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Abstract: This study aims (1) to study the trend and characteristics of average annual air temperature
(Tann), annual precipitation (Prann), and annual evapotranspiration (PETann) in Thailand over the
present period (1987–2021) and (2) to extract the climate pattern in form of a map using the New
Thornthwaite Climate Classification method in Thailand considering the present period. The data
were prepared by the Thai Meteorological Department. Data variability, the mean of the data
calculation in time series, the homogeneity test of data, and abrupt changes were examined. The
trends of each variable were calculated using the Mann–Kendal and Sen’s slope test. The results
indicated that the high Tann found in Bangkok gradually decreased in the next area. Tann data were
heterogeneous with the abrupt change period, and increasing trends were found. Prann values were
high in the west side of the southern area and the bottom area of the eastern area; in addition, low
rainfall was found in the inner area of the land. Prann data were homogenous with no abrupt change
period and slight changes in trends. PETann and %CV spatial distribution were determined for
the same pattern of Tann. PETann data were heterogeneous with abrupt change periods and rising
trends. The torrid thermal index determined based on the New Thornthwaite Climate Classification
results indicated an overall torrid-type climate. A semi-arid climate pattern was found in the small
area of the middle of Thailand, and then it shifted toward a moist-type pattern in the next area
with an in precipitation. The most climate variability was found to be extreme with the power of
temperature changes.

Keywords: Thailand climate; Thornthwaite Climate Classification; potential evapotranspiration;
Thailand temperature; Thailand precipitation

1. Introduction

Global warming and climate change are urgent issues that all sectors should aim to
address. From the First Industrial Revolution in 1760 to the Third Industrial Revolution in
1960, which began with steam and internal combustion engine inventions, including trains,
cars, planes, and motorbikes, leading to the use of coal and other fossil fuels becoming
major energy sources and the generation of electricity [1,2]. This revolution resulted in an
increase in greenhouse gases from about 280 parts per million to 414 parts per million [3],
as well as the occurrence of deforestation during the Industrial Revolution [4]. The climate
change problem is caused by the increase in carbon dioxide (CO2), which can be absorbed
and transferred to the atmosphere, ocean, land, and biosphere for decades [5–10]. CO2
increases air temperatures and causes the occurrence of abnormal precipitation year by
year. This has led to an increase in world temperature up to 1 degree Celsius in the last
150 years, as well as abnormal temperatures in the ocean [6]. Moreover, the climate is
varied by latitude, longitude, and altitude, which determine climate characteristics [11,12]
and make the ecosystem in each area unique [13]. Wet areas tend to become wetter and dry
areas tend to become drier, coincident with an overall intensification in the hydrological
cycle in response to global warming, as reported by Walsh et al. (2014) [14].
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Thailand is one of the countries in Indochina, located at the lower latitude of the Pacific
Ocean in Southeast Asia. There is some evidence pointing to abnormal climate patterns
in Thailand; for instance, the mean maximum temperature has particularly increased in
summer (February to May), and the total rainfall intensity has also increased, while the
number of rainfall days has decreased [15–17]; thus, drought has become more intense [18].

Climate classifications have been used to describe climate characteristics and condi-
tions to have a clear understanding of how climate is changed in each area. There are
many types of climate classifications such as Köppen, which is widely used worldwide,
including in Thailand, with only temperature and precipitation [19–21], and Thornthwaite
(1954) [22,23], which is less used due to its complex processes. However, evapotranspira-
tion is also important for water balance investigation considering plant and agricultural
activities [24,25]. Recent scientific approaches have proven that correctly identifying the
evapotranspiration pattern highly influences the climate zone characterization. Also, the
classification scheme may also affect the final results [26]. The Thornthwaite Climate
Classification (THC) is a worldwide well-known system, and many scholars have sought
to modify its components for global use due to its extensive usage [27,28]. Moreover,
the THC is appropriate for classifying climate characteristics and conditions in seasonal
and annual periods, which have more impact on plant and agricultural activities under
moisture indices [22] and water balance metrics in level class patterns [23,29].

Considering the above, the author aimed to (1) study the trend and characteristics of
monthly air temperature, monthly precipitation, and evapotranspiration (PET) in Thailand
over the recent period (1987–2021) and (2) create a climate pattern map using the new
Thornthwaite Climate Classification in Thailand of the recent period. This work can provide
clear evidence about climate change for policy planning at the local and national scales.
Moreover, the author strongly believes that the knowledge from this work could be adapted
to countries in tropical areas using the simple method provided by the New Thornthwaite
Climate Classification.

