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Abstract: Accurate monitoring of air pollution is crucial to human health and the global environment.
In this research, the various multispectral satellite data, including MODIS AOD/SR, Landsat 8 OLI,
and Sentinel-2, together with the two most commonly used machine-learning models, viz. multi-
layer backpropagation neural network (MLBPN) and random forest (RF), have been employed to
analyze the spatiotemporal distributions of the primary air pollutant from 2019 to 2022 in Guanzhong
Region, China. In the conducted experiments, the RF-based model, using the MODIS AOD data, has
generally demonstrated the “optimal” estimation performance for the ground-surface concentrations
of the primary air-pollutants. Then, the “optimal” estimation model has been employed to analyze
the spatiotemporal distribution of the various air pollutants—in terms of temporal distribution, the
annual average concentrations of PM2.5, PM10, NO2, and SO2 in the research area showed a decreasing
trend from 2019 to 2022, while the annual average concentration of CO remained relatively stable
and the annual average concentration of O3 slightly increased; in terms of the spatial distribution, the
air pollution presents a gradual increase from west to east in the research area, with the distribution
of higher concentrations in the center of the built-up areas and lower in the surrounding rural areas.
The proposed estimation model and spatiotemporal analysis can provide reliable methodologies and
data support for the further study of the air pollution characteristics in the research area.

Keywords: machine learning; multispectral satellite data; aerosol optical depth; surface reflectance;
air pollutant; spatiotemporal distribution

1. Introduction

The swift progression of the global economy, coupled with rapid urban expansion and
escalating industrial production, has amplified the strain on the atmospheric environment.
The consequential atmospheric pollution can not only disrupt the delicate balance of
ecosystems and contribute to global climate change but can also pose significant risks
to human health [1]. The traditional ground-based observation methods are only able
to provide a limited amount of station monitoring data, which cannot comprehensively
represent the characteristics regarding the continuous spatial distribution and the temporal
changing trends of the primary air pollutants in expansive spatial areas. Characterized by
their high timeliness, extensive coverage, and superior resolution, satellite remote-sensing
technologies have emerged as a promising solution to compensate for the limitations of
the ground-monitoring methods, which have thereby increasingly been leveraged for
monitoring atmospheric pollution.

Previous research has mainly relied on limited ground-based monitoring station data
and geographic information system (GIS) technology to obtain the spatial distribution
of air pollutants. Guo et al. [2] analyzed the temporal–spatial variation characteristics
of six air pollutants in 366 major cities in China from 2015 to 2017 using data on the
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daily average mass concentrations of air pollutants monitored at about 1500 stations
published by the Ministry of Environmental Protection (MEP). Han et al. [3] analyzed
the spatiotemporal variations in PM2.5 in South Korea among 49 pollution events by
using Kriging interpolation and statistical analyses based on the observations from 462 air
quality monitoring stations (AQMS) in South Korea from 2015 to 2020. Wang et al. [4]
utilized the air pollutant concentration data from 23 monitoring stations in Nanchang City
from 2017 to 2020 and obtained the spatial distribution maps of air pollutants by Kriging
interpolation to explore the spatiotemporal changes in urban air pollution. However, the
limited monitoring stations and spatial coverage make it difficult to depict the spatial
distribution of air pollutants comprehensively and accurately. Since the 1960s, with the
continuous development of satellite remote-sensing technology, some scholars have begun
to use this technology to study the spatial distribution of air pollutants. Yuan et al. [5]
analyzed the aerosol spatiotemporal distribution characteristics of Hangzhou using the
moderate-resolution imaging spectroradiometer (MODIS) 3 km AOD products from 2012 to
2020, and found that MODIS AOD data can be used as an important basis for atmospheric
studies in Hangzhou.

Aerosol research is a critical aspect of advancing contemporary atmospheric quality
monitoring technology. Aerosol optical depth (AOD) serves as a measure of aerosol ex-
tinction in the vertical direction, closely linked to near-surface atmospheric particulate
matter [6,7]. Wang et al. [8] studied the relationship between column aerosol optical thick-
ness (AOT) and PM2.5 mass in the United States and demonstrated that MODIS AOT can
be used quantitatively to estimate air quality. Engel-Cox et al. [9] conducted correlation
research on MODIS AOD and ground-based particulate matter concentration values at
urban and regional scales and found that the correlations of MODIS AOD with ground-
based particulate matter were better. Su et al., Qin et al., and Zhang et al. found that fine
particulate matter concentration correlated more strongly with AOD through statistical
modelling of satellite-observed aerosol optical thickness data and ground-based particulate
matter observations, with a better estimation accuracy [10–12]. Meanwhile, considering
that AOD can be estimated from top-of-atmosphere reflectance (TOA), some researchers
have proposed to utilize TOA to estimate PM2.5 concentration directly and proved its
effectiveness and applicability [13,14]. Satellite estimation of air pollution fundamentally
revolves around establishing the spectral information–pollutant concentration relationship.
Directly employing reflectance data for atmospheric pollutant estimation not only stream-
lines the remote-sensing estimation process but also mitigates cumulative errors in AOD
estimation procedures [15].

