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Abstract: Reliable precipitation forecasts are essential for weather-related disaster prevention and
water resource management. Multi-source weather (MSWX), a recently released ensemble meteoro-
logical dataset, has provided new opportunities with open access, fine horizontal resolution (0.1◦),
and a lead time of up to seven months. However, few studies have comprehensively evaluated the
performance of MSWX in terms of precipitation forecasting and hydrological modeling, particularly
in hill-karst basins. The key concerns and challenges are how precipitation prediction performance re-
lates to elevation and how to evaluate the hydrologic performance of MSWX in hill-karst regions with
complex geographic heterogeneity. To address these concerns and challenges, this study presents a
comprehensive evaluation of MSWX at the Chengbi River Basin (Southwest China) based on multiple
statistical metrics, the Soil and Water Assessment Tool (SWAT), and a multi-site calibration strategy.
The results show that all ensemble members of MSWX overestimated the number of precipitation
events and tended to have lower accuracies at higher altitudes. Meanwhile, the error did not sig-
nificantly increase with the increased lead time. The “00” member exhibited the best performance
among the MSWX members. In addition, the multi-site calibration-enhanced SWAT had reliable
performance (Average Nash–Sutcliffe value = 0.73) and hence can be used for hydrological evaluation
of MSWX. Furthermore, MSWX achieved satisfactory performance (Nash–Sutcliffe value > 0) in 22%
of runoff event predictions, but the error increased with longer lead times. This study gives some
new hydrometeorological insights into the performance of MSWX, which can provide feedback on its
development and applications.

Keywords: multi-source weather; SWAT; runoff forecasting; hill-karst basin

1. Introduction

Reliable seasonal precipitation forecasts are essential for weather-related disaster
control, reservoir scheduling, and water allocation decisions [1]. The widely used forecast-
ing products include the Beijing climate center-climate prediction system (BCC-CPS) [2],
the new ECMWF seasonal forecast systems (SEAS5) [3], the Met Office fully coupled
atmosphere–ocean Global Seasonal Forecast System 5 (GloSea5) [4], the National Centers
for Environmental Prediction Climate Forecast System (NCEP-CFS) [5], and the Bureau
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of Meteorology’s coupled model seasonal forecast system (POAMA) [6]. These products
typically use partial differential formulations to describe atmospheric states and then apply
numerical approximations to solve for the states at a specific resolution. Meanwhile, these
products have provided valuable seasonal precipitation forecasts to support various appli-
cations, including those related to agriculture [7], hydrology [8], and the environment [9].

However, there is high uncertainty in these forecast products owing to the model’s
parameters, initial conditions, and spatial scale [10]. For example, the friction force is
typically neglected in parameterization schemes [11]. The SEAS5 and NCEP-CFS systems
use ERA5 and GDAS assimilation data as initial states, respectively; nevertheless, these
assimilated data are inherently subject to error, especially in regions with complex topog-
raphy [12,13]. In addition, all forecast products fail to provide sub-grid-scale information
due to grid-based solution strategies. Therefore, several studies have attempted to evaluate
those products to support their development and application. For example, Wang et al. [14]
found that SEAS5 offers considerable average performance in precipitation forecasting.
However, the performance exhibits significant spatial variability, especially in mountainous
watersheds. Hudson et al. [15] revealed that POAMA is performing relatively satisfactorily
in eastern and southeastern Australia, but there is still much room for improvement else-
where. Wu et al. [16] found that post-processing methods are effective in minimizing SEAS5
errors and reducing application uncertainty. Scaife et al. [2] found that some forecasting
systems have relatively poor performance in the East Pacific due to inadequate capture
of ENSO variability. White et al. [17] found that the imprecise representation of coupled
atmosphere-ocean interactions in the climate prediction systems left them with some persis-
tent biases. These studies have strengthened our understanding of precipitation forecasting
products and highlighted (among other things) the sophistication of the SEAS5 system
and, thus, its relative superiority for precipitation forecasting [3]; the high uncertainty of
precipitation forecasts in complex terrain and, therefore, the importance of performance
evaluation to feedback on algorithm development [18]; and the coarse spatial resolution
(≥0.25◦) of the aforementioned products and, hence, the limited capacity in mountainous
regions [19].

