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Abstract: The vertical eddy diffusion process plays a crucial role in PM2.5 prediction, yet accurately
predicting it remains challenging. In the three-dimensional atmospheric chemistry transport model
(3-D AQM) CMAQ, a parameter, Kz, is utilized, and it is known that PM2.5 prediction tendencies
vary according to the floor value of this parameter (Kzmin). This study aims to examine prediction
characteristics according to Kzmin values, targeting days exceeding the Korean air quality standards,
and to derive appropriate Kzmin values for predicting PM2.5 concentrations in the DJFM Seoul
Metropolitan Area (SMA). Kzmin values of 0.01, 0.5, 1.0, and 2.0, based on the model version and land
cover, were applied as single values. Initially focusing on December 4th to 12th, 2020, the prediction
characteristics were examined during periods of local and inflow influence. Results showed that
in both periods, as Kzmin increased, surface concentrations over land decreased while those in the
upper atmosphere increased, whereas over the sea, concentrations increased in both layers due to
the influence of advection and diffusion without emissions. During the inflow period, the increase
in vertically diffused pollutants led to increased inflow concentrations and affected contribution
assessments. Long-term evaluations from December 2020 to March 2021 indicated that the prediction
performance was superior when Kzmin was set to 0.01, but it was not significant for the upwind
region (China). To improve trans-boundary effects, optimal values were applied differentially by
region (0.01 for Korea, 1.0 for China, and 0.01 for other regions), resulting in significantly improved
prediction performance with an R of 0.78, IOA of 0.88, and NMB of 0.7%. These findings highlight
the significant influence of Kzmin values on winter season PM2.5 prediction tendencies in the SMA
and underscore the need for considering differential application of optimal values by region when
interpreting research and making policy decisions.

Keywords: vertical eddy diffusion; Kzmin; CMAQ; PM2.5

1. Introduction

The International Agency for Research on Cancer (IARC), under the auspices of the
World Health Organization (WHO), classified fine particulate matter (PM2.5) as a Group
1 carcinogen in October 2013 [1]. Among these, PM2.5, with its larger surface area, tends
to adsorb more harmful substances. Additionally, due to its small particle size, PM2.5 can
easily penetrate human organs, posing adverse health effects and leading to socio-economic
damage through associated effects [2–5]. In 2020, South Korea had the highest PM2.5 con-
centration among the Organization for Economic Cooperation and Development (OECD)
member countries, with a concentration of 25.9 µg/m3 [6]. The OECD has forecasted that
without intervention measures, South Korea’s premature mortality rate and economic
losses would be the highest among member countries by 2060 [7]. Consequently, the
Ministry of Environment (ME) has implemented emission reduction policies and measures
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for minimizing PM2.5-related damages, including fine dust forecasts. Reliable predictive
information is crucial for the successful implementation of these efforts.

Various three-dimensional atmospheric chemistry transport models, such as Commu-
nity Multi-scale Air Quality (CMAQ), Weather Research and Forecasting with Chemistry
(WRF-Chem), Regional-Scale Modeling (RSM), and the Comprehensive Air Quality Model
with Extensions (CAMx), are utilized for PM2.5 prediction [8–12]. Among these, the CMAQ
model, while challenging to interpret due to its complex and diverse input parameters,
offers advantages in considering complex interactions among pollutants through detailed
physical and chemical process modeling. Moreover, it undergoes continuous development
by various researchers as a community model. Given these advantages, the ME employs
the CMAQ model in various fields, ranging from simulation of air quality improvement
policies to air quality forecasting and environmental monitoring.

The CMAQ model calculates PM2.5 concentrations through various and complex
processes, including meteorology, emissions, dry and wet deposition, chemical reactions,
and vertical and horizontal advection and diffusion. Among them, vertical diffusion
directly influences the vertical distribution of PM2.5 concentration by dispersing pollutants
(including those emitted from sources) suspended in the atmosphere [13–15]. However,
vertical diffusion is difficult to predict accurately due to turbulent and non-stationary
characteristics. To calculate this, the CMAQ model utilizes a parameter called the vertical
turbulent diffusion coefficient (Kz). Kz values range from hundreds of m2/s on days
with strong thermal buoyancy to below 1.0 m2/s during nighttime, when the planetary
boundary layer (PBL) height decreases [16]. The CMAQ model applies a minimum eddy
diffusivity (Kzmin) to prevent Kz from falling below 0.