Air pollutant distribution is influenced by various factors such as meteorological con-
ditions, emission sources, underlying surfaces, and physicochemical processes, exhibiting
strong nonlinear characteristics. Consequently, machine-learning methods suited for solv-
ing nonlinear mapping problems have emerged as a crucial approach for the continuous
spatial estimation of air pollutants. For instance, Gupta et al. [16] estimated the PM2.5
concentration in the southeastern United States using artificial neural networks together
with MODIS AOD data and meteorological data, demonstrating the potential of artificial
neural networks in air quality monitoring. Yang et al. [17] estimated the spatial continuous
distribution of O3 in the Beijing–Tianjin–Hebei Region based on Landsat 8 reflectance data
and backpropagation neural networks, and the coefficient of determination (R2) between
the estimated and observed values achieved was 0.9, yielding satisfactory results. Further-
more, machine-learning models such as random forest (RF), support vector machine (SVM),
and deep learning (DL) have also found extensive applications [18–20].

Although extensive research explores satellite remote sensing and machine learning
for air pollutant estimation, most studies have concentrated on individual models and
a limited number of pollutants, such as PM2.5/PM10 or O3, and relied primarily on one
kind of satellite data. However, there has been a relative scarcity of research on the
comprehensive performance assessment and spatiotemporal analysis of a wider range of
air pollutants based on multiple machine-learning models and satellite data [21].
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In this research, the various publicly available multispectral satellite data, including
MODIS AOD/SR, Landsat 8 OLI, and Sentinel-2, together with the two most commonly
used and well-established machine-learning models, viz. the multi-layer backpropagation
neural network (MLBPN) and random forest (RF), have been employed to establish the
estimation model of the six primary air pollutants’ concentrations, including particulate
matter PM2.5 and PM10, as well as the trace gases O3, CO, NO2, and SO2. The “optimal”
estimation model and satellite data have been selected by comparative analysis to obtain
high spatial resolution concentration distribution maps to analyze the spatiotemporal
distribution of air pollutants in the research area. The results can provide a scientific basis
for air pollution characterization and decision support for the formulation of relevant
environmental protection measures.

2. Materials and Methods
2.1. Research Area

The Guanzhong Region, showed in Figure 1, situated in the central part of Shaanxi Province,
China, which spans approximately 106◦56′~110◦22′ E longitude and 33◦39′~35◦52′ N latitude,
has been selected as the research area because of its typical plain topography and because
it is one of the most severely polluted air regions, with representative cities such as Xi’an,
Xianyang, and Weinan consistently ranking among the bottom 20 of 168 key cities of China.
Bounded by the Qinling Mountains to the south and the Loess Plateau to the north, it stretches
about 360 km from east to west and has an average elevation of around 500 m. The terrain
gradually descends from west to east. The region exhibits a warm temperate continental
monsoon climate, characterized by an average annual temperature of 12 ◦C to 14 ◦C and an
annual average rainfall of 530 to 750 mm. Dominant prevailing winds throughout the year are
from the northeast, followed by secondary winds from the southwest. The average relative
humidity ranges between 60% and 70%. Encompassing five cities—Xi’an, Baoji, Xianyang,
Weinan, and Tongchuan—the Guanzhong Region spans a total area of 55,623 square kilometers
and is classified as one of China’s four major geographical divisions, the northern region.

Atmosphere 2024, 15, x FOR PEER REVIEW 3 of 22 
 

 

In this research, the various publicly available multispectral satellite data, including 
MODIS AOD/SR, Landsat 8 OLI, and Sentinel-2, together with the two most commonly 
used and well-established machine-learning models, viz. the multi-layer backpropagation 
neural network (MLBPN) and random forest (RF), have been employed to establish the 
estimation model of the six primary air pollutants’ concentrations, including particulate 
matter PM2.5 and PM10, as well as the trace gases O3, CO, NO2, and SO2. The “optimal” 
estimation model and satellite data have been selected by comparative analysis to obtain 
high spatial resolution concentration distribution maps to analyze the spatiotemporal dis-
tribution of air pollutants in the research area. The results can provide a scientific basis for 
air pollution characterization and decision support for the formulation of relevant envi-
ronmental protection measures. 