2. Study Boundary

The study area and its features are presented in Figure 1 and Table 1. Thailand is
located in the central region of Southeast Asia, between 5◦37′ N and 20◦37′ N latitude and
97◦22′ E and 105◦37′ E longitude [29]. It is surrounded by Myanmar, Laos, Cambodia, and
Malaysia on the west side, east side, southeast side, and south side, respectively. Thailand
is about 517,624 km2 in area, covering 77 provinces [30], with altitudes at approximately
−77 to 2565 m above the sea level (MASL.) [31]. The average annual temperature is about
20–30 ◦C, and the average total annual rainfall is 2000–2500 mm, varying by different to-
pography features [18,32]. Northern and western parts have notable topography, with high
mountains alternating with valleys (North to South direction), and the highest altitude and
the lowest average temperature are found in these areas. The northeastern part is the largest
area with sandstone plateaus considered its distinguished characteristic and meteorological
drought is frequent in this area [18,32]. The outstanding feature of the central region is
flood plains, and the bottom region connects to the Gulf of Thailand. The highest average
annual temperature is also found in this area, especially in Bangkok and its surrounding
area, becoming cooler further away from this region. The eastern area (connecting to the
Gulf of Thailand) and the western area of the South Peninsular (connecting to the Andaman
Sea) until the bottom side have undulating plains as their remarkable feature. The highest
rainfall also occurs in these areas due to the southwest monsoon [21,32]. Moreover, the east
coast of the South Peninsular is similar to its western area but is affected by the northeast
monsoon, leading to high rainfall in the winter. Moreover, 104 meteorological stations were
chosen in this study, covering all of Thailand area. Furthermore, the seasons of Thailand
were divided according to the Thai Meteorological Department into 3 seasons: summer
(February to May), rainy (June to September), and winter (October to the January of next
year) [32].
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Figure 1. (a) Thailand boundary and meteorological station points, (b) Digital Elevation Model: DEM
of Thailand (Applied from USGS Earth Explorer; source: https://earthexplorer.usgs.gov/ (accessed
on 31 May 2023)).

Table 1. Information of the meteorological stations in each region of Thailand.

Met. Reg. No. of Provinces No. of Met. Stations

Northern Reg. 15 24
Northeastern Reg. 20 25

Central Reg. 18 16
Eastern Reg. 8 13

Southern Reg. 16 26

Overall, of Thailand 77 104
Met. Reg. = Meteorological region. Met. Stations = Meteorological stations.

3. Data and Meteorology
3.1. Trend and Characteristics of Monthly Air Temperature, Monthly Precipitation, and
Evapotranspiration (PET) in Thailand

Climate parameters which were necessary for Thornthwaite Climate Classification
to classify the climate types of each area were mean monthly temperature (◦C) and total
monthly precipitation (mm) of the present period (1987 to 2021). These data were gathered
from 104 meteorological stations, which were prepared by the Southeast Asia Meteorologi-
cal Telecommunication Centre, Thai Meteorological Department, over Thailand, covering
five meteorological regions as presented in Figure 1a and Table 1.

3.1.1. Data Variability

Temperature and precipitation data of 1987 to 2021 required checking for precision
by the coefficient of variation (CV) method, with a process from the normal distribution,
calculated as Equation (1) [31,33]. The high value refers to a large distribution, and thus, an
acceptable value should not be higher than 30%; however, if not, the data are not suitable
for the study [34,35].

CV = 100 × σ

Y
(1)

where σ is the standard deviation of the data, and Y is the mean of the data in N years.

https://earthexplorer.usgs.gov/
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3.1.2. Mean of the Data Calculation in Time Series

The cumulative seasonal means (CSM) method was used to investigate the mean of
the data in each of the time series (decade or century scale). Moreover, the value was then
used as a reference value to identify the persistence or fluctuation of the data [33,36–39].
The CSM formula was calculated by Equation (2):

CSMj =
1
j ∑j

i=1 Yi, j = 1, 2, 3, . . . , N (2)

where Yi refers to temperature or precipitation or others in each year, while N is the number
of years under study (decade or century scale).

3.1.3. Homogeneity Test of Data and Abrupt Change Analysis

The homogeneity test of data and abrupt change analysis were investigated by an
easy statistical method called Pettitt’s test, to define the homogeneous or heterogeneous
data which enabled the detection of the change point in unknown time (t), similarly to the
concept of the Mann–Whitney statistic. The null hypothesis (H0) clarifies that the data are
homogeneous, while the alternative hypothesis (Ha) refers to there being a date at which
there is a change in the data, thus leading the abrupt change detection. Pettitt’s test formula
can be calculated by Equation (3) as shown below [40–42]:

Dij = sgn
(
xi − xj

)
=


−1

(
xi − xj

)
< 0

0
(
xi − xj

)
= 0

+1
(
xi − xj

)
< 0

 (3)

where xi and xj are random variables from the data, while xt follows xt in time series.
Moreover, if the alternative hypothesis (Ha) happened, the Ut,T statistic based on the

Mann–Whitney is used to calculate next for all random variables data from 1 to T. A change
point happening at time t is detected by Equations (4) and (5) with a suitable significance
level as calculated following Equation (6). However, the homogeneity test of data and
abrupt change analysis by Pettitt’s test were performed by XLSTAT program (student
version) with a significance level at 95% (p-value ≤ 0.05).

Ut,T = ∑t
i=1 ∑T

j=t+1 Dij (4)

KT = max1 ≤ t < T |Ut,T | (5)

p = 2·exp

(
−6K2

T
T2 + T3

)
(6)

where Ut,T depends on Dij, and KT refers to a change point at time t.

3.1.4. Trend Analysis

A non-parametric test called the Mann–Kendall trend test was suggested by the World
Meteorological Organization (WMO) to examine trend changes in terms of hydrological
data and meteorological data; moreover, normality assumptions of the data are not re-
quired [43–50] as presented in Equations (7)–(10), while Sen’s slope is a good estimator
to illustrate the trend pattern, relationship and quantification of the time change in two
variables in a linear pattern, with no effect from errors or outlying data [43–50]. The Sen’s
slope equations are presented in Equations (11)–(13) below:

S = ∑n−1
i=j ∑n

j=i+1 sgn
(
xj−xi

)
(7)
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sgn
(
xj−xi

)
=


+1

(
xi − xj

)
< 0

0
(
xi − xj

)
= 0

−1
(
xi − xj

)
< 0

 (8)

var(s) =
n(n − 1)(2n + 5)− ∑m

i=1 ti(ti − 1)(2ti + 5)
18

(9)

Z =
S ± 1

var(s)2 (10)

where S represents a trend pattern (positive and negative values of S refer to upward and
downward trends, respectively, while S = 0 refers to no trend). Meanwhile, var(s) refers to
the variance of the data which is calculated to get the Z value, whereby the high Z value
indicates an increasing trend, while the low Z value refers to a decreasing trend.