As an effort to obtain more fine-scale forecasts, the multi-source weather (MSWX)
dataset was released in 2022 with support from the European Research Council [20]. Specif-
ically, the dataset consists of four sub-products, of which the Long sub-product is con-
structed based on SEAS5 product. Compared to SEAS5, the MSWX has an enhanced
spatial resolution (0.1◦) and, thence, an improved performance for capturing precipitation
heterogeneity [20]. Meanwhile, cumulative distribution correction is used in MSWX to
reduce the systematic bias of the SEAS5. Consequently, multi-source weather provides
new opportunities in regions with complex terrain and precipitation systems. However,
there are limited studies that have evaluated the accuracy of MSWX [21]. In addition, the
hydrological performance of MSWX remains unexplored in complex topographic regions,
such as mountainous watersheds and Karst-dominated basins.

With the development of computer technology and the advancement of the hydrologi-
cal community, semi-distributed hydrological models have been proposed and are emerg-
ing as powerful tools for hydrological modeling [22]. Meanwhile, sub-basin delineation
and geography-based parameters are used in semi-distributed hydrological models to
mimic geospatial heterogeneity. Some of the widely used semi-distributed models include
the Grid-Xinanjiang model [23], soil and water assessment tool (SWAT) [24,25], variable
infiltration capacity [26], and topography-based hydrological model [27]. Amongst these
models, the SWAT is a powerful open-source hydrological model with long-term simulation
capabilities, spatial flexibility, and process-based modeling. It is continuously developed
and improved by researchers worldwide, and thus its reliability has been widely veri-
fied [28]. More importantly, the foundational climate, soil, and topographic data for SWAT
are available from open-access databases, including Geospatial Data Cloud, GDEMV2,
GlobeLand30 [29], and Harmonized World Soil Database [30]. Therefore, the SWAT model
is easily implemented in any terrain, including plain and mountain watersheds.
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Mountainous terrain and karst landscapes are common geographic features around
the globe, especially in southern China and Europe [31,32]. Under the effect of karst ge-
ology, these regions have a relatively low capacity for water retention, rendering them
very vulnerable to weather-related disasters [33]. Meanwhile, the spatial heterogeneity of
precipitation in these areas is significant owing to the influence of topography. However,
precipitation forecasts based on partial differential formulations and numerical approxima-
tions may be unreliable due to the complex climate systems in mountain regions [34]. The
precipitation heterogeneity also poses a great challenge to the effectiveness of precipitation
forecasts. Therefore, there is an urgent need to evaluate the performance of MSWX in
hill-karst regions to support its development and application.

The main objective of this study is to comprehensively evaluate the performance of
MSWX in terms of precipitation forecasting and hydrological modeling over a hill-karst
basin. The key concerns and challenges are how precipitation prediction performance
relates to elevation and how to evaluate the hydrologic performance of MSWX in hill-
karst regions with complex geographic heterogeneity. Connected to the main objective
and challenges, this study can be further subdivided into the following: (1) to evaluate
the accuracy of MSWX at various lead times using gauge precipitation observations as a
reference; (2) to develop a SWAT model using a multi-site calibration strategy to account
for geographic heterogeneity; and (3) to assess the hydrological performance of MSWX in
runoff forecasting based on various statistical metrics. The structure chart of this study is
shown in Figure 1.

Atmosphere 2024, 15, x FOR PEER REVIEW 3 of 20 
 

 

Cloud, GDEMV2, GlobeLand30 [29], and Harmonized World Soil Database [30]. There-
fore, the SWAT model is easily implemented in any terrain, including plain and mountain 
watersheds. 

Mountainous terrain and karst landscapes are common geographic features around 
the globe, especially in southern China and Europe [31,32]. Under the effect of karst geol-
ogy, these regions have a relatively low capacity for water retention, rendering them very 
vulnerable to weather-related disasters [33]. Meanwhile, the spatial heterogeneity of pre-
cipitation in these areas is significant owing to the influence of topography. However, 
precipitation forecasts based on partial differential formulations and numerical approxi-
mations may be unreliable due to the complex climate systems in mountain regions [34]. 
The precipitation heterogeneity also poses a great challenge to the effectiveness of precip-
itation forecasts. Therefore, there is an urgent need to evaluate the performance of MSWX 
in hill-karst regions to support its development and application. 