2. Materials and Methods 
2.1. Research Area 

The Guanzhong Region, showed in Figure 1, situated in the central part of Shaanxi 
Province, China, which spans approximately 106°56′~110°22′ E longitude and 
33°39′~35°52′ N latitude, has been selected as the research area because of its typical plain 
topography and because it is one of the most severely polluted air regions, with repre-
sentative cities such as Xi’an, Xianyang, and Weinan consistently ranking among the bot-
tom 20 of 168 key cities of China. Bounded by the Qinling Mountains to the south and the 
Loess Plateau to the north, it stretches about 360 km from east to west and has an average 
elevation of around 500 m. The terrain gradually descends from west to east. The region 
exhibits a warm temperate continental monsoon climate, characterized by an average an-
nual temperature of 12 °C to 14 °C and an annual average rainfall of 530 to 750 mm. Dom-
inant prevailing winds throughout the year are from the northeast, followed by secondary 
winds from the southwest. The average relative humidity ranges between 60% and 70%. 
Encompassing five cities—Xi’an, Baoji, Xianyang, Weinan, and Tongchuan—the Guan-
zhong Region spans a total area of 55,623 square kilometers and is classified as one of 
China’s four major geographical divisions, the northern region. 

 
Figure 1. Distribution of CMA-NOAA and CNEMC monitoring stations in the research area. Figure 1. Distribution of CMA-NOAA and CNEMC monitoring stations in the research area.



Atmosphere 2024, 15, 287 4 of 21

2.2. Data Sources

A substantial volume of high-quality data stands as a prerequisite for effective machine-
learning applications. As illustrated in Table 1, the data utilized in this research comprised
station data published by the China National Environmental Monitoring Center (CNEMC)
and satellite imagery data from the Google Earth Engine (GEE, https://earthengine.google.
com, accessed on 16 July 2023) platform and the United States Geological Survey (USGS,
https://earthexplorer.usgs.gov/, accessed on 16 July 2023) including MODIS AOD/SR,
Landsat 8 OLI, and Sentinel-2, as well as meteorological data from ground-based mon-
itoring stations operated by the China Meteorological Administration (CMA) and the
National Oceanic and Atmospheric Administration (NOAA) in the United States. All of
these datasets are openly accessible.

Table 1. Description of the data employed in the research.

Category Variable Unit Temporal
Resolution

Spatial
Resolution Data Source

Satellite
remote-sensing images

MCD19A2 Band 1–2 Day 1000 m

GEE, USGS
MOD09GA Band 1 Day 500 m
Landsat 8 Band 16 Day 15 m, 30 m
Sentinel-2 Band 5 Day, 10 Day 10 m, 20 m, 60 m

Air quality data

PM2.5 µg/m3

1 h CNEMC

PM10 µg/m3

SO2 µg/m3

NO2 µg/m3

O3 µg/m3

CO mg/m3

Meteorological data

Temperature ◦C

3 h CMA-NOAA
Relative humidity %

Atmospheric pressure Pa
Wind direction ◦

Wind speed m/s

2.2.1. MODIS Data

The moderate-resolution imaging spectroradiometer (MODIS) is equipped on both the
Terra and Aqua satellites. It captures data in 36 spectral bands covering the spectral range
from 0.4 µm (visible light) to 14.4 µm (thermal infrared) with spatial resolutions ranging
from 250 to 1000 m. These instruments provide complete spectral coverage and revisit the
Chinese mainland area 1–2 times per day [22]. This research utilized the daily land aerosol
optical depth (AOD) data MCD19A2 and daily surface reflectance (SR) data MOD09GA.

2.2.2. Landsat 8 Data

The Landsat 8 satellite was launched in February 2013 and began offering free data in
May of the same year. It carries two sensors: the operational land imager (OLI) and the
thermal infrared sensor (TIRS) [23]. The OLI sensor comprises 9 spectral bands, with a
spatial resolution of 15 m for panchromatic bands and 30 m for other bands. The imaging
swath width is 185 × 185 km, with a revisit cycle of 16 days. In this research, we utilized
band data from Landsat 8 Collection 2 Tier 1 Raw Scenes products.

2.2.3. Sentinel-2 Data

Sentinel-2 is an Earth observation mission from the Copernicus program by the Euro-
pean Space Agency, primarily aimed at observing the Earth’s surface to provide various
remote-sensing services such as agricultural monitoring, emergencies management, land-
cover classification, or water quality. This mission consists of two identical satellites,
Sentinel-2A and Sentinel-2B, equipped with 13 spectral bands ranging from the visible
to the shortwave infrared spectrum. The spatial resolutions are 10 m, 20 m, and 60 m,

https://earthengine.google.com
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respectively. The revisit period for each satellite is 10 days [24]. In this research, we utilized
surface reflectance data from Sentinel-2A.

2.2.4. Air Quality Data

The China National Environmental Monitoring Center (CNEMC) is a specialized
institution under the Ministry of Ecology and Environment. It is responsible for nation-
wide environmental monitoring across various domains, including air, water, ecology,
soil, coastal areas, noise, and pollution sources. Presently, CNEMC provides real-time
monitoring concentration data for PM2.5, PM10, O3, CO, NO2, and SO2. These datasets
serve as the primary foundation for estimating surface air pollutant concentrations based
on remote sensing and can be collected from the CNEMC platform (http://www.cnemc.cn,
accessed on 16 July 2023). CNEMC operates over 1500 monitoring stations throughout
mainland China, including 41 stations in the research area (Figure 1).

