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Abstract: Dust storms are significant atmospheric events that impact air quality, public health,
and visibility, especially in arid Saudi Arabia. This study aimed to develop dust storm frequency
predictions for Riyadh, Jeddah, and Dammam by integrating meteorological and environmental
variables. Our models include multiple linear regression, support vector machine, gradient boosting
regression tree, long short-term memory (LSTM), and temporal convolutional network (TCN). This
study highlights the effectiveness of LSTM and TCN models in capturing the complex temporal
dynamics of dust storms and demonstrates that they outperform traditional methods, as evidenced
by their lower mean absolute error (MAE) and root mean square error (RMSE) values and higher R2

score. In Riyadh, the TCN model demonstrates its remarkable performance, with an 2 score of 0.51,
an MAE of 2.80, and an RMSE of 3.48, highlighting its precision, adaptability, and responsiveness to
changes in dust storm frequency. Conversely, in Dammam, the LSTM model proved to be the most
accurate, achieving an MAE of 3.02, RMSE of 3.64, and 2 score of 0.64. In Jeddah, the LSTM model
also exhibited an MAE of 2.48 and an RMSE of 2.96. This research shows the potential of using deep
learning models to improve the accuracy and reliability of dust storm frequency forecasts.

Keywords: dust storm frequency; forecast; machine learning; deep learning

1. Introduction

Dust storms are meteorological phenomena characterized by strong winds that lift
large quantities of dust into the atmosphere, thereby presenting considerable environmental,
economic, and health challenges [1]. The Middle East, with its characteristic arid and semi-
arid climates, is a major source of dust emissions due to significant influences of deserts
(e.g., the Arabian, Syrian, and Sahara deserts), which are primary sources of particulates [2].
Wind patterns, such as the Shamal winds in the Arabian Peninsula, and seasonal variations
influence dust storms, which can travel thousands of kilometers before deposition [3]. Saudi
Arabia, with its vast deserts and distinctive topography, is particularly susceptible to dust
storms, especially those arising from local dust sources [4–6]. Although dust storms occur
throughout the entire year in Saudi Arabia, the frequency and intensity of these storms
vary regionally based on the season [7]. This variability significantly affects visibility and
air quality, leading to an urgent need for accurate prediction models to facilitate effective
mitigation and early warning systems [8].

The detection and monitoring of dust storms rely heavily on ground-based observa-
tions and satellite remote sensing technologies [9]. Weather stations with visibility sensors
and particulate matter (PM) monitors provide immediate data that are vital for early
warning systems; for example, low-cost sensors offer unconventional data for air quality
analysis [10]. The World Meteorological Organization (WMO) uses a specialized coding
system to categorize weather phenomena [11], and the present study adopted the WMO
code for defining dust storms.
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Traditional methods for forecasting the frequency of dust storms have primarily
focused on the observation and statistical analysis of current and historical weather to iden-
tify patterns and trends [7,12], along with the utilization of numerical weather prediction
through climate models to simulate atmospheric conditions [9]. However, the complex
and dynamic factors that influence dust storms, such as dust sources, vegetation cover,
and land use changes, require a more sophisticated and integrated approach than these
methods presently provide [13].

Recent advancements in dust storm forecasting have incorporated machine learn-
ing [14]. For instance, some studies have used machine learning models, such as support
vector machine (SVM), naive Bayesian, random forest, and k-nearest neighbors models, for
short-term forecasting as daily predictions across various regions, including the Middle
East, with significant contributions from studies by Ali et al. [15], Al Murayziq et al. [16],
and Shaiba et al. [17]. For monthly forecasts, Aryal [18,19] explored the prediction of
fine and coarse dust using multiple linear regression (MLR) and SVM. Zhang et al. [20]
also focused on frequency prediction by balancing the data under the assumption that
dust storm occurrence is a rare class. They then applied AdaBoost with a random forest
model and trained it with meteorological data to forecast the classification of the frequency
category from 0 to 9 classes.

Beyond meteorological data, the role of land cover and vegetation in dust storm
dynamics is critical. Ebrahimi-Khusfi et al. [21] applied machine learning models to predict
the number of dusty days around wetlands. Their work highlights the effectiveness of
stochastic gradient boosting (SGB) in forecasting dusty days while adding land cover
areas. They then measured feature contributions using game theory. Another study by
Ebrahimi-Khusfi et al. [22] also used meteorological data with wetland-dried areas as input
features and then compared SVM, conditional inference random forest (CRF), and SGB.
The SGB model, in conjunction with various feature selection techniques, showed the
highest accuracy. Nabavi et al. [23] examined the relationship between dust emission and
the normalized difference vegetation index (NDVI), among other variables, to predict the
monthly dust aerosol index. However, the current forecasting methods have limitations,
which are now being addressed using deep learning techniques that specialize in temporal
data processing [14]. Deep learning models, such as long short-term memory (LSTM)
networks and temporal convolutional networks (TCN), have shown great promise in
environmental modeling, particularly because of their ability to capture complex temporal
relationships in data. These models, which are adept at handling sequences and time
series, can offer further understanding and prediction of evolving phenomena, such as dust
storms [24].