Li and Rappenglueck compared experiments using the KZMIN option of the CMAQ
model with a fixed Kzmin of 1.0 m2/s and varied values ranging from 0.01 to 1.0 m2/s
depending on land cover and found that nighttime ozone bias in the Texas region decreased
by up to 31% [17]. Furthermore, Castellanos et al. and Jin et al. analyzed ozone predictabil-
ity when the Kzmin of the CMAQ model was reduced from 0.5 m2/s to 0.1 m2/s [18,19].
According to Castellanos et al., the CMAQ model overestimated nighttime ozone in both
urban and rural areas in the eastern United States, and the ozone prediction bias decreased
when Kzmin was 0.1 m2/s [18]. Similarly, Jin et al. identified that when Kzmin was 0.1 m2/s,
the CMAQ model simulated the nighttime and early morning ozone concentrations in
inland areas as being approximately 10 ppb lower [19]. Accordingly, numerous previous
studies have been conducted as the appropriate use of Kzmin values is a crucial factor in
predicting pollutant concentrations [20–24]. However, most previous studies have focused
on ozone, showing improved ozone predictability with reduced Kzmin values. According
to Kim et al., the use of reduced Kzmin values resulted in overestimation of surface PM2.5
concentrations in Northeast Asia, showing contrasting results to ozone [25]. Despite vary-
ing sensitivity to Kzmin values depending on pollutants, research on PM2.5 is insufficient.
Additionally, existing studies have primarily considered specific episodes and local impacts,
highlighting the need for research tailored to the geographic characteristics of South Korea,
which is influenced by pollutants transported from neighboring countries [26,27].

Therefore, we aim to analyze the predictive performance of the CMAQ model for
PM2.5 in the Seoul Metropolitan Area (SMA) during the winter season. The analysis is
to be conducted based on different Kzmin values, considering both local and long-range
transport influences in order to derive appropriate Kzmin values. Specifically, Section 3.1
analyzes the impact of Kzmin variations on local PM2.5 concentrations and concentrations
from foreign sources for high-concentration cases exceeding the Korean air quality standard
(daily average concentration of 35 µg/m3), while Section 3.2 determines suitable Kzmin
values for winter season concentration predictions through long-term analysis.
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2. Methodology
2.1. Model Configuration

We conducted PM2.5 concentration predictions using the CMAQ v5.0.2 model. The
Meteorology Chemistry Interface Processor (MCIP) v4.2 was employed to recalibrate the
results from the Weather Research and Forecasting model (WRF) v3.8.1 to match the CMAQ
grid system. Emission input data consisted of both natural emissions estimated using the
Model of Emissions of Gases and Aerosols from Nature (MEGAN) v2.0.4 and anthropogenic
emissions calculated using Sparse Matrix Operator Kernel Emission (SMOKE) v3.1, which
were combined. For this, the European Centre for Medium-Range Weather Forecasts
Reanalysis version 5 (ECMWF-ERA5) was utilized as the initial and boundary conditions
for WRF, and foreign anthropogenic emissions were based on the Korea US Air Quality
Study (KORUS-AQ) v5 [28], while domestic anthropogenic emissions were sourced from
the Clean Air Policy Support System (CAPSS) 2016 [29]. The modeling domain was set up
to analyze the influence of pollutants transported from surrounding countries to the SMA,
with the mother domain (D1) covering Northeast Asia, including Russia, Mongolia, China,
and Japan, and the smaller domain (D2) encompassing the Korean Peninsula, including
the SMA (Figure 1). The model was run with one-way nesting over a total of 15 layers
(Top: approximately 20 km, surface: approximately 0.03 km). Detailed domain information
and the model’s physical and chemical options are described in Table 1.
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Table 1. Details of the grids and physical options used in the WRF/CMAQ model. 
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Land use/Land cover USGS 24  
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Figure 1. The modeling domain and observation site information used in this study. The left panel
depicts Domain 1 (a), covering the Northeast (NE), Northcentral (NC), Southcentral (SC), Southeast
(SE), and Yellow Sea (YS) areas, along with the Seoul Metropolitan Area (SMA) within Northeast
Asia. The right panel represents Domain 2 (b), including the SMA within the Korean Peninsula. Red
circles denote the air quality monitoring sites, while yellow stars indicate the Baengnyeongdo site of
the national background monitoring network.
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Table 1. Details of the grids and physical options used in the WRF/CMAQ model.