2.2.5. Meteorological Data

The National Oceanic and Atmospheric Administration (NOAA) is the governing
body responsible for meteorological operations in the United States. In 2013, the China
Meteorological Administration (CMA) and NOAA entered into a collaborative agreement,
authorizing NOAA to publicly release meteorological data for mainland China on the
Internet (https://gis.ncdc.noaa.gov/maps/ncei/cdo/hourly, accessed on 16 July 2023).
These data are updated every three hours. This research utilized atmospheric factors
including atmospheric pressure (PRS), relative humidity (RH), temperature (T), wind
direction (WD), and wind speed (WS) [25]. Particularly, the calculation of relative humidity
was obtained using the following formula [26]:

Td =
bγ(T, RH)

a− γ(T, RH)
, (1)

γ(T, RH) =
aT

b + T
+ ln(RH/100), (2)

where T and dew point temperature (Td) are in Celsius, RH is in percent, ln represents the
natural logarithm, the constant a is 17.27, and the constant b is 237.7 ◦C.

CMA-NOAA has more than 300 cooperative monitoring stations in mainland China,
including four stations in the research area (Figure 1).

2.3. Data Preprocessing

Due to the wide variety of data sources utilized in this research, significant differences
exist in data types and resolutions. Therefore, preprocessing and spatiotemporal matching
of the aforementioned research data are imperative.

(1) Regarding outliers in land stations, we referenced the “Technical Regulation on
Ambient Air Quality Index (on trial)” and conducted outlier removal procedures accord-
ingly. Quality control tools provided by Google Earth Engine (GEE) were employed to
eliminate satellite data samples significantly affected by clouds. With the MODIS data,
MCD19A2 removed clouds based on the AOD_QA quality control band (Bits8-11 = “0000”),
while MOD09GA removed clouds based on the state_1 km band (Bits0-2 = “000” and
Bit10 = “0”). Landsat 8 data removed clouds based on the QA_PIXEL quality control band
(Bits3-4 = 00), and Sentinel-2 data used the QA60 band for quality control, retaining data
with QA60 = 0 [27]. High-quality satellite remote-sensing images of the research area
were obtained through mosaicking, projection transformation, resampling, reprojection,
and cropping. Kriging interpolation was applied to meteorological station data to acquire
spatial meteorological data in the research area.

(2) The above data require spatial and temporal matching due to differences in obser-
vation time, temporal resolution and spatial resolution. Regarding the different temporal
resolutions of the data, the imaging time properties of each satellite are the time reference for

http://www.cnemc.cn
https://gis.ncdc.noaa.gov/maps/ncei/cdo/hourly
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time matching. The imaging time properties of each satellite are regarded as the temporal
reference to match air quality data and meteorological data. For MODIS satellite products
that provide daily averaged data, the air quality and meteorological data are processed into
daily averages and matched accordingly. For Landsat 8 and Sentinel-2 satellite products
that provide instantaneous data, the air quality and meteorological data are matched using
linear interpolation and a time buffer interval of ±1 h. The near analysis algorithm (NAA)
has been employed for spatial matching to integrate the CEMC observations and NOAA
datasets. As for the normalized difference vegetation index (NDVI), it was calculated by the
NIR and red bands according to Formula (3) in MODIS SR, Landsat 8 OLI, and Sentinel-2,
while it was matched by the NDVI band of MOD13A2 product in MODIS AOD.

NDVI =
NIR− Red
NIR + Red

, (3)

(3) Given the differences in data scales and measurement units, normalization of
the data is necessary to minimize model errors. This research employed the min–max
normalization method:

In =
I − Imin

Imax − Imin
, (4)

where I represents the original feature data, Imin and Imax represent the minimum and
maximum values of the feature data, respectively, and In represents the normalized
feature data.

2.4. Methods

As shown in Figure 2, machine-learning methods were employed to explore and
establish the relationships between internal features to achieve spatial estimation after
completing the data collection and preprocessing. This research employed multi-layer
backpropagation neural network (MLBPN) and random forest (RF) models, which have
demonstrated a favorable performance in air pollutant estimation, as evidenced by both
this experiment and previous literature. In order to strike a balance between training the
model effectively and thoroughly evaluating its performance, the dataset was partitioned
into training and testing sets using an 80/20 split [28]. Furthermore, given the temporal
properties of data and the large data volume, cross-validation was performed using the
“Hold-out Method”. All the experiments were conducted on a Windows 11 Professional
64-bit operating system with 12th Gen Intel(R) Core(TM)i7-12700KF CPU configuration
and NVIDIA GeForce RTX 3070Ti GPU configuration.

