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Abstract: Biomass energy for heating is going to be part of the spectrum of renewable energy sources.
However, biomass combustion produces emissions of various pollutants with negative effects at
both local and global scales. To reduce some of the locally important pollutant load, thermally
treated biomass fuels may offer a partial solution. In this study, two biomass feedstocks, i.e., spruce
chips and rapeseed straw, were thermally treated at 300 ◦C to produce biochars. Subsequently, both
original materials and biochars were burned in a 25 kW retort combustion device. In both cases, the
biochar showed lower emissions of carbon monoxide and nitrogen oxides, usually almost across the
whole range of tested combustion conditions. In total, for the emission production per unit of net
calorific value, the spruce biochar showed reductions in CO and NOx productions of 10.8% and 14.5%,
respectively. More importantly, in rapeseed straw biochar, the difference was more pronounced. The
total production was reduced by 28% and 42%, again in CO and NOx emissions, respectively.

Keywords: biomass; biochar; combustion; carbon monoxide; nitrogen oxides; torrefaction; pyrolysis

1. Introduction

The most significant source of greenhouse gas emissions is the burning of coal for
the production of electricity [1]. For many years, there has been an ongoing discussion
about the extent of the role of biomass as an important renewable energy source, which
can often be seen as a CO2-neutral energy source and is an interesting option for reducing
CO2 emissions [2–4]. The use of biomass for electricity and heat production is going to stay
for the foreseeable future, including the heating of residential homes, since it still tends
to be the cheapest option. However, for a fuel, being CO2 neutral is not necessarily good
enough. It also needs to be easily and efficiently utilized and it must not produce excessive
emissions of pollutants, such as CO, NOx, and particulate matter, which can by themselves
cause damage by contributing to increases in some illnesses [5,6].

Among the most important biomass sources for energy production are wood and
herbal biomass [7,8]. When using raw biomass, the presence of elements such as nitrogen,
sulfur, and chlorine and the composition of ash-forming elements make it a demanding
fuel, even with regard to the production of CO and CO2 [9]. The emissions of CO, NOx,
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solid particles, and SOx are then the main problems in the conversion of biomass to energy
by combustion [10]. A large body of research has been focused on the analysis of emissions
formation and on the optimization of biomass processing for the reduction in, e.g., NOx
emissions [11,12]. In general, NOx emissions arise from chemically bound fuel nitrogen,
which is always present in solid biofuels; on the other hand, CO is a sign of incomplete
combustion [13,14]. Nitrogen oxides may be generated by a number of mechanisms
and understanding the processes of NOx formation is important for their reduction [15].
The importance of radical reactions at the flame boundary for the formation of NOx
was shown [16,17]. More significant, however, are NOx emissions due to the reaction of
atmospheric nitrogen at elevated combustion temperatures [18] and with increased amounts
of combustion air [19,20]. Jiang et al. [21] investigated the influence of various parameters,
such as temperature, composition, and particle size, on the formation of nitrogen oxides
upon combustion. The formation of these pollutants depends on the properties of the fuel
and on the operational parameters of the combustion equipment [22]. The temperature,
combustion, air flow distribution and its amount, residence time, reactor design, fuel
elemental composition, and ash content are among the main influencing factors [13]. Studies
that dealt with the effects of the excess air factor and temperature showed that temperature
has little effect on the formation of NOx emissions in practice [21,22]. On the other hand,
the coefficient of excess air is the most important parameter [23,24]. And generally, the
formation of one emission component has a great influence on the formation of other
emission components in the flue gas [25].