D1 D2

WRF

Horizontal grid 180 × 142 78 × 93

Horizontal resolution 27 km 9 km

Geogrid resolution USGS 30s

Land use/Land cover USGS 24

Vertical layers 30 layers

Microphysics WRF Single-Moment 3-class simple ice

Radiation (long/short wave) RRTM/Goddard

Land surface Noah

Cumulus Kain-Fritsch

Boundary layer YSU

CMAQ

Horizontal grid 174 × 128 67 × 82

Horizontal resolution 27 km 9 km

Vertical layers 15 layers

Chemical mechanism SAPRC99

Aerosol module AERO5

Horizontal/Vertical advection YAMO/YAMO

Horizontal/Vertical diffusion Multiscale/ACM2

2.2. Experimental Design

CMAQ calculates vertical mixing due to turbulence using K-theory and Bulk Richard-
son number [30]. The floor value of Kz in the CMAQ model, represented by Kzmin, was
previously fixed at a single value (1.0 m2/s). However, since version 4.6, CMAQ has
utilized the KZMIN option, which incorporates the effect of land cover, as described by the
following equation.

Kzmin = KZL + (KZU−KZL) ∗UFRAC (1)

UFRAC = 0.01 ∗ PURB (2)

Here, KZL and KZU were previously set at constant values of 0.5 and 2.0 before
CMAQ v5, and 0.01 and 1.0 afterwards, while UFRAC (Urban Fraction) represents the
proportion of urban land cover, calculated using the urban fraction PURB (ranging from
0% to 100%) as shown in Equation (2). Consequently, Kzmin in CMAQ ranges from 0.01 to
2.0 depending on the model version and UFRAC. Therefore, we conducted experiments
using single values for the upper and lower limits of Kzmin (0.01, 0.5, 1.0, 2.0) to predict
PM2.5 concentrations in the Base experiment (hereafter referred to as B) and to analyze net
concentrations from abroad by zeroing out domestic emissions in the Zero-out experiment
(hereafter referred to as Z). These experiments were named B0.01, B0.5, B1.0, B2.0, Z0.01, Z0.5,
Z1.0, and Z2.0, according to the applied Kzmin values.

2.3. Target Cases and Regions

In South Korea, PM2.5 concentrations gradually decrease after March, reaching their
lowest levels from July to September, and then begin to rise again from October, leading to
frequent exceedances of the Korean air quality standards from December to the following
March. Among these, the SMA serves as a major hub where approximately 50% of the
Korean population resides. It is characterized by various emission sources (such as roads,
residential areas, industrial facilities, and industrial complexes) and is susceptible to both
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local and long-range transport influences due to its geographical proximity to neighboring
countries, including China [31,32]. Particularly during certain periods, foreign long-range
transport influences dominate, necessitating the consideration of changes in foreign PM2.5
concentrations in the SMA based on Kzmin values [33,34]. Therefore, we analyzed the
PM2.5 prediction performance based on Kzmin values in the SMA from December 2020 to
March 2021. Initially, we examined the predictive characteristics based on Kzmin values
during the period from 4 December to 12 December 2020, when both local and long-range
transport influences were occurring, and subsequently derived the most optimal Kzmin
values through a long-term evaluation (four months). In order to understand the impact of
long-range transport, we included the Northeast (NE), Northcentral (NC), Southeast (SE),
and Southcentral (SC) regions of China, which are the major source regions of air masses
entering the SMA during the winter, as well as the Yellow Sea (YS) area, in the analysis
target areas [35] (Figure 1).