2.4.1. Multi-Layer Backpropagation Neural Network (MLBPN)

The multi-layer backpropagation neural network (MLBPN) model is a type of multi-
layer feedforward neural network trained using the backpropagation algorithm, which
demonstrates clear advantages in addressing nonlinear system problems. The MLBPN-
based model consists of an input layer, several hidden layers, and an output layer [29].
Upon providing a set of learning samples to the MLBPN-based model, activation values
propagate from the input layer through the intermediate hidden layers to the output layer,
acquiring the network’s input response at the output layer neurons. Subsequently, the
connection weight values are incrementally adjusted layer by layer, from the output layer
through each intermediate layer, following the direction to minimize the target output
and actual error, ultimately returning to the input layer. In Figure 2, xi represents the
input value of this neural network (i = 1, 2, . . ., m), and Y represents the output value. wl

ij
represents the connection weight between node j in hidden layer l-1 and node i in hidden
layer l. bl

i represents the bias of node i in layer l. The transfer between different hidden
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layers utilizes the Tansig function equation, while the Purelin function equation is employed
between the hidden layer and the output layer [30–32]. They are expressed as follows:

tansig(x) =
2

1 + e−2x − 1, (5)

Purelin(x) = x, (6)

The optimal number of nodes for the hidden layers in the model is set to [15,15]. The
Levenberg–Marquardt (LM) algorithm is utilized for neural network training using the
trainlm function, with the maximum training epochs set to 500, the network training goal
set to 0.001, and a learning rate of 0.1.
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2.4.2. Random Forest (RF)

The random forest (RF) algorithm is an optimization of the decision tree method,
constructing multiple independent decision trees and averaging their outcomes for fitting.
This approach effectively addresses the issues of low accuracy and overfitting commonly
associated with individual decision trees, thereby enhancing the generalization ability of
the algorithm. The decision trees in a random forest are binary trees, following the recursive
top-down splitting pattern, and nodes are split based on the principle of minimizing node
impurity. In this research, the TreeBagger function from the Matlab R2021b software was
employed for remote-sensing estimation of surface air pollutant concentrations. During
the model optimization phase, adjustments were made to enhance the estimation accuracy
by setting the number of decision trees to 100 and the minimum leaf size to 5.

2.5. Validation

In order to better evaluate the model, four statistical indicators, the coefficient of
determination (R2), root mean square error (RMSE), mean absolute error (MAE), and mean
error (ME), were chosen for comparative analysis in this research [33]. Their calculation
formulas are as follows, respectively:

R2 =
cov(PG − PS)√
var(PG)var(PS)

, (7)
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RMSE =

√
∑N

1 (PG − PS)
2

N
, (8)

MAE =
1
N

N

∑
1
|(PG − PS)|, (9)

ME =
1
N

N

∑
1
(PG − PS), (10)

where PG denotes the pollutant concentration estimation value, PS denotes the pollutant
concentration measured value, and N denotes the number of samples.

3. Results
3.1. Model Performance

The comparison of the estimation performances of the RF and MLBPN models for the
concentrations of air pollutants, based on the MODIS AOD data with a total of 15,577 sam-
ples in the research area from 2019 to 2022, is shown in Table 2. Compared to the MLBPN-
based model, the R2 of the RF-based model improves by about 0.1 for PM2.5, O3, and CO
and 0.2 for PM10, NO2, and SO2; at the same time, the RMSE and the MAE are significantly
decreased. These values indicate that the RF-based model has a better estimation perfor-
mance than the MLBPN-based model. In the context of the RF-based model, the R2 values
for PM2.5, PM10, and O3 are around 0.9; for NO2 and CO exceed 0.7; and for SO2 surpass
0.5, which indicates that the MODIS AOD data can accurately estimate the continuous
spatial distribution of air pollutants.

Table 2. Estimation performances of the RF and MLBPN models using MODIS AOD data.

Model RF MLBPN

Accuracy evaluation R2 RMSE MAE ME
R2 RMSE MAE ME

(µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3)

PM2.5 0.90 11.67 7.87 0.20 0.80 16.36 11.55 −0.08
PM10 0.87 23.99 16.39 0.05 0.67 35.86 26.02 −0.06

O3 0.92 12.26 9.09 −0.17 0.84 16.63 12.95 0.02
NO2 0.73 9.20 6.84 0.11 0.54 12.02 8.94 −0.21
CO 0.75 180 130 2 0.66 210 150 3
SO2 0.52 3.69 2.54 0.15 0.36 4.55 3.09 0.07

The comparison of the estimation performances of RF and MLBPN models for the
concentrations of air pollutants, based on the MODIS SR data with a total of 7821 samples
in the research area from 2019 to 2022, is shown in Table 3. Compared to the MLBPN-based
model, the R2 values of the RF-based model for PM2.5, PM10, O3, NO2, and CO improve
by about 0.1; simultaneously, the RMSE and the MAE are significantly decreased. These
values indicate that the RF-based model has a better estimation performance than the
MLBPN-based model. For the RF-based model, the R2 values for PM2.5 and O3 are around
0.8; PM10 exceeds 0.7; NO2 and CO are around 0.6; and SO2 surpasses 0.3. These results
indicate that the MODIS SR data can effectively estimate the continuous spatial distribution
of PM2.5, PM10, O3, NO2, and CO.
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Table 3. Estimation performances of the RF and MLBPN models using MODIS SR data.