One option to enhance the usability of biomass is its modification to a value-added
product, such as biochar, through various pyrolysis or torrefaction technologies [26]. These
types of processing contribute to the decomposition of certain parts of the original material,
mainly cellulose and hemicelluloses. This contributes to the reduction in the fiber length
and mechanical stability [27,28]. It also brings various positive effects. Treated biomass
shows more homogeneous physico-chemical properties compared with raw biomass, which
predisposes it to not only energy purposes but it can be used readily as a soil amendment as
well [29,30]. There are various pyrolysis technologies for the production of biochar, which
can be classified into dry processing methods [31–33] and wet processing methods [34–38].
Furthermore, dry processing, e.g., dry torrefaction, can be used as a pre-treatment before
liquefaction processing to obtain liquid biomass-derived products [39]. In general terms, in
all pyrolysis methods, volatiles are removed from the biomass, leaving behind a dark brown
solid residue with a higher energy density compared with the original material [40,41]. The
calorific values of biochar approach those of coal (22 to 23 MJ kg−1) or even exceed them.
Since October 2023, the usefulness of thermally treated biomass as a fuel can be evaluated
using the international standard ISO 17225-8 [42], which brings specifications for graded
thermally treated and densified biomass fuels. A possible advantage of thermally treated
biofuels may be the propensity for a cleaner or more controllable combustion process [43].

Although there are a number of reports showing emission parameters of various
biomasses and biochars, there is a lack of information comparing the biochar with its source
biomass outside of laboratory measurements. To allow for verifying whether biochar may
possibly contribute to better local air quality, this study aimed to approximate a real-world
scenario of biochar substituting biomass in energy use. This study was based on the
hypothesis that thermally treated solid biofuels from wood and herbal biomass would
achieve comparable or better emissions upon combustion corresponding to the requirement
for biomass combustion. This was tested, first, through establishing the quality of the
thermally treated products, and second, by determining the emission-producing behavior
of the assessed samples on a combustion device for biomass. The emission concentrations
of CO and NOx were evaluated as a function of the coefficient of excess air and flue
gas temperature.
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2. Materials and Methods
2.1. Wood Chips

The wood chips were obtained in the region of central Bohemia in the year 2022. The
source of wood chips were offcuts from a sawmill from debarked, primarily spruce wood,
which is the most typical wood source in the Czech Republic. Therefore, bark was no longer
retained on the individual chips. The advantage of this biomass is that it contains a very
low portion of inorganic pollution, it has high calorific values, and there are no technical
problems with ash during its use. In central Bohemia, the average reported ash content
was below 1 % wt. for spruce and pine wood, with a net calorific value of 18.5 MJ kg−1 on
a dry basis [44].

2.2. Rapeseed Straw

Rapeseed straw was collected in the region of central Bohemia after the rapeseed
harvest in 2022. Rapeseed is the most important oil cropseed of the Czech Republic and
its share of cultivation area in the Czech Republic is around 80% of all oil crops [45]. After
1989, rapeseed became the most important transformative crop of Czech agriculture, as it
replaced the loss of fodder crops and maintains the balance of humus in the soil. Of all
major crops, rapeseed leaves the most straw, in the range of 2.8–4.5 t ha−1, with a gross
calorific value reported around 17.36 MJ kg−1 [46–48].

2.3. Sample Pre-Treatment

The pre-treatment of wood chips and rapeseed straw samples consisted mainly of
creating a suitable form before its energy use. These pretreatments consisted of reducing
the fractional composition and creating a pelletized fuel suitable for subsequent pyrolysis
processing and energy use. The samples, original and thermally treated, were ground on
a laboratory mill to the required particle size and pressed into the form of pellets with
a diameter of 6 mm using a granulation press with a flat matrix (Kovo Novák, Citonice,
Czech Republic).

2.4. Thermal Treatment

The actual pyrolysis treatment took place on a semi-operational batch pyrolysis reactor
TKKA ZLK (PolyComp, Poděbrady, Czech Republic). After weighing the samples into the
reactor, atmospheric air was purged with nitrogen gas. The reaction temperature during
the pyrolysis treatment was 300 ◦C with a residence time of 60 min. The dry weight of
one batch was 15 kg for wood chips and 30 kg for rapeseed straw. An average of 7.10 kg
of biochar from spruce chips (mass yield of dry solid biochar 47.33%) and 13.15 kg of
biochar from rapeseed straw (mass yield of dry solid biochar 43.54%) were obtained by the
pyrolysis treatment. The resulting by-products were condensed and removed for further
processing. Only solid biochar was considered in this study.