2.4. Analysis Methodology

In South Korea, the ME operates the Air Quality Monitoring System (AQMS) for
various purposes. The AQMS includes urban air monitoring networks, rural air monitoring
networks, national background monitoring networks, roadside monitoring networks, etc.
Among these, we utilized the hourly data from urban air monitoring networks, which
represent the average air quality concentrations in urban areas. Data from a total of
473 monitoring stations were used in the study, with 154 stations corresponding to the SMA.
Data from the Baengnyeongdo station, which represents the Yellow Sea (YS), were used as
a representative observation point for YS. The national background monitoring network is
situated in relatively independent locations from domestic emissions, making it suitable for
assessing national background concentrations and long-range transport of pollutants from
overseas sources. Additionally, to evaluate the predictability of source regions, hourly data
from 900 monitoring stations provided by an air quality website (https://air-quality.com
(accessed on 15 March 2024)) were utilized.

The validation of model performance employed metrics such as normalized mean bias
(NMB), index of agreement (IOA), and coefficient of correlation (R), which are indicators for
assessing the tendency of overestimation or underestimation, consistency with estimates,
and correlation, respectively. Generally, when NMB approaches 0, and both IOA and R
approach 1, it indicates that the model effectively simulates actual phenomena. Specifically
for PM2.5, a model’s performance is considered good when NMB falls within ±30%, IOA is
≥0.5, and R is ≥0.4. Furthermore, a model’s performance is deemed excellent when NMB
is within ±10% and R is ≥0.7 [36–38].

Subsequently, we analyzed the variations in prediction characteristics (spatiotemporal
distribution, backward trajectory analysis, domestic and foreign contributions, etc.) as
Kzmin increased. This was performed using the B0.01 experiment, which represents the
scenario with the most suppressed vertical diffusion, as a reference. For backward trajectory
analysis, we employed the Hybrid Single-Particle Lagrangian Integrated Trajectory model
(HYSPLIT), developed by the National Oceanic and Atmospheric Administration (NOAA).
To estimate domestic and foreign contributions, we utilized the brute force method (BFM)
(Equations (3) and (4)), widely employed by agencies such as the United States Environmen-
tal Protection Agency (EPA) and the European Monitoring and Evaluation Program (EMEP).

CDomestic(µg/m3) = |CBase − C∆ε| ×
100
|ε| (3)

RForeign(%) =
CBase − CDomestic

CBase
× 100 (4)

Here, CBase, C∆ε, and CDomestic represent the concentrations in the B experiment, Z
experiment, and domestic contributions, respectively, and RForeign denotes the foreign
contribution. In this study, 100

|ε| equaling one, domestic contribution is defined as the

https://air-quality.com
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difference between the B and Z experiments, whereas foreign contribution is defined as the
ratio of Z to B experiments ( CZ

CB
).

3. Results and Discussion
3.1. Case Analysis

Statistical validation confirmed that the results of the B experiment used in the study
exhibited significant performance (good model) across the board. The experiments demon-
strated R and IOA values in the range of 0.8 to 0.9, indicating that they adequately simulated
the variability of observations. While an increase in Kzmin values showed an associated
increase in errors, the NMB remained within −30%. These findings suggest that the nu-
merical model used in this study sufficiently simulate observations, and it is apparent that
Kzmin values exert a greater influence on error variation than variability.