Qi =

(
xj − xi

)
j − i

, i = 1, 2, 3, . . . , N (11)

Qmed =
{

Q[ N+1
2 ] , i f N = odd (12)

Qmed =

{
Q[ N

2 ]+Q[ N+1
2 ]

2
, i f N = even (13)

3.2. The New Thornthwaite Climate Classification

Thornthwaite Climate Classification (THC) is one type of climate classification which
is appropriate to investigate climate conditions for plant and agricultural activities [24,25].
The first result was obtained in 1943 by an American climatologist named Charles Warren
Thornthwaite (1889 to 1963), using the moisture index method which was developed by
Karl Linsser [22]. Subsequently, the water balance metrics concept was used to develop
the method for presentation in class intervals [23,29]. However, the THC processes were
complex and it was difficult to obtain the results, so Carter and Mather (1966) further
developed the method by gathering both moisture index and water balance metrics before
modifying the equation for simplicity, using only temperature, precipitation, and sun
duration [28].

The New Thornthwaite Moisture Index (TMI) was modified by Willmott and Feddema
(1992) to achieve fewer complex equations with only monthly precipitation in millimeters
and monthly temperature in degrees Celsius [51]. Moreover, it was too difficult to acquire
sun duration data for each day at each meteorological station, so Al-Sudani, H. I. Z. (2019)
reported adjustment factors (Adj) varying by latitude and month, with different sun dura-
tions as presented in Table 2 [52]. The TMI could be calculated by the following Equations
(14)–(16) and Table 3 with the values from −1 to 1 (−1 and 1 refer to no precipitation (Pr)
and no potential evapotranspiration (PET), while 0 means Pr equal to PET).

TMI =

 1 − PET
Pr ; Pr > PET

0 ; Pr= PET = 0
Pr

PET − 1 ; Pr ≤PET

 (14)

PET =

(
16·
(

10Tm

I

)∝)
·(Adji); in mm per month (15)
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Table 2. Adjustment factors in the TMI equation, separated by latitude and month (Aj) [52].

Lat./Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

60◦ N 0.54 0.67 0.97 1.19 1.33 1.56 1.55 1.33 1.07 0.84 0.58 0.48

50◦ N 0.71 0.84 0.98 1.14 1.28 1.36 1.33 1.21 1.06 0.90 0.76 0.68

40◦ N 0.80 0.89 0.99 1.10 1.20 1.25 1.23 1.15 1.04 0.93 0.83 0.78

30◦ N 0.87 0.93 1 1.70 1.14 1.17 1.16 1.11 1.03 0.96 0.89 0.85

20◦ N 0.92 0.96 1 1.05 1.09 1.11 1.10 1.07 1.02 0.98 0.93 0.91

10◦ N 0.97 0.98 1 1.03 1.05 1.06 1.05 1.04 1.02 0.99 0.97 0.96

00◦ 1 1 1 1 1 1 1 1 1 1 1 1

10◦ S 1.05 1.04 1.02 0.99 0.97 0.96 0.97 0.98 1 1.03 1.05 1.06

20◦ S 1.10 1.07 1.02 0.98 0.93 0.91 0.92 0.96 1 1.05 1.09 1.11

30◦ S 1.16 1.11 1.03 0.94 0.89 0.85 0.87 0.96 1 1.07 1.14 1.17

40◦ S 1.23 1.15 1.04 0.93 0.83 0.78 0.80 0.98 0.99 1.10 1.20 1.25

50◦ S 1.33 1.19 1.05 0.98 0.75 0.68 0.70 0.82 1.97 1.13 1.27 1.36

Table 3. Moisture index for the New Thornthwaite Climate Classification [53].

Moisture Type Moisture Index (TMI)

Saturated 0.66 to 1.00

Wet 0.33 to 0.66

Moist 0.00 to 0.33

Dry −0.33 to 0.00

Semi-Arid −0.66 to −0.33

Arid −1.00 to −0.66

I = ∑12
i=1

(
Tmi

5

)1.514
(16)

∝=
(

6.75·10−7
)

I3 −
(

7.71·10−5
)

I2 +
(

1.792·10−2
)

I + 0.49239 (17)

where TMI is the New Thornthwaite Moisture Index as modified by Willmott and Feddema
(1992) [51], PET refers to monthly potential evapotranspiration in mm, and PETAnn is
annual potential evapotranspiration. Pr denotes monthly precipitation in mm and PrAnn is
annual precipitation in mm. I is the Heat Index which depends on the 12 mean monthly
temperatures (Tmi ), while Tmi is the mean monthly temperature in degrees Celsius. Adji
represents adjustment factors depending on latitude and sun duration per day as illustrated
in Table 3.

Air temperature was widely used as a thermal indicator; however, Thornthwaite (1948)
realized that temperature alone was not sufficient to declare thermal zones [23]. Moreover,
Thornthwaite explained that PET could present the amount of evaporation for a given
ecosystem. Therefore, annual PET as illustrated in Equation (18) was used to classify the
thermal index for the New Thornthwaite Climate Classification. The climate zones were
separated into six classes as presented in Table 4.

PETAnn = ∑12
i (PET) ; in mm (18)
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Table 4. Thermal Index for the New Thornthwaite Climate Classification [53].