The main objective of this study is to comprehensively evaluate the performance of 
MSWX in terms of precipitation forecasting and hydrological modeling over a hill-karst 
basin. The key concerns and challenges are how precipitation prediction performance re-
lates to elevation and how to evaluate the hydrologic performance of MSWX in hill-karst 
regions with complex geographic heterogeneity. Connected to the main objective and 
challenges, this study can be further subdivided into the following: (1) to evaluate the 
accuracy of MSWX at various lead times using gauge precipitation observations as a ref-
erence; (2) to develop a SWAT model using a multi-site calibration strategy to account for 
geographic heterogeneity; and (3) to assess the hydrological performance of MSWX in 
runoff forecasting based on various statistical metrics. The structure chart of this study is 
shown in Figure 1. 

 
Figure 1. The structure chart of the study. 

2. Study Basin and Data 
2.1. Study Basin 

Chengbi River (CR) Basin is located in Guangxi, southwest China (Figure 2). The total 
area of the basin is 2087 km2, of which the karst area is about 1123 km2. Meanwhile, the 
total length of the river in the basin is 151 km, and the main stream originates from the 
northern foot of Qinglong Mountain, with a total drop of the river channel of 491 m. The 

Figure 1. The structure chart of the study.

2. Study Basin and Data
2.1. Study Basin

Chengbi River (CR) Basin is located in Guangxi, southwest China (Figure 2). The total
area of the basin is 2087 km2, of which the karst area is about 1123 km2. Meanwhile, the
total length of the river in the basin is 151 km, and the main stream originates from the
northern foot of Qinglong Mountain, with a total drop of the river channel of 491 m. The
spatial and elevational distribution of hydrometeorological stations is shown in Figures 2b
and 2c, respectively. Although some of those stations are located in the low latitude zone
(elevation < 500), others are relatively evenly distributed across the hypsometric curve of
CR Basin (Figure 2c). Meanwhile, the spatial distribution of stations is relatively uniform
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(Figure 2b). In addition, the density of stations in the watershed is about 174 km2/gauge,
which is better than the WMO regulation for mountainous areas (250 km2/gauge) [35].
Therefore, these hydrometeorological stations provide a good representation of regional
precipitation. However, under the combined effect of mountainous terrain and karst
geomorphology, the Chengbi River Basin is highly susceptible to hydrometeorological-
related disasters [33]. Meanwhile, there is a large reservoir located downstream of the outlet
of the CR basin, and the reservoir has the functions of power generation, flood control,
irrigation, and water supply. Therefore, reliable precipitation forecasts are essential for
local weather-related disaster control and reservoir scheduling decisions.
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Figure 2. Approximate profiles of the CR basin: (a) location of CR basin in China, (b) hydrometeoro-
logical station distribution and altitude topographic map under MSWX grids, and (c) hydrometeoro-
logical station distribution under the hypsometric curve of the CR Basin. The “relative area” refers to
the percentage ratio of the area of a specific region, which is at an altitude lower than a certain value,
to the total area of the entire watershed.

2.2. Precipitation and Runoff Observations

Currently, there are twelve hydrometeorological stations within the CR basin, of which
nine are precipitation stations (measuring only the precipitation element) and three are
hydrologic stations (measuring both precipitation and runoff elements) (Figure 2). The
precipitation observations used in this study consisted of daily precipitation recorded using
an automated meteorological gauge (CAWS600) at 12 stations (Figure 2b and Table 1).
The data source is the Chengbi River Reservoir Bureau, and the data quality was strictly
controlled before acquisition [36]. In this study, daily gauge precipitation from 2002 to
2019 was collected for hydrologic modeling and MSWX evaluation. In addition, the daily
runoff measured by PT, XJ, and BS stations from 2002–2019 was collected for hydrologic
model calibration and validation. It should be noted that the XJ station no longer measures
runoff elements after 2017. The runoff data from 2002–2010 was used for model calibration
while that from 2011–2019 was applied for model validation. Finally, the daily runoff from
2011~2019 at the outlet of the CR basin (BS station) was used as a reference to evaluate the
hydrological performance of MSWX in runoff forecasting. The approximate information of
these hydrometeorological stations in CR Basin is shown in Table 1.
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Table 1. Hydrometeorological stations used for performance evaluation.