Model RF MLBPN

Accuracy evaluation R2 RMSE MAE ME
R2 RMSE MAE ME

(µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3)

PM2.5 0.77 11.46 7.84 0.13 0.66 14.00 9.98 −0.06
PM10 0.72 25.57 16.71 0.08 0.65 29.28 21.49 −1.79

O3 0.82 14.09 10.88 0.15 0.75 16.64 12.99 −0.35
NO2 0.61 10.39 8.08 −0.16 0.52 11.05 8.63 −0.53
CO 0.58 170 130 3 0.50 180 130 2
SO2 0.31 4.06 2.63 0.12 0.30 4.44 2.88 −0.08

The comparison of the estimation performances of the RF and MLBPN models for
the concentrations of air pollutants, based on the Landsat 8 OLI data with a total of
1181 samples in the research area from 2019 to 2022, is shown in Table 4. It can be seen that
the difference in accuracy between these two models is relatively close, but on the whole,
the MLBPN-based model performs better than the RF-based model. For the MLBPN-based
model, the R2 of PM2.5 and O3 is close to 0.9; that of PM10 and CO is close to 0.8; and that
of NO2 and SO2 is around 0.6, which indicates that the Landsat 8 OLI data can accurately
estimate the continuous spatial distribution of air pollutants.

Table 4. Estimation performances of the RF and MLBPN models using Landsat 8 OLI data.

Model RF MLBPN

Accuracy evaluation R2 RMSE MAE ME
R2 RMSE MAE ME

(µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3)

PM2.5 0.86 16.83 10.83 −1.69 0.88 13.30 9.60 0.35
PM10 0.71 30.52 22.41 −3.08 0.80 27.95 21.52 0.09

O3 0.85 16.16 11.51 −0.88 0.89 15.3 11.87 −2.05
NO2 0.69 9.33 7.23 0.37 0.64 10.94 8.54 −0.91
CO 0.72 200 150 −4 0.76 200 150 −10
SO2 0.57 4.07 2.87 −0.09 0.59 4.03 2.94 −0.17

The comparison of the estimation performances of RF and MLBPN models for the
concentrations of air pollutants, based on the Sentinel-2 data with a total of 7933 samples
in the research area from 2019 to 2022, is shown in Table 5. Compared to the MLBPN-
based model, the R2 of the RF-based model improves about 0.1 for O3, 0.15 for PM2.5 and
PM10, 0.2 for NO2 and CO, and 0.25 for SO2; at the same time, the RMSE and the MAE
are significantly decreased. These values indicate that the RF-based model has a better
estimation performance than the MLBPN-based model. The RF-based model demonstrates
a strong performance with R2 values exceeding 0.9 for PM2.5, PM10, and O3; close to 0.8
for NO2 and CO; and larger than 0.6 for SO2, which indicates that the Sentinel-2 data can
accurately estimate the continuous spatial distribution of air pollutants.

In summary, the RF-based model has revealed a better estimation performance using
the satellite imagery from MODIS AOD/SR and Sentinel-2, and for the MLBPN-based
model, a better estimation performance can be obtained from the use of Landsat 8 OLI.
Scatterplots between the monitored values and the values estimated by the RF-based model
using MODIS AOD data for air pollutants are presented in Figure 3. Similar scatterplots
between the monitored values and the values estimated by the corresponding optimal
model using MODIS SR, Landsat 8 OLI, and Sentinel-2 data are provided in Figures A1–A3
in Appendix A.
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Table 5. Estimation performances of the RF and MLBPN models using Sentinel-2 data.

Model RF MLBPN

Accuracy evaluation R2 RMSE MAE ME
R2 RMSE MAE ME

(µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3)

PM2.5 0.90 12.52 8.20 −0.30 0.76 18.34 13.55 0.60
PM10 0.91 25.99 17.73 −0.49 0.76 33.47 25.49 −0.66

O3 0.92 12.48 9.08 0.61 0.83 18.08 13.97 −0.30
NO2 0.77 9.36 6.50 0.11 0.58 12.63 9.16 −0.98
CO 0.79 160 110 1 0.62 210 160 8
SO2 0.65 3.26 2.23 0.07 0.40 4.13 3.04 −0.02
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3.2. Spatiotemporal Analysis

Although the RF-based model with Sentinel-2 revealed a slightly better performance
for the estimation of PM10, NO2, CO, and SO2 than that with MODIS AOD, such differences
are not significant. Combined with the consideration that the MODIS satellite has a high
temporal resolution, covering the entire research area and revealing a better performance
for the PM2.5 and O3 estimations, the MODIS AOD data have been confirmed as the basic
satellite data for spatiotemporal analysis in the research area.