Previous studies have used different machine learning models to predict dust storms
using various data, such as temperature, humidity, pressure, and wind speed. However,
the occurrence of dust storms is also heavily influenced by environmental factors and
dust sources that have not yet been addressed [5,6,25]. Also, explorations of dust storm
frequency as a time series are lacking. Utilizing LSTM and TCN with sliding window
techniques could address this gap, thereby improving dust storm prediction accuracy by
incorporating these temporal dynamics. Accordingly, the aims of the present study were:
(1) to select the optimal combination of input data for predicting the monthly frequency
of dust storms using feature selection techniques; (2) to assess the efficacy of multiple
machine learning and deep learning models, including multiple linear regression (MLR),
support vector regression (SVR), and gradient boosting regression tree (GBRT), along with
deep learning models (e.g., LSTM and TCN), in forecasting these phenomena; and (3) to
use Shapley additive explanations (SHAP) values to investigate the influence of climate
and environmental variables, such as meteorological data, NDVI, land use, and identified
dust sources, on the predictive models’ performance. We also employed root-mean-square
error (RMSE), mean absolute error (MAE), and coefficient of determination (R2) metrics to
evaluate the model’s accuracy. This approach enabled a comparison of prediction outcomes
across various cities, highlighting the impact of different factors influencing dust storms.
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2. Data and Methods
2.1. Study Area

Saudi Arabia experiences some of the most intense and frequent dust storms globally.
Vast arid expanses, varied topography, and seasonal climatic extremes characterize its
distinctive geography. Three cities, including Riyadh, Jeddah, and Dammam, were selected
for comparison based on their significant geographical and demographic importance within
the country (Figure 1). Riyadh, located at 24.7136◦ N and 46.6753◦ E, is the capital city in
the central region. Jeddah, located at 21.4858◦ N and 39.1925◦ E, is situated on the western
coast overlooking the Red Sea, while Dammam, located at 26.4207◦ N and 50.0888◦ E, is
in the eastern region near the Arabian Gulf. These cities are strategically located on the
Arabian Peninsula and are surrounded by expansive deserts, including the vast Rub’ al
Khali. The arid nature and prevailing winds significantly influence dust storm generation.
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Figure 1. Location of the study area with the selected local dust sources. Each color defines a region.

In this study, we considered local dust sources in Saudi Arabia that directly impact
the cities of Riyadh, Jeddah, and Dammam. Identifying these dust sources was informed
by a previous study that employed the analysis of various satellite images and backward
trajectories to identify the dust source regions associated with the dustiest days experienced
in Riyadh, Jeddah, and Dammam over the 2000–2005 period [6]. In total, 45 dust-source
areas were identified, distributed across local source regions within Saudi Arabia and
external regions. The selected local dust source regions included the Eastern Region (DS1),
the Southern Najd and Northwest Ar-Rub-Alkhali Region (DS2), the Eastern Region of the
Arabian Shield (DS3), the Qasim Region (DS4), the Hail Region (DS5), the Adibdibah and
As-Summan Plateau Region (DS6), and Others (DS7) (Figure 1).

2.2. Data Collection

This study considered the climate and environmental variables that predict the next
month’s dust storm days. The following data were collected for 16 years, from 2005 to 2020,
from different data sources:
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• Dust storm frequency

The dust storm frequency data were obtained from the Saudi National Centre for
Meteorology. This dataset consists of daily records, with weather codes representing
different weather conditions. In this study, dust storm occurrence was defined by weather
codes (06, 07, 08, 09, and 30 to 35) as defined by the World Meteorological Organization
(WMO) [11].

• Meteorological Data

The meteorological data for Riyadh, Jeddah, and Dammam included temperature,
relative humidity, pressure, vapor pressure, wind speed, wind direction, and precipi-
tation. These were daily measurements obtained from the Saudi National Center for
Meteorology. Additionally, the meteorological data for local dust sources, obtained from
the POWER/MERRA-2 dataset, were used as daily measurements [26].

• Environmental Data

# The land cover data included classes for barren land, water bodies, urban and
built-up areas, and vegetation-related classes. They were sourced from MODIS
products and have spatial resolutions of 500 m. The Google Earth Engine was
used to calculate the mean for each year of the study period [27].

# Another variable used to identify vegetation cover was the NDVI. This dataset,
acquired from the MODIS satellite, has a spatial resolution of 1 km and a
temporal resolution of every 16 days. The Google Earth Engine was used to
calculate the mean [28].

This study considered climate and environmental variables; the data sources and
resolutions used are shown in Table 1.

Table 1. Data source details.

Dataset Spatial/Temporal
Resolutions Temporal Coverage Dataset Source

City: Meteorological Data City/Daily 2005–2020 Saudi National Center for
Meteorology

Dust Source: Meteorological Data City/Daily 2005–2020 POWER/MERRA-2 Dataset
City/Dust Source: NDVI 1 Km/16 Days 2005–2020 MODIS

City: Land Cover 500 m/Yearly 2005–2020 MODIS

2.3. Data Preprocessing

In the data preprocessing stage, several steps were undertaken to ensure the quality
and consistency of the dataset. The following procedures were implemented:

1. Handling missing variables: Missing values in the meteorological daily dataset were
replaced with the mean value of the respective variable. This included one missing
value in wind speed and wind prevailing direction.

2. We addressed potential inconsistencies and errors in some variables within the dataset
by adjusting outliers to within valid ranges and correcting abnormally high values
with the mean.

3. Wind direction: The continuous wind direction data were discretized into eight
cardinal directions (north, northeast, east, southeast, south, southwest, west, and
northwest) to facilitate model interpretation and accommodate categorical inputs.
One-hot encoding was then used to represent each direction as a binary vector. This
encoding enabled the model to capture directional patterns without assumptions
about the numerical relationships among the directions.