Figure 2 depicts the PM2.5 concentration time series for the B and Z experiments during
the case period. Here, the point of sharp increase in concentration in the Z experiment is
defined as the inflow period, while the point of decrease is defined as the outflow period.
The case period is divided into inflow period (orange shading) and local influence period
(blue shading), with the inflow period further divided into inflow period one (6 December,
09LST to 7 December 15LST) and inflow period two (10 December, 09LST to 12 Decem-
ber, 09LST).
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Figure 2. Time series of PM2.5 concentrations in the SMA region for the study period. Panel (a) represents
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of 35 µg/m3), while the orange shading indicates the period influenced by foreign inflows, and the blue
shading represents the period of local influence.
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3.1.1. Local Influence Period

Figure 3 presents the distribution of average PM2.5 concentrations at lower (approx-
imately 30 m) and upper (approximately 850 m) levels during the local impact period,
showing the results of the B0.01 experiment Figure 3a,b and the predicted concentration
ratios of each experiment Figure 3c–h. Initially, the B0.01 experiment predicted high concen-
trations spanning both the lower and upper levels, with a focus on the NC and SC areas
of China. As Kzmin increased, the rate of concentration change in the NC and NE areas
increased, with the highest change observed in the NC area. Consequently, compared to
B0.01, the surface concentration was under-predicted by 0.5–0.6 times, while the upper-
level concentration was over-predicted by 1.1–1.2 times in the NC area. Considering the
over-prediction of PM2.5 concentrations by B0.01 compared to observed values in the NC
area, it can be inferred that the tendency to over-predict surface concentrations decreases
as Kzmin increases. Additionally, as Kzmin increased, there was a tendency for surface
concentrations to decrease over land and increase in the upper levels. Conversely, over the
ocean, concentrations increased in both lower and upper levels. The decrease in surface
concentrations over land can be attributed to differences in diffusion intensity and chemical
reaction timing according to Kzmin. As diffusion intensity increases, the reaction time
between pollutants distributed on the surface decreases, leading to a decrease in PM2.5 con-
centrations compared to B0.01 [14]. Conversely, in the upper levels, the increased amount of
pollutants moving from the lower levels resulted in increased concentrations. The area of
concentration that increased in the upper levels, influenced by the airflow, appeared to be
wider to the east compared to the area of concentration that decreased in the lower levels.

As shown in the previous results, the variation in PM2.5 predicted concentrations due
to Kzmin also influenced the estimation of contributions using the BFM, which relies on
predicted concentrations. Figure 4 presents the contribution analysis results, showing that
during the local impact period in the SMA area, the domestic contribution decreased as
Kzmin increased. This can be observed from the Z experiment results in Figure 2, where
there was little difference in the inter-experimental foreign contribution (4.9–5.5 µg/m3),
but the domestic contribution varied between 20.9, 16.6, 15.2, and 13.7 µg/m3 among exper-
iments, representing a maximum difference of 34.3% between experiments. This suggests
that despite no changes in external conditions (such as inflow patterns or emissions), the
decrease in domestic contribution occurred due to the variation in internal model dynamics.

3.1.2. Long-Range Transport Influence Period

Figure 5 depicts the results of backward trajectory analysis conducted for the daytime
periods (point 1: 15:00 LST on the 6th, point 2: 15:00 LST on the 10th) during the inflow
period, where pollutants transported by vertical diffusion influence the surface. Figure 6
shows the vertical cross-sections of PM2.5 concentrations from the Z experiment at various
time points, considering the trajectories of airflow movement. During the first inflow
period on December 6th at 15:00 LST, the airflow entering the upper layer of the SMA (at
640 m) passed through the NC area and crossed the YS. While the altitude of the airflow
gradually decreased over land, it maintained a consistent altitude when passing over the
sea. During the second inflow period on December 10th at 15:00 LST, the airflow entering
the upper layer of the SMA (at 1000 m) formed a V-shape as it moved through the SC
area before crossing the YS. Unlike the first inflow period, the airflow during this period
maintained a relatively consistent altitude throughout its movement.

We compared and analyzed the wind vectors of the B0.01 experiment with the re-
sults from HYSPLIT, confirming that they simulate the influx of pollutants in a similar
manner (Figure 6a,b). As the airflow passed over land, the vertical distribution of PM2.5
concentrations exhibited a peak near the surface due to the influence of emitted pollutants,
decreasing as it moved upward. During the daytime, strong vertical diffusion led to a rela-
tively uniform distribution of concentrations between the lower and upper layers, whereas
during the nighttime, diffusion was suppressed, resulting in a more pronounced gradient
between the lower and upper layers. In contrast, when the airflow passed over the sea (YS),
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there was minimal influence from emissions, with the concentration gradient being less
pronounced due to advection and diffusion. Unlike over land, there were sections where
concentrations were higher in the upper layer than in the lower layer. This indicates that
pollutants were transported to the upper layer during both the first and second inflow
periods, with vertical diffusion likely impacting the surface during daylight hours.