2.5. Elemental and Proximate Analysis

For the compositional analysis, samples from each material were first ground in a lab-
oratory mill to produce homogenous analytical samples. The non-combustible substances
of the fuels, i.e., the ash and the total water content, were determined by incineration at
550 ◦C (ISO 18122 [49]) and drying at 105 ◦C (ISO 18134-3 [50]), respectively, until constant
weight. The elements of carbon (C), hydrogen (H), and nitrogen (N) were determined on a
CHN analyzer Perkin-Elmer 2400 (PerkinElmer, Inc., Waltham, MA, USA). To determine
the chlorine (Cl) and sulfur (S) contents, the samples were burned in an oxygen–hydrogen
flame on a Wickbold apparatus. The gross calorific values (GCVs) of the assessed fuel
samples were determined in an IKA 2000 bomb calorimeter (IKA-Werke GmbH & Co., KG,
Staufen, Germany). The net calorific value (NCV) was determined by calculation according
to ISO 1928 [51], for which the results of the elementary analysis of individual biofuel
samples were used. All measurements were carried out at least in triplicate.
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To determine the emission indicators, the results of elemental analyses were used for
the stoichiometric analysis of combustion processes in the diffusion areas of combustion
processes. Stoichiometric analysis completed the characterization of these biomass samples.
By stoichiometric calculations, the amount of oxygen (and subsequently of combustion
air) required for complete combustion of the sample, the amount and composition of flue
gas, and the specific gravity of flue gas were determined. The results were used to help
evaluate the emission measurement to determine the coefficient of excess air.

2.6. Combustion Tests

As part of the evaluation, all pelletized samples from spruce chips and rapeseed
straw, as well as the derived biochars, were combusted on a combustion device Lyčka-AM
24 Lico-therm (Agromechanika v.o.s., Lhenice, Czech Republic) with an automatic fuel
supply through a bottom retort (see Figure 1) at a nominal heating output of 25 kW. The
goal of this measurement was to determine the behavior of the emission concentrations of
CO and NOx and the flue gas temperature Tfg, depending on the excess air coefficient n at
the nominal thermal output of the combustion unit. The combustion device was connected
to a measurement water loop system, which made it possible to determine the efficiency
through the direct method performed according to the standard ČSN 07 0240 [52]. The
efficiency could be determined by Equation (1) as the ratio of the energy output defined as
heat transferred into the water Pk to the energy input Pp. The energy inputs were mainly the
net calorific value of the fuel and the sensible heats of both the fuel and the combustion air.

η =
Pk
Pp

·100 (1)
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Figure 1. Combustion retort device with bottom fuel supply (1—combustion space; 2—retort;
3—screw feeder; 4—ash tray; 5—combustion fan; 6—fuel bin; 7—motor with gearbox).

Combustion tests were carried out under stabilized conditions at the nominal thermal
output of the combustion unit. In the combustion unit (see Figure 1), fuel was fed from the
reservoir to the retort with the help of a screw feeder from the bottom. Combustion air was
regulated using a fan. Similar devices are commonly used for the heating of family houses.
During the measurement, the combustion device was connected to a closed heating loop for
the regulation of the thermal output of the device to the nominal heat output. With the help
of a screw feeder, fuel samples were fed at a mass flow rate calculated from the composition
of the samples (see Table 1). During the measurement, the amount of combustion air was
regulated. The ratio between the primary and secondary air was maintained at 3:1. This
ratio was maintained at this level based on the known fuel flow rate (see Table 1). The
control of the air intake was performed with the help of the coefficient of excess air, which
was calculated in real time by a flue gas analyzer. The analyzer was adjusted to each specific
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fuel sample based on the elemental composition. Combustion tests were performed for 6 h
for each fuel sample.

Table 1. Operating parameters of the combustion unit.