4. Preparing the dataset as monthly data: We calculated the monthly dust storm fre-
quency for 2005–2020 by summing up the number of dust storm days per month. We
computed the monthly mean for other predictors, such as temperature, humidity,
and wind speed, to capture the overall trend. To further explore the relationship
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between wind patterns and dusty days, we augmented the dataset with two addi-
tional columns: (1) the sum of days in each month with the wind speed exceeding
20 km/h, and (2) the sum of days with the wind speed exceeding 20 km/h across all
dust sources within each group. These additions expose the potential influence of
high-wind events on dust storm occurrences [22].

5. Incorporating seasonality: We explicitly accounted for potential seasonal influences
on dust storm patterns by creating a new numerical variable to represent the season
for each data point (spring = 1, summer = 2, autumn = 3, and winter = 4).

6. Historical dust storm frequency: Dust storm occurrences often exhibit temporal
patterns, meaning that events in one month can be correlated with those in the
following months. To capture this, we incorporated the month’s dust storm frequency
as a feature.

2.4. Normalization

For our study, min–max normalization was applied to all numerical features. This
normalization technique adjusted each feature’s values to a consistent range between 0.05
and 0.95, according to the formula:

xn = 0.05 + 0.95
(

xo − xmin
xmax − xmin

)
(1)

where xn is the normalized value of a specific feature, xo denotes the original value, and xmin
and xmax represent the minimum and maximum values, respectively, of a specific feature
within the entire dataset. The range from 0.05 to 0.95 was selected to circumvent potential
saturation issues at the data’s extremes, thereby ensuring an adequate spread for effective
model training. This normalization approach closely follows the approach outlined in [22].
The resulting normalized dataset comprised 192 monthly observations for each city.

2.5. Feature Selection

Our approach taken for feature selection initially addressed the issue of multicollinear-
ity among the independent variables, as strong correlations can lead to unreliable estimates
and predictions [29]. Employing the Pearson correlation coefficient as a standard measure
for assessing linear associations [30,31], we identified and excluded highly correlated fea-
tures (above a 0.8 threshold) from our dataset across Riyadh, Jeddah, and Dammam [29,32].

We then utilized the random forest algorithm, based on its robustness in handling
complex data interactions, to evaluate the relative importance of features within each
correlated pair. This algorithm enabled the identification and exclusion of the less important
feature from each highly correlated pair, thereby ensuring that the final feature set was
independent and impactful. It also reduced redundancy, which improved the model
performance [33].

2.6. Machine Learning Methods

In this study, the following five predictive models were applied:

2.6.1. Multilinear Regression (MLR)

MLR is widely used in prediction time series analyses in the atmospheric field [34,35]
and for dust aerosol and air quality predictions that consider multiple features [23,36].
This method offers low computational demands for exploring relationships between one
dependent variable and one or more independent variables by fitting the linear equation of
the observed data. This study constructed an MLR model using next month’s dust storm
frequency (y) as the dependent variable and relevant climate and environmental factors (x1,
. . ., xn) as independent variables. The MLR equation is as follows:

y = a + b1x1 + b2x2 + . . .+ bnxn + ε (2)
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where y is the dependent variable, a and b1, . . ., bn: are regression coefficients for each
independent variable, x1, . . ., xn are independent climate and environmental variables, and
ε is the error term [37].

2.6.2. Support Vector Regression (SVR)

SVR is employed for its structural risk minimization principle [38]. This principle en-
ables the capture of non-linear relationships and has been utilized in time series forecasting
and dust events [34,39]. The SVR equation is given by:

y = k(z) = vφ(z) + c (3)

where k(z) represents the SVR prediction function for the input data z = (z1, z2, . . ., zn), v is
the weight factor, c is the constant term, and φ(z) is the kernel function that transforms the
input into a higher-dimensional feature space.

2.6.3. Gradient Boosting Regression Tree (GBRT)

GBRT is a machine learning algorithm for regression tasks. GBRT combines decision
trees and boosting to create an ensemble model that delivers accurate predictions [40]. It
iteratively builds multiple weak regression trees and uses gradient descent to minimize the
loss function. The equation represents the GBRT model:

y = Σi fi(x) (4)

where y represents the predicted value, Σi denotes the summation over individual regres-
sion trees, and fi(x) represents the output of each tree.

2.6.4. Long Short-Term Memory (LSTM)

As an advanced recurrent neural network (RNN) architecture, LSTM can model
long-term dependencies by utilizing gates that regulate information flow, including three
distinct gates: the forget gate (ft), the input gate (it), and the output gate (ot) (Figure 2) [41].
These gates control the flow of information, thereby enabling LSTMs to retain or discard
information over extended time intervals and to handle the challenges of vanishing and
exploding gradients in RNNs, making them effective in learning complex temporal patterns.
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LSTM cells feature a dual-output mechanism comprising a cell state and a hidden
state. The cell state serves as the long-term memory, whereas the hidden state acts as the
short-term memory, capturing information from the most recent input. These states are
updated at every time step through gating mechanisms, which depend on the current input
(xt), the previous hidden state (ht−1), and the previous cell state (Ct−1).
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2.6.5. Temporal Convolutional Networks (TCN)

Temporal convolutional networks (TCN) are a type of convolutional neural network
(CNN) designed for modeling sequential data (Figure 3) [42]. Unlike the conventional
processing approach of CNN and RNN models, which process data sequentially, TCNs
utilize time-dilated convolutions, enabling them to capture long-range dependencies with
lower computational costs and higher parallelization capabilities and have shown promis-
ing results in sequence modeling tasks [43]. Dilated causal convolutions ensure that the
model’s predictions rely solely on current and past inputs, making TCNs particularly effec-
tive for forecasting tasks. Furthermore, including residual blocks significantly increases the
model’s capacity to manage sequences of varying lengths.
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2.6.6. Experimental Setup

In this study, our approach utilizes a range of models spanning traditional machine
learning and advanced deep learning techniques. The models under consideration are
MLR, SVR, GBRT, LSTM, and TCN.