Thermal Index Annual PET (mm)

Torrid >1500.0

Hot 1200.0 to 1500.0

Warm 900.0 to 1200.0

Cool 600.0 to 900.0

Cold 300.0 to 600.0

Frigid 0.0 to 300.0

Most climate classifications use “winter” and “summer” to define “dry” and “wet”
periods; however, Carter and Mather (1966) and Feddema (2005) posed the question
“When is winter and summer at equatorial latitudes?” due to the difficulty of defining
the seasons [28,53]. Therefore, actual wet and dry periods were considered more suitable
to identify climate variability. Moreover, the New Thornthwaite Climate Classification
combined the two concepts of the old Thornthwaite classification (1948) [23] and Carter and
Mather (1966) [28], presented by Feddema (2005) [53], whereby the Thornthwaite Moisture
Index (TMI), which varied by PET and precipitation change, could present the climate
variability based on the annual range of monthly TMI data. The climate variability can be
calculated following Equation (19) and classified as shown in Table 5.

Climate Variability = TMI(Max) − TMI(Min); in each year (19)

Table 5. Climate variability for the New Thornthwaite Climate Classification [53].

Climate Variability Annual TMI Range

Low 0.0 to 0.5

Medium 0.5 to 1.0

High 1.0 to 1.5

Extreme 1.5 to 2.0

The climate variability index could be affected by precipitation, thermal factors, or
both, and thus, it was necessary to find the causes. The calculation followed Equation
(20) and Table 6 when PET and Pr in each month had the same units. If precipitation is
a cause of seasonality, the range of maximum to minimum precipitation will be wide. In
contrast, a short range of maximum and minimum PET represents the seasonality caused
by temperature.

Variability Cause =
Pr(max) − Pr(min)

PET(max)−PET(min)
; in each year (20)

Table 6. Climate variability cause modifiers for the New Thornthwaite Climate Classification [53].

Cause Annual Pr Range/Annual PET

Precipitation <0.5

Combination 0.5 to 2.0

Temperature >2.0
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3.3. Spatial Distribution Analysis

Spatial distribution analysis was performed by mapping, combined with the GIS
analysis software package. Moreover, boundary shapefiles of Thailand and the Meteorolog-
ical stations were serviced by OCHA (“https://data.humdata.org/dataset/cod-ab-tha?
(accessed on 27 March 2022)”) [54] and TMD (“http://climate.tmd.go.th/content/file/75
(accessed on 15 March 2022)”) [55], respectively. The spatial distribution maps for each
type of data were drawn by ordinary kriging under a raster interpolation command set.
The output cell size was at 400 and there were 12 points around the station which were
used for calculation. Then, the maps were exported at 500 dpi. The size of Thailand from
the reference is about 517,624 km2 [31]; however, the size was reduced to 516,084.89 km2

(about −0.30% different) after the raster interpolation by kriging method was complete.

4. Results and Discussions
4.1. Temperature during 1987 to 2021

Average annual temperature (Tann) data were analyzed by gathering the Tann from
104 meteorological stations throughout Thailand. The Tann of Thailand during 1987 to 2021
from all stations were about 13.5 to 37.3 ◦C. The spatial distribution of the Tann map of
the present period is illustrated in Figure 2a, confirming that the hottest areas which are
determined by Tann were appearing in the Central region of Thailand, and especially in
the Bangkok Metropolitan Region, caused by high population density, an increase in high-
rise buildings, urban heat, and industrial activities [56,57]. However, the Tann gradually
decreased in the next area and reached the lowest values in the northern region of Thailand
due to the incident angle of the sun’s rays throughout the year [58,59]. Moreover, a graph
of monthly temperature throughout Thailand was drawn as shown in Figure 3a, indicating
that the temperature was gradually increasing from the beginning of the year until hitting
its peak in April which is the summer season in Thailand, whereupon the values gradually
dropped towards the end the year, which is the winter season.

Consideration of data variability was performed by the coefficient of variation (%CV)
method. The %CV values as illustrated in Figure 2b and Table 7 were in a range of
0.75–2.91% with an average at 1.21%, which can be accepted. The %CV values for the
summer, rainy, and winter seasons were about 1.81%, 0.88%, and 1.69%, respectively. The
high %CV values were found at higher latitudes of Thailand (the upper area of Thailand
from the central to the northern region), especially in the northern region due to much
of the land area, including high mountain ranges and valleys, being a long way from
the sea with varying altitude [60], leading to large differences in temperature in different
seasons. Moreover, land can absorb heat from solar radiation faster, although land can
also release the heat faster by the transpiration and convection processes in the day and
night time, leading to the surrounding temperature dropping by more than in the urban
areas [61,62]. Furthermore, the influence of the power of the northeast monsoon in winter,
which extended variably to higher latitude areas each year, caused the temperature in
the upper part of Thailand to fluctuate [63]. However, the low %CV values were found
at the lower latitudes of Thailand, especially in the southern region of Thailand which
connects to the Andaman Sea and the Gulf of Thailand, thus the temperatures did not
differ significantly between seasons and between years [60]. Moreover, ENSO phenomena
also affected the temperature, causing fluctuations each year especially in the upper part of
Thailand, leading to the observed variability in temperature [64].

https://data.humdata.org/dataset/cod-ab-tha
http://climate.tmd.go.th/content/file/75
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Figure 2. The spatial distribution in Thailand during 1987 to 2021 (a) Annual Temperature (Tann),
(b) Coefficient of Variation (%CV), (c) Sen’s slope (◦C/year), and (d) Kendall’s tau value.