Sample
Gravimetric Flow Rate

of Material to the
Combustion Unit

Nominal Heat Output Nominal Combustion
Efficiency

Amount of
Combustion Air for 1
kg of Fuel at n = 2.1

(kg h−1) (kW) (%) (m3 kg−1)

Spruce pellets 5.72 25 90 9.58

Spruce biochar 3.62 25 90 15.01

Rapeseed straw pellets 6.20 25 90 8.56

Rapeseed straw biochar 3.94 25 90 14.23

2.7. Emission Measurement

The GA-60 device (Madur Polska Sp. z o.o., Zgierz, Poland) was used to determine
the emission concentrations. This is a multi-purpose flue gas analyzer. The device em-
ploys converters for the analysis of the following components of flue gas: oxygen (O2),
carbon monoxide (CO), nitrogen oxide (NO), nitrogen dioxide (NO2), and sulfur dioxide
(SO2). The GA-60 device allows for measuring both the ambient (flow) and the flue gas
temperature (flue gas). Sensor signals are proportional to the volumetric concentration of
the individual components in ppm. The concentrations of the components in dry flue gas
were converted to normal gas conditions (i.e., temperature 0 ◦C and pressure 101.325 kPa)
and concentrations in mg m−3 at a reference oxygen content in the flue gas of 11 % vol. The
analyzer was calibrated by a specialized company and then auto-calibrated before each
combustion run. The results of the emission measurements were processed by regression
analysis to express the dependence of carbon dioxide and nitrogen oxides on the coefficient
of excess air and flue gas temperature. As the simplest appropriate function to explain this
dependence, polynomial functions of the second degree were chosen.

3. Results and Discussions
3.1. Fuel Analysis

The pellet samples in their original state had a fairly low water content. The spruce
pellet samples had an average of 5.59 % wt. water content. In the spruce biochar, however,
the average water content stayed even lower at 1.48 % wt. The rapeseed straw pellets had
an average of 5.45 % wt. water content, and after the thermal treatment, it stayed slightly
lower at 4.88 % wt. Since the water portion of a fuel is a non-combustible component,
which also negatively affects combustion [53], it was necessary to monitor and control the
moisture content before combustion tests at a reasonable level [54]. Before the combustion
tests, there were no changes in the water content of the monitored samples. Such a low
water content will have a positive impact not only on the calorific values, but it is also
favorable for both thermal treatment and in combustion [8].

The results of other fuel analyses are shown in Table 2. The average ash content
of the original spruce pellets was very low. In general, woody biomass [55] has a very
low ash content compared with herbaceous biomass [56]. Typically, the amount of ash is
determined by the amount of silicon and potassium, which are low in the stem wood, but
higher in the bark, leaves, and living tissues of a tree [57]. After the thermal treatment,
there was a twofold increase in the amount of ash. This increased amount of ash was still
within the range, when the removal of solid residue after combustion did not pose a large
problem. In the samples of the pellets from rapeseed straw, however, the ash amount was
ten times greater than in the spruce pellet samples. The content of ash was then further
elevated during the pyrolysis treatment. A large amount of ash causes an increase in
particulate emissions [58]. The emissions of solid particles, however, were not evaluated
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in this study. An increased amount of ash creates technical problems for removing ash
from the combustion chamber [59]; furthermore, solid deposits can form in the combustion
chamber [60]. Naturally, ash, as a non-combustible part of the fuel, reduces both the gross
and net calorific values.

Table 2. Proximate composition, calorific values, and main element contents of tested materials in the
dry state. The uncertainty is expressed by the standard deviation.

Sample Ash GCV NCV C H N S O Cl

(% wt.) (MJ kg−1) (MJ kg−1) (% wt.) (% wt.) (% wt.) (% wt.) (% wt.) (% wt.)