These models (MLR, GBRT, and SVR) were applied using the Scikit-learn library [44].
MLR, a simpler model, was employed in its standard form without hyperparameter tuning.
SVR and GBRT were optimized using a grid search for hyperparameter tuning. The hyper-
parameters for GBRT were chosen based on recommendations [45]. The hyperparameters
of the grid search conducted for SVR and GBRT are shown in Table 2.

Table 2. Hyperparameters for SVR and GBRT models used in grid search optimization.

Model Hyperparameter Values Optimal Values

SVR Kernel [‘linear’, ‘rbf’, ‘sigmoid’] Linear
C (regularization parameter) [0.01, 0.1, 1, 10] 0.001
Gamma (kernel coefficient) [0.01, 0.1, 1, 10, 100, 1000] 0.001

GBRT Number of estimators [10, 50, 100, 500] 500
Learning rate [0.0001, 0.001, 0.01, 0.1, 1.0] Of 0.1

Max depth [3, 7, 9] 3
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In the LSTM layer, we utilized the hyperbolic tangent function (tanh) due to its effec-
tiveness in managing the gradient flow over long sequences, as this is crucial for capturing
the temporal dynamics inherent in dust storm frequency data. For the dense layers follow-
ing the LSTM or within the TCN model, the rectified linear unit (ReLU) activation function
was applied. ReLU was chosen for its ability to facilitate fast convergence and mitigate
the vanishing gradient problem, thus enhancing model efficiency [46]. The adaptive mo-
ment estimation (ADAM) optimizer was employed across all deep learning models for its
robustness and adaptive learning rate capabilities.

We determined the optimal configuration of our models by conducting a compre-
hensive grid search and exploring a range of hyperparameters, including the number of
processing nodes, epochs, batch sizes, and the number of layers for both LSTM and TCN
models, as detailed in Table 3.

Table 3. Hyperparameter values for LSTM and TCN.

Hyperparameter LSTM TCN

Window size 1–20 1–20
Number of layers 1–4 1–4
Number of nodes 200, 150, 100, 50 -
Training epochs 12, 24, 50, 100 12, 24, 50, 100

Batch size 32, 64 32, 64
Kernel size - 2, 5

Learning rate 0.001 0.001
Dilation - 1, 2, 4, 8

By incorporating a grid search, we investigated the impact of different sliding window
sizes on the model’s ability to forecast dust storm frequency accurately. We analyzed
sequences from the past 1 to 20 months as distinct scenarios to identify the temporal
window that best enhances prediction accuracy. For instance, a window size of 3 months
entailed aggregating observations from t−2 to t as the input set for predicting the dust
storm frequency for the following month, t+1. This was applied to evaluate how different
lengths of historical data affected the model’s capacity to recognize temporal patterns,
specifically since we had dust source data.

The optimal hyperparameters identified for the LSTM model included a window size
of 5 months, 200 nodes, 24 epochs, and a batch size 32.

The TCN model’s optimal settings were a window size of 5 months, three layers with
kernel sizes of 5, and dilation rates of 1, 2, 4, and 8, reflecting the model’s capacity to capture
both short-term and long-term dependencies in the data. The structure of the LSTM and
TCN models and their optimal hyperparameters are detailed in Table 4.

Table 4. Structure of LSTM and TCN after a grid search.

Parameter LTSM TCN

Window size 5 5
Number of layers 1 3
Number of nodes 200 -
Training epochs 24 100

Batch size 32 32
Kernel size - 5

Learning rate 0.001 0.001
Fully connected layer units 50 50
Fully connected layer units 30 30
Fully connected layer units 20 20

We implemented the persistence method to provide a benchmark for our models’
predictive performances [34]. This forecasting approach assumes that conditions remain
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constant; that is, it predicts the frequency of dust storms for the upcoming month to be
the same as the frequency observed in the preceding month. If a model outperforms this
baseline, it would indicate that the model is successfully leveraging historical data to make
more accurate predictions.

We developed separate models for each of the three cities, resulting in 15 models,
with 5 different models per city to predict dust storm frequency. We allocated 70% of the
collected data for training and 30% for testing. To maintain the integrity of the temporal
characteristics, we performed subsampling chronologically. This means that the data were
split sequentially rather than randomly, which is crucial for time series forecasting, as it
preserves the order of events [47]. This approach ensured that the models were evaluated
on their ability to predict future events based on past data, thus mimicking the real-world
scenario where future data are unavailable at the time of prediction.

2.7. Evaluation Metrics

The metrics used to compare the performance of the different models were the root-
mean-square error (RMSE), mean absolute error (MAE), and coefficient of determina-
tion (R2).

RMSE
The RMSE is calculated as the square root of the average squared difference between

the predicted (ŷ) and actual (y) values, as shown in the equation:

RMSE =

√
1
n∑(y − ŷ)2 (5)

MAE
The MAE measures the average absolute differences between the predicted and actual

values with the equation:

MAE =
1
n∑|y − ŷ| (6)

R-squared
R-squared (R2) quantifies the proportion of variance in the dependent variable that is

predictable from the independent variables, calculated by the equation:

R2 = 1 − ∑(y − ŷ)2

∑(y − y)2 (7)

where y refers to the actual observed values, while ŷ represents the model’s predictions,
and y is the mean of these observed values.