3.2.1. Temporal Distribution Characteristics

The annual average concentrations of air pollutants in the research area from 2019 to
2022 display various trends in Figure 4a: PM2.5, PM10, NO2, and SO2 display a consistent
decrease, whereas O3 and CO display a trend of decreasing followed by increasing. The
annual average concentrations of PM2.5 and PM10 decreased by approximately 6 µg/m3,
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with a decrease of 19% and 10%, respectively. The decreases in NO2 and SO2 were 8% and
10%, respectively. CO concentration decreased by 0.02 mg/m3 in 2021, followed by an
increase of 0.03 mg/m3 in 2022. However, the annual concentration of CO was relatively
stable and remained below 0.6 mg/m3. O3 concentration decreased by 3.4 µg/m3 in 2020,
followed by an increase of 12.4 µg/m3 in 2021, with an overall increase of 11%, and finally
remained around 83 µg/m3.
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The monthly concentrations of air pollutants in the research area in 2021 are shown in
Figure 4b. PM2.5, PM10, NO2, CO, and SO2 concentrations show a “U”-shaped monthly
trend, with the lowest pollutant concentrations in summer and the highest in winter.
The reasons are analyzed: the increase in pollutant concentrations is primarily attributed
to the heating season from November to March, involving substantial burning of coal,
biomass, and biofuels, and an inverse temperature and high atmospheric pressure, causing
pollutants to accumulate in the lower atmosphere with the movement of the descending
airflow. On the contrary, the decrease in pollutant concentrations is primarily attributed
to lower atmospheric pressure and higher temperatures from May to September, creating
atmospheric instability and favoring pollutant dispersion, and increased rainfall during
this period contributes to air purification. Notably, PM10 exhibited a high concentration
anomaly in May, attributed to frequent sandstorms caused by cold air and strong winds,
increasing dust and particulate matter levels, and worsening pollution.

O3 concentration shows the opposite trend to the other pollutants, peaking in sum-
mer, followed by spring, autumn, and winter. This is because near-surface O3 primarily
arises from precursor elements such as volatile organic compounds (VOCs), carbon monox-
ide (CO), and nitrogen oxides (NOx) through complex photochemical reactions heavily
influenced by sunlight and radiation intensity.

3.2.2. Spatial Distribution Characteristics

The annual-scale spatial distribution maps of air pollutants in the research area from
2019 to 2022, estimated by MODIS AOD data, showcase a consistent trend: a gradual
increase from west to east, with the distribution of higher concentrations in the center of
the built-up areas and lower in the surrounding rural areas (as depicted in Figure 5).
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The high-pollution areas are mainly concentrated in the Guanzhong urban agglom-
eration, especially in the southern part of Xianyang, the northern part of Xi’an, the entire
Weinan region, the central part of Baoji, and parts of southern Tongchuan. These areas are
located in the lower elevation basin, bordered by the Loess Plateau in the north and the
Qinling Mountains in the south, forming a trumpet-shaped topography with a higher west
and lower east. East and northeast winds prevail in Guanzhong all year round, and the
airflow enters from the eastern entrance along the Weihe Plain, making the concentration of
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air pollutants higher in the low-altitude areas within the basin. The low-pollution areas are
mainly in the surrounding rural areas, with high-altitude mountain ranges, high vegetation
cover, low human activities, and low industrial pollution.

Notably, PM2.5, PM10, NO2, CO, and SO2 show the highest concentration distribution
in the urban areas of Xi’an and the adjoining regions bordering Shanxi Province and
Weinan City, while O3 shows the lowest concentration distribution. This is because the
meteorological conditions for the formation of O3 pollution are low humidity, low pressure,
high temperature, and low wind, which is the opposite to the correlation between the other
pollutants and meteorological factors.

Figure 6 illustrates the spatial distribution of the monthly average concentration of
PM2.5 in the research area in 2021. The spatial distribution of monthly average concen-
trations of other air pollutants can be found in Figures A4–A8 in Appendix B. It can be
found that the monthly spatial distribution of PM2.5, PM10, NO2, CO, and SO2 is consistent
with the annual spatial distribution. Meanwhile, pollutant concentrations are low from
May to September and high in other months. The spatial distribution of O3 shows distinct
fluctuations: concentrations are high in the center area and low in the peripheral area from
March to October, whereas this pattern is reversed in other months. This variation reflects
the complexity of O3 pollution with seasonal and meteorological conditions.
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4. Discussion