Atmosphere 2024, 15, x FOR PEER REVIEW 7 of 16 
 

 

areas of China. As Kzmin increased, the rate of concentration change in the NC and NE 
areas increased, with the highest change observed in the NC area. Consequently, com-
pared to B0.01, the surface concentration was under-predicted by 0.5–0.6 times, while the 
upper-level concentration was over-predicted by 1.1–1.2 times in the NC area. Consider-
ing the over-prediction of PM2.5 concentrations by B0.01 compared to observed values in the 
NC area, it can be inferred that the tendency to over-predict surface concentrations de-
creases as Kzmin increases. Additionally, as Kzmin increased, there was a tendency for sur-
face concentrations to decrease over land and increase in the upper levels. Conversely, 
over the ocean, concentrations increased in both lower and upper levels. The decrease in 
surface concentrations over land can be attributed to differences in diffusion intensity and 
chemical reaction timing according to Kzmin. As diffusion intensity increases, the reaction 
time between pollutants distributed on the surface decreases, leading to a decrease in 
PM2.5 concentrations compared to B0.01 [14]. Conversely, in the upper levels, the increased 
amount of pollutants moving from the lower levels resulted in increased concentrations. 
The area of concentration that increased in the upper levels, influenced by the airflow, 
appeared to be wider to the east compared to the area of concentration that decreased in 
the lower levels. 

 
Figure 3. Average distribution of PM2.5 concentrations during periods of local influence for Domain 
1 and concentration ratios between experiments. Left panels represent surface levels (approximately 

Figure 3. Average distribution of PM2.5 concentrations during periods of local influence for Domain
1 and concentration ratios between experiments. Left panels represent surface levels (approximately
30 m), while right panels represent upper levels (approximately 850 m). Panels (a,b) represent the
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The vertical concentration changes with respect to Kzmin were similar to the results
presented in Figure 3. Overall, as Kzmin increased, there was a significant decrease in
concentrations near the surface over land, accompanied by an increase in concentrations
at higher altitudes. The time points showing the largest differences compared to the B0.01
experiment were identified as 5 December at 00LST and 9 December at 09LST, where
increasing Kzmin values resulted in surface concentrations being predicted as much as
81.1 µg/m3 and 84.3 µg/m3 lower, while upper-level concentrations (at 850 m and 300 m)
were predicted as much as 4.8 µg/m3 and 40.9 µg/m3 higher, respectively. When integrat-
ing the results from HYSPLIT with the vertical concentration distribution, it was observed
that the concentration of pollutants transported into SMA increased proportionally with
Kzmin values. The most significant difference was observed at 7 December at 00LST, where
surface concentrations increased by 6.2 µg/m3 and 8.7 µg/m3, respectively, compared to
the B0.01 experiment.

During the periods of inflow influence, the domestic contribution concentrations
for each experiment were 30.4 µg/m3, 24.7 µg/m3, 22.5 µg/m3, and 20.0 µg/m3, while
the foreign contribution concentrations were 8.6 µg/m3, 21.1 µg/m3, 21.5 µg/m3, and
21.6 µg/m3, respectively, showing a decrease in domestic contribution concentrations
and an increase in foreign contribution concentrations as Kzmin values increased (refer
to Figure 4). As a result, compared to the B0.01 experiment, the foreign contribution was
higher by a minimum of 8.2 percentage points (p) and a maximum of 14.0 percentage
points (p), with respect to the total concentration. It is important to note that due to the non-
linear relationship between concentration and emissions, the actual foreign contribution is
expected to be even higher.