2.8. Assessing Feature Contributions

After developing and evaluating the predictive models, we explored the influence of
each feature on the models’ predictions. For this purpose, Shapley additive explanation
(SHAP) values were employed to decompose the model’s output to assess each feature’s
impact [48]. These values provide a consistent measure of feature importance firmly rooted
in the principles of cooperative game theory.

The SHAP value for a feature j in a prediction model can be mathematically represented
as follows:

φj = ∑
S ⊆ N \ {j}

|S|! (|N| − |S| − 1)!
|N|! [ f (S ∪ {j})− f (S)] (8)

where N is a set of all features, and S is a subset excluding feature j, enabling the easement
of this feature on the model prediction. |S| is the number of features in S, f(S) is the model
output for S, and f (S ∪ {j}) represents the output change when j is added. The SHAP value
averages this effect across all combinations, thus providing a clear metric for j’s importance
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based on cooperative game theory. The adoption of SHAP values is supported by various
studies [34,49,50], which highlight their effectiveness in interpreting complex models.

3. Results and Discussion
3.1. Dust Storm Frequency Overview

The analysis revealed significant spatial and seasonal variability in dust storm occur-
rences across Riyadh, Jeddah, and Dammam from 2005 to 2020, as shown in Figure 4a–c.
We compiled the mean and standard deviation (SD) of dust storm frequencies into Table 5,
which compares seasonal trends among the cities.
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Table 5. Seasonal mean ± SD of dust storm frequencies in our study area (2005–2020).

City Spring (Days) Summer (Days) Autumn (Days) Winter (Days)

Riyadh 72 ± 10 54 ± 13 32 ± 13 11 ± 5
Jeddah 19 ± 4 13 ± 5 11 ± 7 4 ± 3

Dammam 48 ± 11 55 ± 6 14 ± 11 6 ± 3

This overview highlights that Riyadh experiences the highest volume of dust storms,
particularly in spring, with a mean of 72 events ± 10 SD, aligning with the broader regional
pattern that sees increased dust storm frequencies during spring and summer [7,51,52].
Dammam also shows heightened dust storm activity during these seasons, reflecting
regional climatic patterns. Contrastingly, Jeddah exhibits a lower frequency of dust storms
throughout the year. In particular, during the spring, Jeddah experiences an average of
19 events ± 4 SD, significantly fewer than Riyadh’s peak season. This trend continues into
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summer, autumn, and winter, with Jeddah recording lower mean events of 13 ± 5 SD,
11 ± 7 SD, and 4 ± 3 SD, respectively.

3.2. Feature Selection

The analysis initially focused on identifying potential multicollinearity among the
meteorological variables within all three cities. Variables exhibiting a high degree of
correlation, as defined by a threshold value exceeding ±0.8, were earmarked for exclusion.
The derived correlation matrix, which outlines these correlations, is depicted in Figure 5a.
Subsequently, the feature selection was refined using random forest importance scores, with
a preference for continuous meteorological variables. This step is summarized in Figure 5b.
Of the 17 assessed features, 6 were excluded to address multicollinearity concerns.
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For the seven identified dust sources, a similar approach assessed the correlations
among identical meteorological variables across different sources. The correlations among
these features were visualized in heat maps: temperature correlations are shown in
Figure 6a, humidity in Figure 6b, precipitation in Figure 6c, and pressure in Figure 6d.
Wind speed and direction were excluded from the exclusion criteria applied to other
variables due to their direct effect on dust events.
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Subsequently, the random forest method was utilized to refine the feature selection,
removing one feature from each pair with a high correlation. From the 28 features initially
analyzed, 18 were excluded to eliminate multicollinearity, with a particular focus on
temperature (DS2, DS3, DS4, DS5, DS6, and DS7), humidity (DS1, DS2, DS3, DS4, DS5,
and DS6), and pressure (DS1, DS2, DS3, DS4, DS6, and DS7) features. The importance of
each feature to dust storm frequency and the excluded features are highlighted in red in
Figure 6e.

In our study on Riyadh, Jeddah, and Dammam, we included three land cover features
representing distinct classes, while excluding land cover data for all dust source areas due to
the assumed minimal variability. Instead, we focused on the meteorological and vegetative
factors more related to dust emissions in these areas. Additionally, we incorporated features
such as seasonal variations, wind directions, windy days, and the previous month’s dust
storm frequency directly into our model, thereby bypassing the initial feature selection.
Their impact was evaluated using the SHAP values in Section 3.4. Ultimately, the features
selected for the final model are detailed in Table A1 (Appendix A).

3.3. Comparison of the Results of Different Predicting Models

The comparative performance of the models employed to predict monthly dust storm
frequency across three major cities in Saudi Arabia, Riyadh, Jeddah, and Dammam, is
presented in Table 6. The models evaluated include MLR, SVR, GBRT, LSTM, TCN, and
a persistence method used as a baseline for comparison; the accuracy matrices used are
MAE, RMSE, and R2.