Table 7. Description of temperature in Thailand during 1987 to 2021.

Season Min.
(◦C)

Max.
(◦C)

CMS.
(◦C) S.D. Kendall’s

tau p-Value Sen’s Slope
(◦C/year)

CV
(%) Pettitt Changing

Period

Summer 27.16 29.3 28.2 0.510 0.230 0.053 0.014 1.81 0.173 -
Rainy 27.51 28.4 27.9 0.246 0.425 0.000 ** 0.016 0.88 0.006 ** 2013
Winter 24.91 26.6 25.6 0.432 0.442 0.000 ** 0.025 1.69 0.017 * 1996

Annual 26.70 28.0 27.2 0.330 0.469 <0.0001 ** 0.017 1.21 0.002 ** 2011

Note: * and ** indicate there was a changing trend or changing period with significant levels at 95% and 99%,
respectively.
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Figure 3. (a) Monthly Temperature in time series during 1987 to 2021, (b) Annual Temperature in
time series during 1987 to 2021 (orange line), Cumulative mean: CSM through the period (pink line),
CSM before and after abrupt change (green and red lines), Sen’s slope value (black line), (c) Summer
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during 1987 to 2021 (orange line), and (e) Winter Temperature in time series during 1987 to 2021
(orange line).

The pink line graph as illustrated in Figure 3b–e and the values shown in Table 7
revealed that the cumulative seasonal means (CSM) of Thailand were about 27.2◦C. The
seasonal CSM values of the summer, rainy, and winter seasons were about 28.2, 27.9, and
25.6◦C, respectively. Furthermore, the homogeneity test of data and abrupt change analysis
were calculated by Pettitt p-value (two-tailed) at a significance level of 95% as shown by
the green line (mu1 = before abrupt change) and red line (mu2 = after abrupt change) of
Figure 3b, which revealed that most of the meteorological stations (64 stations) had the
values at <0.001 to 0.042, indicating that there was a period at which there was a change in
the data (Ha), and also indicating that there was an abrupt change which happened in an
increasing direction for temperature in 2013, 1996, and 2011, respectively, for annual, rainy,
and winter season. However, there were only 40 meteorological stations which indicated
that the data were homogeneous and that no abrupt change (H0) occurred.

Trend analysis was evaluated by the Mann–Kendall trend (Kendall’s Tau) test and
Sen’s slope, demonstrating that all meteorological stations had an increasing trend of Tann.
Moreover, 62 meteorological stations had an increasing trend at a significant level at 95%
with p-values (two-tailed) of about <0.0001 to 0.034. Kendall’s Tau value results were
about 0.469 overall for Thailand. Sen’s slope and the Kendall’s Tau spatial distribution
as illustrated in Figure 2c,d had the same pattern, whereby the high values were found
at higher latitudes and the low values appeared at lower latitudes, with increasing rates
at +0.017, 0.014, 0.016, and 0.025 ◦C/year for annual, summer, rainy, and winter seasons,
respectively, as illustrated by the black lines in Figure 3b–e. The changing trends and rates
of temperature were similar to Cambodia, Myanmar, and Laos which are located at around
the same latitude as Thailand, and exhibited temperature trends that were increasing with
the rates at +0.023 to +0.055 ◦C/year [65–68].
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4.2. Precipitation during 1987 to 2021

Total annual precipitation (Prann) data were analyzed by gathering the Prann from
104 meteorological stations throughout Thailand. The Prann values of Thailand during 1987
to 2021 were between 941.66 to 4895.44 mm. Focusing on the Prann spatial distribution
map as shown in Figure 4a, the map indicated that Prann had high values in the southern
region (especially in the west side of the region connecting to the Andaman Sea) and in
the eastern region (especially in front of the Chanthaburi mountain range connecting to
the Gulf of Thailand) due to the southwest monsoon in May–October leading to greater
humidity and rainfall in the area [21,69]. Moreover, the northeast monsoon also brought
humidity and rainfall to the east side of the southern region where the area meets the
Gulf of Thailand in November to February [21,70]. Furthermore, the northeastern region
also received high rainfall, especially in the east side of the area due to the influence of
tropical storms which could easily affect the area [18,71,72]. However, the rainfall value
in the northeastern region gradually decreased to the west side of the area [72] through
the Central part and the central part of the northern region because the land is a long way
from the nearest sea and there is a friction force which can obstruct tropical storms [18,21].
The upper area of the northern region had higher rainfall in the center of the region due
to the high mountain range and abundant forests which can bring orographic rain [73].
Moreover, movement of the Inter-Tropical Convergence Zone (ITCZ) also results in rainfall
through the area which the ITCZ passes around [74]. The monthly precipitation was also
similar to the Mekong Basin Region which is located at the same latitude and is connected
to Thailand. Figure 5a indicated that the precipitation was slowly rising from the beginning
of the year into the summer season, and after that the precipitation was rapidly increasing
in the rainy season, hitting its peak in September before sharply decreasing until the end of
the year in the winter season [68].