Indeed, Kzmin not only affects the prediction of PM2.5 concentrations, but also influ-
ences the estimation of contributions. Therefore, setting appropriate values for Kzmin is
crucial for providing reliable prediction information. In areas like the SMA, which are
subject to both local and inflow influences, it is especially important to consider the impact
from upwind regions (such as China, Mongolia, etc.) along with local factors. This com-
prehensive approach ensures a more accurate understanding of air quality dynamics and
enables better-informed decision-making for managing air pollution.

3.2. Long-Term Evaluation

Figure 7 shows the performance evaluation results of the B experiments from Decem-
ber 2020 to March 2021. Initially, all B experiments underestimated observations in the
SMA area, but they exhibited significant performance with R ranging from 0.7 to 0.8, IOA
from 0.8 to 0.9, and NMB from -19% to 0%. Particularly, B0.01 showed the best performance
with an R of 0.79, IOA of 0.88, and NMB of −3.6. Regarding upwind areas such as China,
B0.5 and B1.0 showed excellent performance, while B2.0 exhibited significant performance.
The B0.5, B1.0, and B2.0 experiments also demonstrated significant or excellent performance
for the NE, NC, and SC areas. However, only B2.0 showed significant performance in the
NE area. B0.01 showed insignificant performance across all areas, with NMB ranging from
−11.6% to 63.9%, indicating significant variability in errors and inadequate simulation of
observations.

In summary, while B0.01 showed the best predictive performance for the SMA region,
B1.0 performed best for China, highlighting significant variability in predictive capabilities
based on the applied Kzmin values. Although the predictive performance based on the ap-
plied Kzmin values showed less variability for Korea, significant differences were observed
for China. Given that B0.01, which exhibited superior predictive performance for the SMA
region, did not perform well for China, we conducted a new experiment, termed Bnew, to
improve the trans-boundary effects of B0.01. In the Bnew experiment, we applied different
optimal Kzmin values for each region. Specifically, we applied a Kzmin value of 0.01 for
Korea, 1.0 for China, and 0.01 for other regions such as Mongolia, Russia, and Japan. This
approach aimed to optimize predictive performance based on regional characteristics.
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As a result, the Bnew experiment showed a significant improvement in predictive
performance for China compared to the B0.01 experiment, with NMB improving by up to
50.8 percentage points in the NC area (Table 2). This improvement in predictive charac-
teristics for China in the Bnew experiment closely resembled those of the B1.0 experiment.
To assess the impact of the improvement in predictive performance for China on the
downwind side, we analyzed the data from the Baengnyeongdo monitoring station, which
represents the national background concentration. The Bnew experiment exhibited an R
value of 0.56, IOA of 0.70, and NMB of −35.9%, showing some improvement compared to
B0.01 (B0.01: R 0.55, IOA 0.66, NMB −43.8%). Figure 8 presents the daily average concentra-
tion roses and NMB results for B0.01 and Bnew at the Baengnyeongdo station, categorized
by the most frequent wind direction from hourly model-predicted wind data. Relative
to B0.01, Bnew simulated higher concentrations, particularly when westerly winds were
predicted, resulting in increased frequency of high-concentration events (daily average
exceeding 35 µg/m3). For instance, the frequency of events exceeding the 35–50 µg/m3

range increased from zero to three events for westerly winds, from four to seven events for
southwesterly winds, and from zero to one event for northwesterly winds. Furthermore,
Bnew showed an improvement in NMB for all wind directions compared to B0.01, ranging
from a minimum improvement of 0.1 percentage points to a maximum of 4.6 percentage
points. Notably, errors were significantly reduced by 4.0 percentage points (from −7.4% to
−3.4%) for westerly winds and by 4.6 percentage points (from −13.3% to −8.7%) for south-
westerly winds. Overall, by applying a Kzmin value of 1.0 for China, Bnew demonstrated
an improved trans-boundary effect compared to B0.01, resulting in excellent predictive
performance for the SMA region, with an R value of 0.78, IOA of 0.88, and NMB of 0.7%.
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Table 2. Statistical evaluation between the observation and predicted model results (B0.01 and BNew)
for hourly PM2.5 in SMA during total analysis period.