In Riyadh, which has more regular dust storm occurrences, the LSTM and TCN
outperform traditional regression approaches, with R2 values of 0.50 and 0.51, respectively,
indicating that they capture the complex temporal patterns of dust storms in the region.
The negative R2 value for the persistence method suggests that this approach is insufficient
for such dynamic weather events. For Jeddah, the task is more challenging, as indicated
by the close performance metrics across the models. This complexity can be attributed to
the coastal city’s variable climate, the influence of remote dust sources in Africa across the
Red Sea [6], and the less frequent nature of dust storms. The LSTM model exhibits the
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lowest MAE and RMSE values, indicating its effectiveness in capturing long-term temporal
dependencies within the aggregated data. Dammam also shows that the LSTM model
demonstrates the highest R2 value of 0.64, suggesting a strong model fit. The models
performed better in predicting dust storms for Riyadh due to the city’s more consistent and
defined seasonal patterns, driven by its desert climate. The coastal climate and variable
interactions in Jeddah and Dammam could introduce additional complexity in dust storm
forecasting, thus affecting model accuracy.

Table 6. Accuracy metrics for the test dataset for the three cities.

City MLR SVR GRBT LSTM TCN Persistence

Riyadh MAE 6.95 2.93 3.38 2.76 2.80 4.72
RMSE 8.36 3.60 3.87 3.52 3.48 5.81

R2 −1.84 0.47 0.33 0.50 0.51 −0.38
Jeddah MAE 2.87 2.49 2.56 2.48 2.61 2.79

RMSE 3.32 3.05 3.32 2.96 3.10 3.67
R2 −0.12 0.11 0.01 0.12 0.02 −0.29

Dammam MAE 4.68 3.63 3.92 3.02 3.44 10.03
RMSE 5.68 4.68 5.21 3.64 4.51 11.65

R2 0.14 0.45 0.39 0.64 0.21 −2.71

Plotting the actual dust storm frequencies against the predictions made by each model
over the test period from June 2016 to November 2020 shows the variability in their
predictive capabilities across different time frames. Figures 7–9 present the time series
of actual dust storm frequencies alongside the corresponding predictions generated by
each model over the test period from June 2016 to November 2020. The figures show
the seasonal variations and annual trends, with peak frequencies observed during certain
months, indicative of the cyclical nature of dust storm occurrences.

The LSTM model’s performance revealed a pattern of underestimating high-activity
periods. In Riyadh (Figure 7), notable underpredictions occurred in early 2017 and Decem-
ber 2018, with a significant shortfall in December 2018, when the actual frequency spiked.
In Jeddah (Figure 8), the LSTM fell short during unexpected events. Dammam (Figure 9)
shows a similar trend despite occasional accurate predictions. The LSTM model requires
refinement to improve its accuracy during peak activity periods.

The TCN model shows varied accuracy for predicting dust storm frequencies in
Riyadh, Jeddah, and Dammam. In Riyadh, it closely captured higher-frequency events but
tended to slightly overestimate them during other times, such as late 2019 and 2020. In
Jeddah, the TCN model consistently underestimated the dust storm frequency, particularly
in high-activity months (e.g., January and August 2020), indicating that it might not fully
detect sudden spikes in dust storm activity. Dammam experienced similar underestimation
issues with the TCN model, especially during peak periods. However, an exception
occurred in 2020, which was a year marked by unusually lower activity, where the model
tended to overestimate the frequency, highlighting a reversal in the trend of underestimation
seen in other periods and cities.

The SVR model tended to overestimate Riyadh dust storm occurrences, particularly
in periods of lower dust storm activity, as observed in late 2018 and early 2019. This
suggests a bias in the model toward higher frequency predictions during periods of low
activity. Conversely, in Jeddah, the SVR model consistently underestimated actual dust
storm frequencies, notably during high-activity periods, such as August 2020, when it
predicted significantly fewer storms than what occurred. This pattern of underestimation
extends to Dammam, where the model similarly undervalued dust storm frequencies across
various periods.
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Figure 7. Differences between the predictions and observations using the LSTM, TCN, SVR, GBRT,
and MLR models for Riyadh city.

By contrast, the GBRT model demonstrated significant adaptability and responsiveness
to changes. In Riyadh, the GBRT aligned with the actual dust storm frequency, accurately
capturing the spike in December 2018 and the high-activity trends of early 2019; thus, these
findings are consistent with the efficacy of the gradient-boosting techniques highlighted in
previous studies [21,22,34]. In Jeddah, GBRT showcased an improved predictive capability,
closely matching the actual frequencies in instances such as February and March 2020.
However, it struggled with sudden increases in activity, similar to the SVR model, as seen in
August 2020. Dammam’s results align with those of other cities, with its predictions closely
matching actual occurrences, thereby demonstrating its capability to capture trends and
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peaks. This performance across the cities underscores GBRT’s potential in environmental
forecasting, especially in capturing sudden events.
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and MLR models for Jeddah city.

The MLR model’s performance varied, with a general tendency toward overprediction
in some instances and underprediction in others. This variability underscores the chal-
lenges linear models face in capturing the complex, non-linear dynamics of dust storms.
The predictions have a consistent pattern of overestimation across the entire period for
Riyadh and Jeddah. Conversely, Dammam shows better results, but they still include
underprediction and overprediction, reflecting MLR’s struggle with the complex factors
driving dust storms. For that, the non-linear models (e.g., GBRT, TCN) provide a better fit.
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and MLR models for Dammam city.

Among the models analyzed, the GBRT and TCN models stand out for their precision
in capturing high-frequency dust storm events. The TCN model exhibited a slight edge
in accurately mirroring the actual data, particularly in forecasting the magnitude of the
activity peaks. The LSTM model, while providing a smoother predictive curve, and the
SVR model, with its conservative estimations, offered valuable insights into the trade-
offs between capturing long-term trends and responding to immediate changes in dust
storm activity.