Spruce
pellets

0.55 18.65 17.49 51.31 5.32 0.10 0.03 42.67 0.02
(±0.02) (±0.01) (±0.14) (±0.04) (±0.01) (±0.001) (±0.001)

Spruce
biochar

1.15 28.51 27.63 75.65 4.02 0.10 0.03 19.01 0.04
(±0.02) (±0.01) (±0.24) (±0.03) (±0.01) (±0.001) (±0.001)

Rapeseed
straw pellets

5.11 17.25 16.12 46.24 5.18 0.76 0.24 42.24 0.23
(±0.03) (±0.01) (±0.11) (±0.05) (±0.02) (±0.002) (±0.01)

Rapeseed
straw biochar

13.95 25.93 25.36 71.88 2.61 1.43 0.46 9.30 0.37
(±0.04) (±0.01) (±0.15) (±0.03) (±0.03) (±0.003) (±0.01)

As for the elemental composition, the carbon contents in untreated materials corre-
sponded to values for the same types of biomasses, i.e., woody and herbaceous, reported
in other sources [55]. In the diffusion-controlled combustion, carbon burns completely to
produce carbon dioxide [61]. In the opposite case, under an insufficient supply of oxygen,
carbon turns partly into carbon monoxide in the flue gas, as well as creating heat losses [62].
The thermal treatment significantly increased the proportion of carbon in both the pellet
samples to values above 70 % wt., thereby increasing the calorific values. Such a high
increase in the carbon content in biochar was also observed with similar biomass [63].

The contents of other biogenic elements, i.e., hydrogen, nitrogen, and sulfur, in the
samples of spruce and rapeseed pellets corresponded to similar biofuels [44,55]. After
the thermal treatment, the contents of nitrogen and sulfur increased substantially in the
samples of rapeseed straw, i.e., by 53.1% and 52.2%, respectively. Compared with fossil
fuels [64], however, the amount of sulfur was still quite low. Increased nitrogen and
sulfur concentrations in rapeseed straw pellet samples may be a reason for the increased
emissions of nitrogen and sulfur oxides [65]. In this study, the SOx emissions were not
evaluated due to the very low content in spruce pellets. Indeed, most biomass fuels have
a low sulfur concentration (0.01–0.5 % wt.), and therefore, very low concentrations of
SO2 are emitted [66]. In particular, woody biomass tends to have a several times lower
concentration of sulfur compared with herbal biomass [56]. During pyrolysis, part of this
sulfur content is released into gaseous and liquid products, as was reported for woody [67]
and herbal biomasses [68,69]. It can then be hypothesized that SO2 emissions will be
reduced [66].

From a certain viewpoint, oxygen is a ballast component in a fuel since it inevitably
lowers the maximum possible energy density. The average percentage of oxygen in raw
biofuel samples was above 42 % wt. in the dry state. After the pyrolysis treatment, this was
reduced by 55.4% in samples from spruce pellets and even more significantly by 77.9% in
samples from rapeseed straw. Similar results were reported before [8,70,71]. This reduction
in oxygen increased the proportions of other elements in the fuel, and thus, contributed to
a significant increase in calorific values.

Compared with the chlorine content in the spruce pellets, where it was only 0.02 %
wt., the chlorine content in all types of herbal biomass tends to be higher [55,72]. In the
rapeseed straw samples, the values were about ten times higher, and after the pyrolysis
treatment, they increased by another 60%. Based on these results, it could also be concluded
that rapeseed straw and its biochar would be the more difficult fuel during combustion.

To evaluate the biofuels for possible commercial use, they can be classified according
to the most applicable international standards. In the case of spruce wood pellets, for all
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tested parameters, they met the criteria for the A1 class according to the ISO 17225-2 [73].
Rapeseed straw pellets fell under ISO 17225-6 [74] as a non-woody material. Given the
content of sulfur and chlorine, the material tested fell under class B; however, all other
decisive parameters, i.e., ash and nitrogen content and net calorific value met the class A
criteria. For thermally treated fuels, the ISO 17225-8 [42] applies. Since in thermally treated
biomass, a substantial increase in calorific value can be expected, many parameters are
related to the net calorific value. For the tested materials, these values are given in Table 3.
For biochars, decisive parameters are in bold. For chemically untreated woody biomass, the
spruce biochar easily met the criteria for the TW1 class. For non-woody thermally treated
biomass, the rapeseed straw biochar failed to meet the TA2 class criteria due to having too
high sulfur and chlorine content. The ash content was also quite high, which would leave
it in TA2 if it met other criteria.