Station Measured Elements Longitude (◦) Latitude (◦) Altitude (m) Average Annual
Precipitation (mm)

BS (Bashou) Daily precipitation and runoff 106.64 23.95 229.25 1072.89
PT (Pingtang) Daily precipitation and runoff 106.65 24.09 276.81 1256.92

XJ (Xiajia) Daily precipitation and runoff 106.65 24.29 554.13 1531.93
HK (Haokun) Daily precipitation 106.66 24.19 399.96 1442.04
LY (Linyun) Daily precipitation 106.57 24.35 630.47 1687.12
CL (Chaoli) Daily precipitation 106.50 24.24 777.37 1466.88
XT (Xiatang) Daily precipitation 106.55 24.04 207.23 1101.36
DH (Donghe) Daily precipitation 106.72 24.36 968.82 1588.76

JF (Jiefu) Daily precipitation 106.80 24.32 677.77 1668.25
NT (Nongtang) Daily precipitation 106.76 24.21 886.98 1502.75

LH (Linhe) Daily precipitation 106.70 24.06 248.28 961.25
BL (Bailian) Daily precipitation 106.75 23.96 220.44 1086.94

2.3. Multi-Source Weather (MSWX)

MSWX dataset is a global-scale high-resolution meteorological product, which was
released in March 2022 with continuous updates [20]. The dataset consists of four sub-
products: (i) Past subproduct, covering 1 January 1979 to ~5 days from real-time;
(ii) NRT subproduct, covering extension to ~3 h from real-time; (iii) Mid subproduct,
10-day forecast ensemble comprising 30 members; and (ii) Long subproduct, covering
7-month forecast ensemble. The Long subproduct evaluated in this study is constructed
based on the downscaling and bias correction of the SEAS5 product, and the subproduct has
an enhanced spatial resolution of 0.1◦ and a temporal resolution of 1 d. Specifically, SEAS5
outputs are resampled from 1◦ to 0.1◦ resolution using nearest neighbor interpolation. Sub-
sequently, a CDF-matching approach is used to reduce the bias of the resampled data [19].
In addition, MSWX historical retrospective forecasts were made with 1 January, 1 April,
1 July, and 1 October of each year between 1993 and 2020 as a starting point. Meanwhile,
these retrospective forecasts include five members (MSWX 00-04), which are available for
download from the official website (http://www.gloh2o.org/mswx/; last accessed on 23
October 2022). MSWX members have a nomenclature consistent with SEAS5. For example,
MSWX 00 refers to the precipitation forecast based on SEAS5 00. The characteristics of
MSWX members are summarized in Table 2.

Table 2. Summary of MSWX members evaluated in this study.

MSWX Member Input Data Bias Correction
Method Spatial Resolution Temporal

Resolution
Reference

Climatologies

MSWX 00 SEAS5 00

A CDF-matching
approach 0.1◦ 1d

MSWX Past
subproduct

MSWX 01 SEAS5 01
MSWX 02 SEAS5 02
MSWX 03 SEAS5 03
MSWX 04 SEAS5 04

In this study, the long sub-product of MSWX (version 100) from 2014 to 2019 with
up to 90-day lead time was collected. Subsequently, we extracted gridded precipitation
forecasts for 12 station locations (Figure 2b). Finally, the performance of the MSWX forecasts
was evaluated using the station observations as a reference. In particular, the evaluation
involved five MSWX members (i.e., MSWX 00-04), 12 grids corresponding to stations (see
Figure 2b), six years (i.e., 2014–2019), four starting points (i.e., 1st day of January, April,
July, and October), and up to 90 days of daily precipitation forecasts.