The residuals for the LSTM and TCN models for Riyadh are presented in Figure 10,
illustrating their predictive accuracy and error distributions. A complete set of residual
visualizations across all evaluated models for all cities is in Appendix A, Figures A1–A3.
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The residuals (i.e., the differences between the observed and prediction values) in
Figure 10 highlight a generally low distribution, affirming their efficacy in accurately
predicting dust storm occurrences for most of the evaluated period. However, the LSTM
model shows a slightly broader range of positive residuals, which suggests instances in
which it underpredicted actual events more so than the TCN model.

3.4. Assessing Feature Contributions Using SHAP Values

SHAP values help quantify the importance of various predictors in various models,
such as SVR, GBRT, LSTM, and TCN (but excluding MLR due to its low performance). We
aimed to understand how environmental features and specific dust sources affect model
predictions. Among 62 predictors for forecasting dust storms, the top 20 were identified
as significant. In Figures 11–13, which analyze these predictors for Riyadh, Jeddah, and
Dammam, the red dots indicate higher feature values, while the blue dots have lower
values. Their position on the SHAP value axis reveals whether these features positively
or negatively affected the predictions. This analysis shows the intricate relationships
among the meteorological, urban, and vegetation factors in dust storm dynamics across the
three cities.

Seasonal variations, denoted as “SeasonNum”, highlight the temporal variability in
dust storm occurrences, suggesting that seasonal shifts in wind patterns are critical in
initiating and transporting dust storms.

In Riyadh (Figure 10), the meteorological conditions and specific wind patterns from
dust sources notably affect dust storm frequency. Features like “Air Temperature Min”
(e.g., SHAP value: 0.33 in GBRT), specific wind directions, such as “NE” and “SE”, and
wind directions from specific dust sources, such as “wind_direction_mean_DS4” (SHAP
value: 0.66) and “wind_direction_mean_DS3” (SHAP value: 0.30) in GBRT, are pivotal. The
wind speed, particularly the “Wind Mean Speed” and “Wind_Speed_Freq_20,” with SHAP
values of 0.47 and 0.23, respectively, in GBRT, plays a significant role in prediction. The
“wind_speed_sum_DS” feature, which is the sum of windy days with more than 20 km/h
for areas like DS2, DS3, and DS6, especially in the TCN model, underlines the influence of
wind speeds from these sources on dust storm occurrences.

Jeddah’s analysis (Figure 11) points to the significant roles of wind characteristics, includ-
ing speed (“Wind Mean Speed”, with a SHAP value of 0.201 in GBRT) and wind direction
from dust sources (“wind_direction_mean_DS5” at 0.314 and “wind_direction_mean_DS7”
at 0.291 in GBRT), as crucial in influencing dust patterns. The SVR, LSTM and TCN models
also reflect the importance of these factors, although they have varying degrees of impact,
indicating a complex interplay among the factors.
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Meteorological and wind-related factors similarly influenced Dammam’s pattern
(Figure 12). The key features include “Air Temperature Min” with a SHAP value of 0.33 in
the GBRT model. Wind direction in dust sources, particularly “wind_direction_mean_DS2”
(0.66 SHAP value) and “wind_direction_mean_DS3” (0.30 SHAP value), in the GBRT model.
Wind speed factors like “Wind Mean Speed” (0.47 SHAP value) and “Wind_Speed_Freq_20”
(0.23 SHAP value) also play a critical role in the prediction output.

The analyses of Riyadh, Jeddah, and Dammam also emphasize the impact of the
relative humidity, precipitation, and urban and barren lands on dust activity. Urban areas,
particularly in Riyadh and Jeddah, alongside barren lands, significantly affect dust storm
dynamics. These findings highlight the complex influences of environmental, urban, and
vegetative factors on dust storm patterns, underscoring the importance of integrating these
elements into predictive models for effective forecasting and mitigation strategies. The
greatest impact on urban areas was observed in the SVR model for Riyadh (SHAP value:
1.02) and barren areas in the GBRT model (SHAP value: 0.75), highlighting the critical
roles of urbanization and land surface conditions in influencing dust storm occurrences. A
previous study [5] identified urbanization as a key driver of changing dust storm patterns in
Saudi Arabia, supporting our findings regarding the need to consider urban expansion and
natural land conditions in dust storm frequency analysis. Further support for the influence
of barren areas on dust storm activity in the study by [17] corroborates our findings by
showing how drying wetlands and expanding barren lands amplify dust occurrence.

The vegetation dynamics offer contrasting insights. The “Vegetation_Sum” feature,
which includes croplands, herbaceous areas, and shrublands, shows a positive correlation
with dust storm frequency in our models for Riyadh, with the highest SHAP value observed
in the GBRT model (SHAP value: 0.80). This suggests that areas with heavier vegetation,
potentially reflecting intensive agricultural activities on cropland, may contribute to dust
storm occurrences, likely due to soil disturbance and reduced soil moisture, which turn
these areas into dust sources, as reported previously [53]. Conversely, the “NDVI_mean”
feature demonstrates a negative correlation with dust storm frequency, indicating that
increased vegetation health and density, as captured by higher NDVI values, can mitigate
dust storm activity. The greatest negative impact of the NDVI on dust storm frequency was
observed in the GBRT model for Jeddah (SHAP value: −0.64), suggesting that healthier
vegetation cover plays a crucial role in stabilizing soils and reducing dust emissions.
Therefore, the health and density of vegetation within identified dust source areas, such
as “NDVI_mean_DS7” and “NDVI_mean_DS3”, inversely affect dust storm frequency.
Similarly, for Dammam, GBRT underscores NDVI_mean_DS3 with a SHAP value of 0.49
and NDVI_mean_DS1 with a SHAP value of 0.23, suggesting NDVI’s substantial role, as
mentioned in [54,55].