Table 3. Proximate and elemental compositions in the dry state reported in units of mass per unit of
net calorific value.

Sample Ash C H N S O Cl

(g/MJ) (g/MJ) (g/MJ) (g/MJ) (g/MJ) (g/MJ) (g/MJ)

Spruce pellets 0.31 29.34 3.04 0.06 0.02 24.40 0.01

Spruce biochar 0.42 27.38 1.45 0.04 0.01 6.88 0.01

Rapeseed straw pellets 3.17 28.68 3.21 0.47 0.15 26.2 0.14

Rapeseed straw biochar 5.50 28.34 1.03 0.56 0.18 3.67 0.15

3.2. Emission Concentrations of Carbon Monoxide as a Function of the Coefficient of Excess Air
and the Flue Gas Temperature

For the spruce pellets, the concentrations of carbon monoxide showed a steep decrease
as the coefficient of excess air increased from 1.96 to 2.38 (see Figure 2a). The lowest
carbon monoxide emission concentrations of 400 mg m−3 occurred at an excess air factor
of 2.38. From this minimum, there was a slight increase. Overall, for the spruce pellets,
the nominal heat output of the unit was regulated in the range of excess air factor from
1.96 to 2.45, ranging from 158 ◦C to 173 ◦C, respectively. The spread in carbon monoxide
emission concentrations was quite wide in the range of 400 to 2240 mg m−3. The highest
emissions were produced at the highest temperature of 173 ◦C (see Figure 2b), though
normally, carbon monoxide production decreases with increasing combustion temperature
to a limit when the combustion process has an optimal amount of combustion air [75,76].
The optimal excess of air during combustion is when the lowest concentrations of carbon
monoxide are achieved at the nominal heat output [77]. Below the optimal excess of air, the
combustion temperature can increase [78]; however, it is accompanied by rapidly increasing
CO emissions [79]. This phenomenon usually occurs during the start and extinction of the
combustion process [53,80]. On the other hand, high concentrations of carbon monoxide
can occur with a larger ratio of excess air, when the amount of oxygen is not the limiting
factor for complete combustion. A large surplus of combustion air lowers the combustion
temperature [14,81], which, in the present case, also resulted in high CO concentrations for
untreated rapeseed straw and its biochar.
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In this case, having a sufficient amount of combustion air had a clearly positive effect
on the reduction in the carbon monoxide production. Very similar results were achieved in
other studies [8,80], where, on the one hand, the emission concentration of carbon monoxide
decreased with an increasing coefficient of excess, but at the same time, with increasing
temperature, there was an increase in the emission production. This was because as the
coefficient of excess air increases, the temperature in the combustion space cooled, and this
led to a cooling of the combustion temperature, and thus, a reduction in the temperature of
the flue gases. When optimizing the combustion process for this fuel, the optimal excess air
coefficient would be around the value 2.38, while the optimal flue gas temperature was
around 163 ◦C.

For the spruce biochar samples, combustion was regulated in the range of excess air
coefficient from 1.74 to 2.46, while the temperature ranged from 152 ◦C to 177 ◦C. There was
a gradual decrease in CO emissions from 900 to 850 mg m−3 through the whole range, or
conversely, an increase in flue gas temperature led to a slight increase in the CO emissions.
Compared with untreated samples of spruce pellets, the spread of emission concentrations
was much smaller. Similar results were found in the reduction in emission concentrations
during the incineration of forestry waste and agro-waste [8,22,82,83].

The rapeseed straw pellets achieved the highest emission concentrations of carbon
monoxide of all tested materials. The nominal operation output could be regulated in the
range of excess air factor from 2.03 to 2.54, where the flue gas temperature ranged from
156 to 213 ◦C. In the whole range, there was a gradual increase in the CO concentrations
from 2380 to 2810 mg m−3 with the excess air factor, along with decreasing temperature.
Generally, in order to reduce CO emissions, it is necessary to increase the combustion
temperatures or prolong the retention of flue gas at high temperatures. High emission
concentrations of CO alongside a high coefficient of excess air were shown during the
burning of some herbal biomasses [22], energy crops [83], and some agricultural wastes [82].
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To further reduce CO emissions, this would require a redesign of the combustion device to
optimize the mixing of combustion air with fuel.