In this research, RF- and MLBPN-based models have been respectively proposed for
the estimation of the ground surface concentrations of PM2.5, PM10, O3, NO2, CO, and
SO2 from the various satellite imagery of MODIS AOD, MODIS SR, Landsat 8 OLI, and
Sentinel-2. The conducted experiments demonstrate that (a) except for the Landsat 8 OLI
data, the RF-based model revealed a better estimation performance than the MLBPN-based
model using the satellite imagery from MODIS AOD/SR and Sentinel-2; (b) the results
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estimated from the MODIS AOD, Sentinel-2, and Landsat 8 OLI satellite data revealed
significantly higher accuracies than MODIS SR data; (c) the RF-based model combined
with the MODIS AOD data revealed the best performance for the estimation of PM2.5 and
O3—the R2 and RMSE reached 0.90 and 11.67 µg/m3 for PM2.5, and 0.92 and 12.26 µg/m3

for O3, respectively; while the RF-based model combined with the Sentinel-2 or MODIS
AOD data achieved a comparable performance for PM10, NO2, CO, and SO2—the R2 and
RMSE reached ca. 0.90 and 25 µg/m3 for PM10, ca. 0.75 and 9.3 µg/m3 for NO2, ca. 0.77
and 170 mg/m3 for CO, and ca. 0.6 and 3.5 µg/m3 for SO2, respectively.

Considering the estimation performance and the temporal resolution of the satellite
data, the RF-based model together with the MODIS AOD data can be treated as the
optimal combination of “model and data”—for PM2.5, PM10, and O3, the estimation
results with the R2 of ca. 0.9 are convincing; for NO2 and CO, the results with the R2 close
to 0.8 are still reliable; while for the SO2, the R2 reaches 0.65, and hence the estimation
results can only be used under some kinds of specific conditions. The estimation accuracy
of trace gases, especially SO2, is relatively lower than that of particulate matter. This
may be due to the fact that the spectra range of the satellites used in the research did not
include the ultraviolet (UV) band, which is crucial for the estimation of some trace gases,
especially SO2.

Based on the discussions mentioned above, the RF-based model with the MODIS
AOD data was employed for the analysis of the spatiotemporal distributions in the
Guanzhong Region, China. In terms of annual scale changes, the average concentrations
of PM2.5, PM10, NO2, and SO2 show a decreasing trend, while CO remains relatively
stable, and O3 shows an increasing trend from 2019 to 2022. In terms of monthly scale
changes, the concentrations of PM2.5, PM10, NO2, CO, and SO2 in 2021 showed a “U”-
shaped trend, with the lowest pollutant concentrations in the summer and the highest in
the winter, and the O3 concentration showed the opposite trend. The spatial distribution
of air pollution presents a gradual increase from west to east in the research area, with
the distribution of higher concentrations in the center of the built-up areas and lower in
the surrounding rural areas.

One particular aspect of the research is that we have also added meteorological data in
addition to satellite remote-sensing data. The Pearson correlation coefficient heatmap based
on MODIS AOD data, as shown in Figure 7, demonstrates a strong correlation between
meteorological data and air pollutant concentrations.

Additionally, Table 6 presents the results of a comparative experiment conducted using
meteorological parameters as independent variables based on the RF model and MODIS
AOD data. It indicates a significant improvement in model accuracy when meteorological
data are included, with the R2 increasing by approximately 0.3 for PM2.5 and CO, and
approximately 0.4 for PM10, O3, NO2, and SO2.

However, the publicly available meteorological data from the National Oceanic and
Atmospheric Administration consisted of only four stations within the research area. The
limited meteorological data could have affected the generic nature of the sample data for
model training and thereby could reduce the estimation accuracy and reliability in some
kinds of specific situations. Hence, non-public meteorological data should be considered in
further studies for a more detailed and accurate estimation of air pollutant concentrations.
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Table 6. Estimation performances with meteorological parameters as independent variables based on
the RF model and MODIS AOD data.

Meteorological Parameters No Meteorological Parameters

Accuracy evaluation R2 RMSE MAE ME
R2 RMSE MAE ME

(µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3) (µg/m3)

PM2.5 0.86 16.83 10.83 −1.69 0.57 24.71 17.16 0.16
PM10 0.71 30.52 22.41 −3.08 0.31 49.48 34.55 −0.07

O3 0.85 16.16 11.51 −0.88 0.45 31.33 24.44 −0.38
NO2 0.69 9.33 7.23 0.37 0.24 15.71 11.54 −0.4
CO 0.72 200 150 −4 0.42 260 195 4
SO2 0.57 4.07 2.87 −0.09 0.19 5.02 3.58 0.09

5. Conclusions

This research compared the estimation results generated by different models from
diverse types of satellite data, and the “optimal” model and satellite data were identified to
provide one practical method for air pollutant concentration estimation. Furthermore, an
analysis of spatiotemporal variations in the various primary air pollutants was conducted,
which proved that the air quality tends to be better in mountainous areas than in urban
centers, highlighting significant implications for public health. This discovery suggests
that individuals may engage in more outdoor activities in mountainous regions to enhance
opportunities for aerobic exercise, thereby promoting both physical and mental well-being.
Additionally, it indicates that the air quality in the summer tends to be better than the
other three seasons, suggesting the possibility of relaxing certain environmental restrictive
policies, such as the bans on burning straw during this season.

To sum up, the conducted research can provide decision support for the development
of relevant environmental protection measures to improve the air environmental quality
and foster socioeconomic development in the Guanzhong Region.
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