The %CV values as presented in Figure 4b and Table 8 were in the range of 12.55% to
33.81%; however, the %CV of most of the meteorological stations were in an acceptable
range with an annual average at 10.04%. The %CV values for the summer, rainy, and winter
seasons were about 28.19%, 8.03%, and 20.75%, respectively. The highest values were found
in the northern part due to the area being far from the sea, coupled with mountain and
valley topography which obstructed the wind, humidity, and southwest monsoon power,
leading to uncertain rainfall throughout the area [75,76]. Moreover, tropical storms which
were travelling into the area and ENSO phenomena with different strengths in each year
resulted in further rainfall uncertainty. In addition, the power of the rain shadow also
brought unsteady rainfall in the area behind the high mountain ranges (the east side of
the Dan Lao, Thanon Thongchai, and Tanaosri mountain ranges which separate Thailand
from Myanmar) [77]. The area which connects to the Gulf of Thailand also received
tropical storms of different strengths, while the southwest monsoon effects (in the eastern
region) and the northeast monsoon effects (in the east side of the southern region) with the
difference in power in each year lead to inconsistent rainfall in that area. However, the low
%CV values were found in the east side of the northeastern and eastern regions, before
gradually increasing in the west side. Moreover, the east side of the southern region also
had low %CV due to the amount of rain coming into the area being quite similar in each
year [21].
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Table 8. Description of Precipitation in Thailand during 1987 to 2021.

Season Min.
(mm)

Max.
(mm)

CMS.
(mm) S.D. Kendall’s

tau p-Value Sen’s Slope
(mm/Year)

CV
(%) Pettitt Changing

Period

Summer 166.4 559.2 349.1 98.4 −0.012 0.932 −0.116 28.19 0.919 -
Rainy 741.2 1034.0 871.1 69.9 0.150 0.211 1.813 8.03 0.388 -
Winter 202.8 587.8 376.0 78.0 0.213 0.074 2.082 20.75 0.152 -

Annual 1320.4 2001.0 1596.3 160.3 0.156 0.191 4.119 1.21 0.497 -



Atmosphere 2024, 15, 379 13 of 22Atmosphere 2024, 15, x FOR PEER REVIEW  13  of  21 
 

 

 

Figure 5. (a) Monthly Precipitation in time series during 1987 to 2021, (b) Annual Precipitation in 

time series during 1987 to 2021 (blue line), Cumulative mean: CSM through the period (pink line), 

CSM before and after abrupt change (green and red lines), Sen’s slope value (black line), (c) Summer 

Precipitation in time series during 1987 to 2021, (d) Rainy Precipitation in time series during 1987 to 

2021 (blue line), and (e) Rainy Precipitation in time series during 1987 to 2021 (blue line). 

4.3. Potential Evapotranspiration (PET) during 1987–2021 

The annual potential evapotranspiration (PETann) values were analyzed by tempera-

ture and precipitation data, which were collected from 104 meteorological stations. The 

PETann values of Thailand were in the range of 963.7 to 2368.2 mm. The spatial distribution 

map of PETann for 1987 to 2021  is  illustrated  in Figure 6a, showing that the high PETann 

pattern was identical to the PETann pattern in the Mekong River Basin, with the high PETann 

appearing in the Central region of Thailand then gradually fading in the next area [79], 

similar to the pattern of the Tann spatial distribution as shown in Figure 1a. The monthly 

PET over Thailand as illustrated in Figure 7a also shows the same pattern as the monthly 

temperature  in Figure 2a,  indicating  that  the PET was  rapidly  climbing  from  the first 

month, then hit the peak  in April, and after that the PET was gradually declining until 

reaching its lowest values in the winter season, especially in December. 

The %CV pattern as illustrated in Figure 7b was also similar to Figure 1b in that the 

high values were usually found in the upper part of the area then gradually dropped in 

the lower area. The %CV values of annual, summer, rainy, and winter were considered 

acceptable values at 4.87%, 7.81%, 3.62%, and 5.61%, respectively, as illustrated in Table 9. 

The brown  line graph as  illustrated  in Figure 7b,e showed  that  the PET values  in  time 

series fluctuated  (increasing values alternating with decreasing values)  throughout  the 

period; however, CSM of the PET values throughout Thailand for summer, rainy, winter, 

and annual were approximately at 701.3, 654.9, 477.6, and 1943.0 mm, respectively. Pet-

titt’s test was performed to analyze the homogeneity test of data and abrupt change anal-

ysis, resulting in there being a date at which there was a change in the data, and an abrupt 

changing period in a rising manner. The abrupt change period was found to be similar to 

the period  of  temperature  in  2013,  1996,  and  2011  for  rainy, winter,  and  annual  at  a 

Figure 5. (a) Monthly Precipitation in time series during 1987 to 2021, (b) Annual Precipitation in
time series during 1987 to 2021 (blue line), Cumulative mean: CSM through the period (pink line),
CSM before and after abrupt change (green and red lines), Sen’s slope value (black line), (c) Summer
Precipitation in time series during 1987 to 2021, (d) Rainy Precipitation in time series during 1987 to
2021 (blue line), and (e) Rainy Precipitation in time series during 1987 to 2021 (blue line).

As the pink line graph in Figure 5b–e and the values in Table 8 reveal, CSM values
for annual, summer, rainy, and winter were about 1596.3, 376.0, 871.1, and 349.1 mm.
The pattern of rainfall values fluctuated, indicating that increasing values alternated with
decreasing values throughout the whole period. Moreover, the homogeneity test of data
and abrupt change analysis at a significance level of 95% showed that the data were
homogeneous in most of the meteorological stations in Thailand, and there was no abrupt
change due to the fluctuation of the values.