This analysis explains the complex interplay between meteorological, environmental
conditions, urbanization, and dust sources that influence dust storm frequency. It un-
derscores the need for integrated dust storm management strategies that consider urban
planning, vegetation cover enhancement, and targeted mitigation efforts based on seasonal
and meteorological factors.

4. Conclusions

This research developed the forecasting of dust storm frequencies in three cities
of Saudi Arabia—Riyadh, Jeddah, and Dammam—by integrating meteorological and
environmental variables, NDVI, land use data, and characteristics of dust sources with
various machine learning and deep learning models. The results highlight the effectiveness
of the LSTM and TCN models in capturing the complex temporal dynamics of dust storms
and demonstrate that they outperform traditional methods, as evidenced by their lower
MAE and RMSE values and higher R2 scores.

The TCN model showcased its remarkable performance in Riyadh, with an R2 score of
0.51, an MAE of 2.80, and an RMSE of 3.48, highlighting its precision and adaptability to the
city’s specific environmental and climatic conditions. Conversely, in Dammam, the LSTM
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model proved to be the most accurate, achieving an MAE of 3.02, an RMSE of 3.64, and an
outstanding R2 score of 0.64. In Jeddah, the LSTM model also exhibited a competitive edge,
achieving an MAE of 2.48 and an RMSE of 2.96.

The utilization of SHAP value analysis revealed the considerable impact of seasonality,
wind-related features, and environmental factors, such as the NDVI, vegetation cover,
urban and barren land use, and specific dust source characteristics, in predicting dust
storm frequency.

This research shows the potential of using deep learning models to improve the accu-
racy and reliability of dust storm frequency forecasts with the sliding window technique
for historical months. It ultimately demonstrates integrating advanced machine learning
techniques with detailed environmental data as a promising approach to improving the
understanding and prediction of complex meteorological events.
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Appendix A

Table A1. Selected Meteorological and Environmental Features with their corresponding count,
description, and units.

Feature Number of Features Description Units

Wind Direction 10

These features are binary indicators representing the presence or
absence of wind from specific directions. “Calm” signifies no wind,

while the other labels (E, N, NE, NW, S, SE, SW, W) denote wind from
the east, north, northeast, northwest, south, southeast, southwest, and

west, respectively. “Variable” indicates changing wind directions.

0 or 1

Pressure Max Sea Level 1 Maximum atmospheric pressure at sea level. hPa

Wind Max Speed 1 Maximum wind speed recorded during the observation period. km/h

Vapor Pressure Mean 1 Average vapor pressure in the air. hPa

Wind Mean Speed 1 Average wind speed recorded during the observation period. km/h

Pressure Min Sea Level 1 Minimum atmospheric pressure at sea level. hPa

Air Temperature Min 1 Minimum dry-bulb air temperature recorded. ◦C

Pressure Max
Station Level 1 Maximum atmospheric pressure recorded at the station level. hPa

Relative Humidity Min 1 Minimum relative humidity recorded during the observation period. %

Rainfall Total 1 Total rainfall recorded during the observation period. mm

Relative Humidity Max 1 Maximum relative humidity recorded during the observation period. %

Dust_storm_freq 1 Frequency of dust storm events within the observation period. days

https://power.larc.nasa.gov/data-access-viewer/
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD12Q1
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD12Q1
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD13A2
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD13A2
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Table A1. Cont.

Feature Number of Features Description Units

SeasonNum 1 Numeric representation of the season (1–4). categorical

Wind Speed Sum at
Dust Sources 7

Cumulative wind speeds measured at seven different dust
sources (DS1 to DS7). This encompasses the aggregated
days of wind speeds above 20 km/h at each dust source.

days

Wind_Speed_Freq_20 1 Frequency of wind speed occurrences above 20 km/h. days

Relative Humidity Mean
at DS7 1 Average relative humidity measured at dust source 7. %

Temperature Mean at DS1 1 Average temperature measured at dust source 1. ◦C

Precipitation Mean at DS1
to DS7 7

Average precipitation measured at dust sources 1 to 7,
indicating moisture levels that could impact dust

mobilization.
mm

Pressure Mean at DS5 1 Average atmospheric pressure measured at dust source 5. hPa

Wind Direction Mean at
DS1 to DS7 7 Average wind direction measured at dust sources 1 to 7,

indicating predominant wind directions at each source.
◦

Proportions of Land Cover
Types 3 Proportions of barren land, water bodies, and urban areas

within the study region. %

Vegetation Sum 1 Sum of vegetation coverage, indicating proportion of
natural herbaceous, shrublands, and herbaceous croplands. %

NDVI and NDVI Mean at
DS1 to DS7 8 Normalized difference vegetation index and its average

values at dust sources 1 to 7, assessing vegetation health. Index (0–1)

Total Number of Features 61

The residual distributions for all models in Figures A1–A3 provide a detailed visual-
ization of the residual distributions for each of the five models (MLR, SVR, GBRT, LSTM,
and TCN) evaluated in our study across the three cities. These visualizations offer the
variability and prediction errors of each model.
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