3. Methodology
3.1. Quantitative Metrics to Measure the Accuracy of MSWX in Precipitation Forecasting

The performance of precipitation prediction products is typically categorized into
precipitation event (precipitation/non-precipitation) detection efficiency and intensity

http://www.gloh2o.org/mswx/
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forecast capability [37]. In this study, probability of detection (POD), false alarm ratio
(FAR), and critical success index (CSI) were used to evaluate the detection efficiency of
MSWX. Meanwhile, Pearson’s correlation coefficient (Corr), Bias, and root mean square
error (RMSE) were applied to evaluate the intensity forecast capability. These metrics were
adopted because of their domain generalization and ease of understanding [37–39]. The
formulas of these metrics are summarized in Table 3.

Table 3. Quantitative metrics used in this study for MSWX performance evaluation.

Metric Formula Range Unbiased Value Formula No.

POD POD = H
H+M [0, 1] 1 (1)

FAR FAR = F
H+F [0, 1] 0 (2)

CSI POD = H
H+M+F [0, 1] 1 (3)

Corr
Corr =

n
∑

t=1
(PMSWX(t)−PMSWX)(Pstation (t)−Pstation )√

n
∑

t=1
(PMSWX(t)−PMSWX)

2
√

n
∑

i=1
(Pstation (t)−Pstation )

2

[−1, 1] 1 (4)

Bias
Bias =

n
∑

t=1
(Pstation (t)−PMSWX(t))

n
(−∞, +∞) 0 (5)

RMSE RMSE =

√
1
N

N
∑

t=1
(Pstation (t)− PMSWX(t))

2 [0, +∞) 1 (6)

Note that: H is the number of precipitation events detected by both the MSWX product and station device; M is
the number of unpredicted but observed precipitation events; F denotes the number of predicted but unobserved
precipitation events; Pstation and PMSWX denote the observed and predicted precipitation intensities, respectively;
Pstation and PMSWX represent the mean value of observations and forecasts, respectively; N indicates the evaluation
sample size. The threshold for distinguishing between precipitation and non-precipitation events was set as 1
mm/d according to the local standard [40].

3.2. SWAT Hydrological Model and Its Calibration

A typical hydrological feature of hill-karst watersheds is their spatial heterogeneity.
Therefore, the soil and water assessment tool (SWAT), a semi-distributed hydrological
model, was used in this study to simulate hydrological processes. Specifically, the SWAT
model is a basin-scale hydrologic tool with strong hydro-physical mechanisms [41]. It is
based on multiple hydrologic response units to simulate hydrological processes, including
evapotranspiration, infiltration, mid-soil flow, and surface and subsurface runoff. Therefore,
the SWAT model can capture the spatial heterogeneity of hydrological processes. SWAT has
been widely used in hydrological simulation owing to its high efficiency, ease of operation,
fine performance, and continuous long-term simulation [42–44]. The principle of the SWAT
model is to divide the watershed into several sub-watersheds. Subsequently, those sub-
watersheds are further divided into various Hydrologic Response Units (HRU). Finally,
hydrologic processes are simulated within each HRU. A detailed SWAT description is given
in references [24,25]. The mathematical basis for the hydrological simulation of HRUs in
the SWAT model is the water balance equation, which can be formulated as follows:

SWt = SW0 +
t

∑
i=1

(
Pday ,i − Qsu f ,i − Ea,i − Wsep,i − Qgw,i

)
(7)

where SW0 and SWt denote the initial and final soil water content, respectively; Pday, Qsu f ,
Ea, Wsep, Qgw denote the daily precipitation, surface runoff, evapotranspiration, seepage
flow, and sub-surface runoff, respectively, and the subscript i denotes a step; t denotes the
simulation time. The units for all variables (except for subscripts) are millimeters.