Furthermore, MK and Sen’s slope statistics as shown in Figure 4c,d indicated that
most areas in Thailand had an increasing trend at a significance level of 95% (93 stations)
and >95% (11 stations). The dominant increase in rainfall was found in the southern and
eastern regions. Bangkok Metropolitan Region also had notable values due to urban heat
and convectional rain [78]. However, outstanding decreases in rainfall areas were found
around the seam of the Central region and upper northeastern region. Kendall’s Tau value
for Thailand was investigated and found to be 0.156 with a p-value at 0.191. The Sen’s
slope values were about +4.119, −0.116, 1.1813, and 2.082 mm/year for annual, summer,
rainy, and winter, respectively, as presented by the black line of Figure 5b–e and the values
in Table 8. This increasing annual rate for Thailand resembled the other countries in the
Mekong Region at the same latitude as Thailand, at about +5 to +8 mm/year [65–68].

4.3. Potential Evapotranspiration (PET) during 1987–2021

The annual potential evapotranspiration (PETann) values were analyzed by tempera-
ture and precipitation data, which were collected from 104 meteorological stations. The
PETann values of Thailand were in the range of 963.7 to 2368.2 mm. The spatial distribution
map of PETann for 1987 to 2021 is illustrated in Figure 6a, showing that the high PETann
pattern was identical to the PETann pattern in the Mekong River Basin, with the high PETann
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appearing in the Central region of Thailand then gradually fading in the next area [79],
similar to the pattern of the Tann spatial distribution as shown in Figure 1a. The monthly
PET over Thailand as illustrated in Figure 7a also shows the same pattern as the monthly
temperature in Figure 2a, indicating that the PET was rapidly climbing from the first month,
then hit the peak in April, and after that the PET was gradually declining until reaching its
lowest values in the winter season, especially in December.
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Figure 7. (a) Monthly PET in time series during 1987 to 2021, (b) Annual PET in time series during
1987 to 2021 (brown line), Cumulative mean: CSM through the period (pink line), CSM before and
after abrupt change (green and red lines), Sen’s slope value (black line), (c) Summer PET in time
series during 1987 to 2021 (brown line), (d) Rainy PET in time series during 1987 to 2021 (brown line),
and (e) Winter PET in time series during 1987 to 2021 (brown line).

The %CV pattern as illustrated in Figure 7b was also similar to Figure 1b in that the
high values were usually found in the upper part of the area then gradually dropped in
the lower area. The %CV values of annual, summer, rainy, and winter were considered
acceptable values at 4.87%, 7.81%, 3.62%, and 5.61%, respectively, as illustrated in Table 9.
The brown line graph as illustrated in Figure 7b,e showed that the PET values in time
series fluctuated (increasing values alternating with decreasing values) throughout the
period; however, CSM of the PET values throughout Thailand for summer, rainy, winter,
and annual were approximately at 701.3, 654.9, 477.6, and 1943.0 mm, respectively. Pettitt’s
test was performed to analyze the homogeneity test of data and abrupt change analysis,
resulting in there being a date at which there was a change in the data, and an abrupt
changing period in a rising manner. The abrupt change period was found to be similar
to the period of temperature in 2013, 1996, and 2011 for rainy, winter, and annual at a
significance level at >95% with p-values (two-tailed) of about 0.004 to 0.006. Furthermore,
Kendall’s Tau and Sen’s slope statistics as in Figure 6c,d and Figure 7b–e, and Table 9
indicated that there were significant increasing trends for Sen’s slope in the series of rainy,
winter, and annual at +1.468, +1.395, and +4.282 mm/year, with Kendall’s Tau values at
0.408, 0.462, and 0.425, respectively, and p-values (two-tailed) of about 0.000 to 0.001. The
increasing rate of precipitation was similar to that of the Mekong River Basin where the
values changed by about 2 to 7 mm/year [79]. The rapidly increasing rates appeared in
most areas of Thailand (from the central to northern regions) and the slowly increasing
rates were focused on the southern region of Thailand, especially on the east side which
was connected to the Gulf of Thailand.
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Table 9. Description of Potential Evapotranspiration in Thailand during 1987 to 2021.

Season Min.
(mm)

Max.
(mm)

CMS.
(mm) S.D. Kendall’s

tau p-Value Sen’s Slope
(mm/year)

CV
(%) Pettitt Changing

Period

Summer 599.0 826.7 701.3 54.8 0.224 0.061 1.200 7.81 0.171 -
Rainy 619.4 708.7 654.9 23.7 0.408 0.001** 1.468 3.62 0.006** 2013
Winter 436.4 546.4 477.6 26.8 0.462 <0.0001** 1.395 5.61 0.005** 1996

Annual 1790.9 2171.4 1943.0 94.6 0.425 0.000** 4.282 4.87 0.004** 2011

Note: ** indicates there was a changing trend or changing period with significant levels at 95% and 99%,
respectively.

4.4. The New Thornthwaite Climate Classification

The New Thornthwaite Climate Classification was performed by utilizing only tem-
perature and precipitation data for the (1) moisture index, (2) thermal index, (3) climate
variability level, and (4) climate variability cause modifiers.

The moisture index was calculated by following the New Thornthwaite Climate
Classification method [53] as shown in Equations (14)–(17) and Table 2, then classifying
the values by following Table 3. The result is presented in Figure 8a, illustrating that the
main TMI type was in a dry series which represented dry (yellow) and semi-arid (orange)
climate patterns at about 57.64% of Thailand (297,470.23 km2) and 7.79% of Thailand
(40,185.58 km2), respectively, appearing from the middle to the upper part of Thailand
in areas which are a long way from the sea and connected to the land of neighboring
countries. Moreover, a semi-arid (orange) climate pattern was also found in the middle
of the country due to the low rainfall and rain shadow effect. However, the wet series
comprised the saturated type (green), wet type (blue), and moist type (dark blue). The
saturated type (green) was found in 23.66% of Thailand (122,103.55 km2) appearing at
the edge of the country. Furthermore, the wet type (Blue) was found in most areas of
the southern region and in small areas in the eastern region amounting to about 9.06% of
Thailand (46,778.99 km2). Moreover, the moist type (dark blue) was found in small areas of
the west of the southern region and at the tip of the peninsula of the eastern region (around
Chanthaburi and Trat Provinces) due to the high rainfall in the area almost all year round,
as the results in Figure 4a confirm. These findings could lead to the conclusion that the dry
series can usually be found in the land which is far from the sea and surrounded by the
land of other countries, while the wet series appeared in the areas which are connected to
the sea and receive the influence of the southwest monsoon and tropical cyclones.