In the rapeseed straw biochar, however, a significant reduction in CO emissions was
achieved. This sample was combusted in the range of the excess air coefficient from 1.7
to 3.04, with a gradual increase in CO emission concentrations from 1220 to 2450 mg m−3.
Conversely, they decreased with higher temperature, which was in the range of 112 to
204 ◦C. To optimize the combustion in a particular device to reach the lowest possible CO
emissions, it is necessary to maintain an optimal value of the excess air factor [75,77]. In
the case of the rapeseed straw biochar pellets, the optimal coefficient would be a low value
of around 2.

3.3. Emission Concentrations of Nitrogen Oxides as a Function of the Coefficient of Excess Air and
the Flue Gas Temperature

The emission concentrations of nitrogen oxides in samples of the spruce pellets showed
a steady decrease with an increasing coefficient of excess air from 1.74 to 2.43 (see Figure 3a).
For the increasing flue gas temperature from 158 to 165 ◦C, there was an initial slight de-
crease (see Figure 3b). Above this temperature, there was a gradual increase in the emission
concentrations of nitrogen oxides up to the maximum measured value of 94 mg m−3. The
lowest emission concentrations of nitrogen oxides, i.e., 79 mg m−3, was measured at the
highest recorded excess air factor of 2.43.
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The combustion of thermally treated spruce samples in the range of excess air coef-
ficient from 1.74 to 2.43 proceeded similarly to untreated samples. There was a gradual
decrease in the emission concentrations of nitrogen oxides from 89 to 54 mg m−3 with the
increase in excess air factor. Depending on the flue gas temperature, ranging from 152
to 178 ◦C, there was a monotonous gradual increase in the emission concentrations. The
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increasing combustion temperature, which determined the temperature of the flue gas, had
a greater effect on the increase in NOx emissions than the coefficient of excess air. Similar
results were also achieved on other combustion devices [46], or when burning spruce
wood [18] or wood pellets [19]. Overall, the emission concentration of nitrogen oxides
during the combustion of the pyrolytically processed spruce pellets decreased compared
with untreated samples of spruce pellets. The rapeseed straw pellets initially showed a
gradually increasing NOx concentration dependence on the coefficient of excess air un-
til the value of 2.52, from the minimum of 260 mg m−3 to the maximum concentration
302 mg m−3. Above this ratio, the NOx concentration fell slightly to the final value of
298 mg m−3. The rapeseed straw had several times higher nitrogen content compared
with the spruce wood. Therefore, it was expected that fuel nitrogen would contribute
significantly to NOx emission [84]. However, high amounts of combustion air over the
stoichiometric ratio can play a role [8,77]. This was also reflected in reality since the lowest
emission concentration of nitrogen oxides, i.e., 260 mg m−3, was achieved at the lowest
excess air coefficient while at the highest temperature. This was also evidenced with
combustion on a different combustion device [46], or during the combustion of spruce
wood [18].

Compared with the untreated rapeseed straw, the biochar again showed a reduction in
the emission concentrations of nitrogen oxides during the combustion. In the range of the
excess air coefficient from 1.7 to 3.04, corresponding to the flue gas temperature decreasing
from 204 to 112 ◦C, there was a gradual increase in the NOx emission concentrations from
141 to 188 mg m−3. Here, again, it was optimal to keep the coefficient of excess air at low
values. As the temperature of the flue gas increased, there was a gradual reduction in the
emission concentrations of nitrogen oxides during the combustion of pyrolytically treated
samples of rapeseed straw pellets. In the flue gas temperature range from 112 to 204 ◦C,
there was a gradual decrease in the carbon monoxide emission concentrations in the range
from 188 to 141 mg m−3. In order to optimize the combustion equipment and reduce
the emission concentrations of nitrogen oxides, it is important to look at the combustion
process not only from the point of view of flue gas temperatures but also from the point of
view of the coefficient of excess air and the amount of nitrogen contained in the fuel itself.

