat 

terrain with uniform landscape and landcover [137]. Not only are MOST-based model calculations less 

accurate in non-ideal conditions, but also flux measurements are generally unreliable in complex 

landscapes. For substances that are mainly limited by surface resistances (e.g., O3, NO2, PAN), the 

limitation of MOST and resulting inaccuracies in estimates of Ra in non-ideal conditions such as 

sloping terrain or patchy land-use will have relatively small effects on Vd calculations [119]. However, 

for species not limited by surface uptake, such as HNO3 or other highly soluble species such as H2O2 

or SO2 when surfaces are wet, Vd estimates should be considered especially suspect in hilly or  

patchy landscapes. 

There are distinct advantages to an integrated or coupled approach to LSM and chemical flux 

modeling. As meteorology and air quality models become more integrated such as, WRF-Chem [138], 

WRF-CMAQ [139], COSMO-ART [140], GATOR [141], to name a few, there is more opportunity  
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for integrated surface flux algorithms that share key parameters like Ra, Rst, and Rb between 

meteorological and chemical flux models. Such integrated approaches not only ensure consistency but 

also potentially benefit the chemical flux calculations by using a more realistic stomatal conductance 

estimates from the ET modeling in the meteorological LSM. For example, in the WRF-CMAQ system 

the latent heat flux is optimized by an indirect soil moisture data assimilation scheme that effectively 

tunes the stomatal conductance through its dependence on soil moisture [41]. Thus, the resulting 

stomatal conductance is more constrained and generally more accurate than estimates by stand-alone 

dry deposition models. In this way, chemical flux models and air quality models automatically benefit 

as land surface models are improved. 

Advancements in land surface and chemical surface flux modeling will depend on improved 

descriptions of land use and vegetation characteristics. For example, high resolution land use and land 

cover data from the NLCD, based on 30 m resolution LANDSAT thematic mapper, have recently been 

incorporated into the WRF-CMAQ system for land surface and chemical flux modeling [142]. 

Furthermore, a more detailed vegetation dataset is being developed by combining the high spatial 

resolution land use data from NLCD with county-level tree species data from the Forest Inventory 

Analysis (FIA) and crop data from the National Agricultural Statistical Service (NASS) [113]. By 

combining with ecoregion information this dataset will be able to better define key parameters such as 

minimum stomatal conductance, LAI, and canopy height across continental gridded modeling domains. 

Ultimately, the same data set with high spatial and vegetation-type resolution will be used for chemical 

surface fluxes, meteorological land surface modeling, and biogenic emissions. 

Chemical, meteorological, and hydrological surface fluxes are key interface processes that link the 

atmosphere to the terrestrial, aquatic, and marine components of the Earth system. The dry deposition 

components of air quality models are expanding in scope to include many more chemical species that 

are important not only for atmospheric constituents but also as inputs to terrestrial and aquatic 

ecosystems. In addition, there is growing interest in the deposition of toxic contaminants that enter the 

food chain via air-surface exchange and subsequently impact human health. There has also been an 

extension to modeling substances that have surface compensation points (e.g., ammonia and mercury) 

necessitating the development of bi-directional flux capability. The new bi-directional systems often 

require adjunct land models such as agricultural management models (e.g., EPIC) that are used for 

ammonia from fertilizer. All of these extensions to the traditional dry deposition models urgently need 

evaluation and constraint from field and laboratory measurements.  
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