The thermal index was assessed via the annual potential evapotranspiration (PETann)
using Equation (18), whereupon the values were separated by Table 4. The spatial distri-
bution of the Thermal Index is illustrated in Figure 8b, showing that there was only the
torrid type appearing in Thailand due to the high temperature all year round, reflected in
the high PET values.

Climate variability level was analyzed by Thornthwaite Moisture Index (TMI) range as
in Equation (19), then following Table 5. The spatial distribution of climate variability level
is presented in Figure 8c, revealing that climate variability at an extreme level appeared
throughout most of Thailand at 96.75% of Thailand (499,318.85 km2), while a high level
was found in only 3.25% (16,766.02 km2) of the middle of Thailand.

Climate variability causes were investigated by Prann and PETann values as in
Equation (20), then following Table 6. The spatial distribution of climate variability causes
is displayed in Figure 8d, indicating that most of Thailand was affected by temperature as
a major factor, accounting for about 84.34% of Thailand (435,472.29 km2). However, there
was only 15.62% (80,612.52 km2) of Thailand around the middle of the upper side of the
country, which is far from the sea and surrounded by mountains that was affected by both
temperature and precipitation factors.
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thwaite Climate Classification, (a) moisture type, (b) thermal index, (c) seasonality types, and
(d) seasonality causes.

The New Thornthwaite Climate Classification was mostly different from the study by
Elguindi et al. (2014), which was conducted in the period of 1976 to 2005 [80]. The main
moisture index classification was the wet-torrid type in most areas of Thailand (from the
upper part of the southern region to the northern region). Moreover, wet-torrid and wet-hot
types were found in lower part of the southern region and in the eastern region, while the
semi-torrid type appeared in the middle of the country, similarly to the area shown for the
combination type (precipitation and temperature effects) in Figure 8d. Furthermore, the
climate variability causes and levels are completely different from those in the study of
Feddema (2005) [53], which found that Thailand was affected only by precipitation at the
extreme level.

5. Conclusions

Temperature, precipitation, and evapotranspiration were examined to present the
trend and spatial distribution of these variables. The annual temperature (Tann) in high
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value concentration was found in the Bangkok Metropolitan Region due to the urban heat
island, whereupon the concentration of Tann faded in the next area until reaching its lowest
values in the upper-northern region with the abrupt change period and increasing trends
found. The annual precipitation (Prann) was concentrated in the west of the southern region
(Andaman side) and the tip of the peninsula of the eastern region (around Chanthaburi and
Trat Provinces on the Gulf of Thailand side) due to the effects of the southwest monsoon.
Moreover, the high Prann value was also found in the small area of the upper-east of the
northeastern region (around Nakhon Phanom Province) due to the effect of tropical storms.
However, the low Prann value found in the middle of the country was due to rain-shadow
effects and the location far from the sea. The Prann values had no abrupt change period
and few changes in trends were found. Both temperature and precipitation results were
similar to those in studies by Limsakul et al. (2017) [70], Dandridge et al. (2019) [75],
Kornkosa et al. (2021) [18], Yang and Han (2020) [71], Pinidluek et al. (2020) [72], Mahavik
et al. (2021) [73], Phumkokrux (2021) [21], and Puttanapong et al. (2022) [81]. The annual
potential evapotranspiration (PETann) exhibited the highest value in the middle of Thailand
then faded in the next area until reaching its lowest levels at the top of the northern region
with an abrupt change period and rising trends found due to the effects of high Tann leading
to high PETann.

The results for the New Thornthwaite Climate Classification in Thailand revealed
that the semi-arid type was found in the middle of the country, whereupon it got wetter
in the next area while the wettest was found in the small area in the southern region
(Andaman side) and the tip of the peninsula of the eastern region due to the effects of
the southwest monsoon. Moreover, most of Thailand was facing climate variability at
an extreme level with the changes in temperature the cause, as seen in the temperature
and potential evapotranspiration section whereby the patterns of both these sections were
similar. These different results from previous studies as mentioned above [53,80] indicated
that the wet area would be wetter and the dry area tended to be drier. The climate is
changing in Thailand. Moreover, ENSO phenomena are heavily discussed at present, and
this can contribute to accelerating climate change [82–85]. Accordingly, the future climate
urgently requires further study in the near future.

Due to the New Thornthwaite Climate Classification focusing only on temperature,
precipitation, and potential evapotranspiration with a simple method and formula for easy
application, there are fewer parameters required as basic information for local authorities
to assess and plan climate change policy in a timely manner. Thus, this work reported only
climate change characteristics from these stated parameters. However, the temperature and
rainfall data in this work were collected only for 1987–2021 due to the limitation of data
access, since some stations did not record or report the values in some years or at some
stations. Therefore, older data could instead be approximated through various historical
climate simulations, or the values could be extracted from historical satellite images to
study the historical climate data further in subsequent works.
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