Obs
Average NMB R IOA

B0.01 BNew B0.01 BNew B0.01 BNew B0.01 BNew

SKOR 24.1 22.2 23.2 −8.0 −4.0 0.76 0.77 0.86 0.87
SMA 28.0 27.0 28.2 −3.6 0.7 0.79 0.78 0.88 0.88

YS 26.5 14.7 16.8 −43.8 −35.9 0.52 0.53 0.65 0.69
China 54.0 79.6 56.0 45.2 2.1 0.58 0.78 0.56 0.88

NE 44.3 53.1 35.2 16.1 −22.3 0.63 0.82 0.75 0.83
NC 60.7 94.7 61.8 51.4 −0.6 0.44 0.65 0.55 0.80
SC 66.6 92.3 67.6 35.8 −14.2 0.62 0.79 0.69 0.88
SE 46.3 75.3 55.2 63.9 19.6 0.59 0.80 0.54 0.85
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4. Conclusions

In this study, we analyzed the PM2.5 prediction characteristics of the SMA region
based on cases exhibiting both local and long-range transport impacts (from December
4 to 12, 2020), and derived the most suitable Kzmin values through long-term evaluation
during the winter season (December 2020 to March 2021). Kzmin values of 0.01, 0.5, 1.0,
and 2.0 were applied, considering the model version and upper and lower limits based on
land cover.

The experiments conducted in this study demonstrated significant performance for
both target cases and long-term evaluation during the winter season, with the variation
in Kzmin values proving more effective in improving errors than the model’s variability.
Specifically, the analysis of case studies revealed that the change in predicted concentrations
according to Kzmin varied depending on surface conditions (land or sea). This variation
was attributed to the density of emissions sources, where increasing Kzmin led to decreased
surface concentrations and increased upper-level concentrations in densely industrialized
terrestrial areas. Conversely, in marine areas with relatively few emission sources, only
the influences of advection and diffusion occurred, resulting in an increase in both upper
and lower-level concentrations. Accordingly, in cases where local influences predominated,
surface concentrations in the SMA decreased with increasing Kzmin, while in cases domi-
nated by foreign inflows, the predicted concentration remained similar across experiments
as upper-level PM2.5 concentrations increased with increasing Kzmin, leading to increased
long-range transport concentrations.

The variation in predicted concentrations according to Kzmin also affected the con-
tribution assessment results using the BFM. Particularly, the variation in contributions
from foreign long-range transport periods (domestic: 62.1–48.1%, foreign: 37.9–51.9%) was
greater than that during local influence periods (domestic: 71.3–81.2%, foreign: 18.8–28.7%).
Hence, appropriate consideration of Kzmin values reflecting the characteristics of inflow
regions is crucial, as it affects both local and inflow concentrations.

In the long-term evaluation during the winter season of 2020, applying Kzmin as
0.01 (B0.01) resulted in the highest IOA and R of 0.88 and 0.79, respectively, and a NMB of
−3.6% for the SMA. However, for the inflow region of China, the IOA and R ranged from
0.54 to 0.75 and 0.44 to 0.63, respectively, with a NMB range of 16.1 to 63.9%, indicating
significant overestimation and insignificant results. To address the trans-boundary effect
from China to the SMA, an experiment (BNew) applying Kzmin as 1.0 was performed
(the other region applying as 0.01). The BNew experiment exhibited excellent predictive
performance for the SMA, with an IOA, R, and NMB of 0.88, 0.78, and 0.7%, respectively.

This underscores the importance of using appropriate Kzmin values as a crucial factor
influencing predictive performance when high concentrations occur. However, as demon-
strated in this study, applying a single value may lead to different predictive performances
depending on the region. Therefore, it is essential to apply different optimal values based
on region, especially in cases of high concentrations due to long-range transport, where
applying Kzmin values determines inflow concentrations, thus necessitating their manda-
tory application for improving trans-boundary effects. Further studies considering the
characteristics of windward regions (Mongolia, Russia, Japan, etc.) and inflow current
patterns affecting long-range transport would lead to improved results.
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