Fuel-bound nitrogen is not the only cause of NOx evolution during combustion, as
shown in rice straw and pine sawdust [85]. With an increasing combustion temperature and
amount of combustion air, an increase in NOx production was shown in both herbaceous
biomass (grasses and straws) [86] and woody biomass [80].

3.4. Comparison of Emissions Per Unit of Heat Energy

To decide which fuel brings the least amount of unwanted emissions, it is not enough
to only compare normalized emission concentrations. Since the calorific values and flue
gas volume do differ between various fuels, the comparison needs to be related to a unit
of useful energy, which is the net calorific value for most uses. Table 4 lists the average
emissions production throughout the combustion test for each of the tested materials
and converts them into values in grams per 1 GJ of NCV. It can be seen from Table 4
that the biochars achieved lower overall emissions production in comparison with the
original biomass feedstocks. In the spruce biochar, when compared with untreated material,
there were reductions in the emission concentrations of CO and NOx of 12% and 8.3%,
respectively. In total emissions per unit of energy, the reduction was even higher, i.e., 10.8%
and 14.5%, respectively. More importantly, in the rapeseed straw biochar, the difference
was more pronounced. Compared with the untreated straw, the emission concentrations
were, on average, lower by 31% and 45% for CO and NOx, respectively. In total production,
it was a reduction of 28% and 42%, again for CO and NOx emissions, respectively.
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Table 4. Average production of CO and NOx emissions related to 1 GJ of net calorific value.

Sample CO NOx CO NOx

(mg m−3) (mg m−3) (g/GJ) (g/GJ)

Spruce pellets 1000 84 550 46

Spruce biochar 880 77 470 41

Rapeseed straw pellets 2640 288 1410 153

Rapeseed straw biochar 1820 158 1010 88

The emissions of the spruce wood and its biochar were, on average, significantly lower
than for the rapeseed straw. This could be expected since wood tends to be a good fuel,
especially if it has very low ash and nitrogen contents. In particular, spruce wood was
shown to produce better emissions compared with other woody materials, e.g., willow in
PM and NOx concentrations [87].

Thermally treated biomass was shown to have at least somewhat lower emission
concentrations, e.g., in olive residue torrefied at 275 ◦C [43] or can be helpful in fuel blends
with coal [43,88].

4. Conclusions

To establish the benefit of thermally treated biomass for combustion, two materials, i.e.,
spruce wood chips and rapeseed straw, were converted into biochar at 300 ◦C. The biochars
had better fuel properties, mainly in terms of their considerably higher net calorific value.
Yet, the biochar from the rapeseed straw failed to meet the criteria for its corresponding
category of thermally treated biofuels according to ISO 17225-8. The original biomasses
and the biochars were combusted on a combustion device with a bottom feed of fuel at a
nominal heat output of 25 kW. The biochars showed lower emissions of carbon monoxide
and nitrogen oxides. In the spruce biochar, the reduction in emissions per 1 GJ of net
calorific value was 10.8% and 14.5% for CO and NOx, respectively. For rapeseed straw
biochar, these reductions were 28% and 42% compared with the untreated biomass. It is
also important to note that while spruce achieved the lowest CO emissions under optimal
excess air, in the spruce biochar, the CO concentrations were stabilized over a much wider
range of combustion conditions. This could be the case for other woody biofuels, which
would make this behavior very beneficial in favor of thermally treated fuels.

It should not be forgotten that compared with untreated biofuels, biochars have other
beneficial properties. For a given amount of energy, they weigh less, which also means
lower transportation costs. For sufficiently high treatment temperatures they are more
hydrophobic and resistant to biological decay compared with untreated biomass.

In order to demonstrate whether thermally treated biofuels can be a viable choice for
residential use, it will be necessary to perform a more comprehensive review. For future
studies, it will be important to assess not only the behavior in energy use and storage
or analyze the economic feasibility but also include other environmental effects in the
consideration, such as cleaner combustion.
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