Digital elevation, land use, and soil type are needed as foundational data in SWAT
development and sub-basin delineation. In this study, digital elevation with a 30 m
resolution was downloaded from Geospatial Data Cloud (https://www.gscloud.cn/),
land use with a 30 m resolution was downloaded from (http://www.globallandcover.
com/), soil type with a 1 km resolution was downloaded from (https://www.fao.org/soils-

https://www.gscloud.cn/
http://www.globallandcover.com/
http://www.globallandcover.com/
https://www.fao.org/soils-portal/
https://www.fao.org/soils-portal/
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portal/). The meteorological data, including daily maximum and minimum temperatures,
wind speed, relative humidity, and solar radiation, were obtained from Baise Station,
a meteorological station near the Chengbi River basin, from the China Meteorological
Data Network (http://data.cma.cn/). The last access to all data websites was on 1 May
2020. In addition, these foundational data were preprocessed consistent with our previous
work [45].

Traditionally, the SWAT model is calibrated using a single-site approach, which is
carried out to minimize the distance of the simulated values from the observed runoff
at a single station location (outlet of the target watershed) [46]. However, the CR basin
has significant spatial heterogeneity in hydrological behavior as its hill-karst geography.
Therefore, in this study, the measured runoffs from multiple stations (i.e., XJ, PT, and
BS; Figure 2b) within the Chengbi River basin were comprehensively utilized for model
calibration to enhance SWAT. More specifically, the calibration process was conducted using
SWAT-CUP software and followed the sequence from upstream to downstream (i.e., XJ, PT,
and BS stations). Details of the multi-site calibration approach are given in reference [47].

3.3. Nash–Sutcliffe Efficiency to Evaluate Hydrologic Performance

In addition to the metrics presented in Section 3.1, Nash–Sutcliffe efficiency (NSE) [48]
and peak percentage of threshold statistics (PPTS) were also used to evaluate the applica-
bility of SWAT and the hydrological performance of MSWX in the CR basin. The optimal
values of NSE and PPTS are 1 and 0, respectively. Among these metrics, the NSE can reflect
the statistical difference between the simulated and measured runoff. More importantly, it
has a relatively clear benchmark (NSE = 0) for qualitatively distinguishing good and bad
models [38,49]. A larger NSE value means better model performance. The formulas for
NSE and PPTS are as follows:

NSE = 1 −

n
∑

i=1
(Qo,i − Qm,i)

2

n
∑

i=1

(
Qo,i − Qo

)2
(8)

PPTS(γ) =
100
γ

1
n

G

∑
i=1

∣∣∣∣yi − y∗i
yi

∣∣∣∣× 100% (9)

where n represents the sample size; Qo and Qm are the observed and modeled runoff,
respectively, and the subscript i denotes time; Qo represents the mean value of the observed
runoff. The unit of Q is m3/s. To evaluate the PPTS metric, the measured runoff data
are arranged in descending order, and the modeled data are arranged in the same order.
The parameter γ represents a threshold level that controls the percentage of data samples
selected from the beginning of the arranged data series. The parameter G is the number of
values above the threshold. For example, PPTS(90) means the top 90% of flows or the peak
flows, which are evaluated by the PPTS criterion.

4. Results
4.1. Accuracy Analysis of MSWX Ensemble Members in Precipitation Forecasting

Statistical analyses were used to assess the difference in cumulative probability distri-
butions between MSWX ensemble forecasts and gauge observations (Figure 3). All MSWX
members tended to underestimate the number of no-precipitation events (Figure 3a). In
particular, the percentage of precipitation events within MSWX members was about 47.76% to
50.87%, while the percentage within gauge observations was about 31.76%. In terms of rainfall
intensity, however, the range of probability distributions for MSWX members was signifi-
cantly smaller than for gauge observations. For example, the ranges of precipitation intensity
for MSWX 00 and MSWX 01 were 1.00–114.80 mm/day and 1.00–124.75 mm/day, respec-
tively, which were significantly lower than that of gauge observations (1.00–199.00 mm/day)
(Figure 3b). These phenomena suggest that MSWX tended to underestimate extreme precipi-

https://www.fao.org/soils-portal/
https://www.fao.org/soils-portal/
https://www.fao.org/soils-portal/
http://data.cma.cn/
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tation intensity. Interestingly, although MSWX members differed in rainfall intensity range,
their cumulative distributions were remarkably similar (Figure 3b).
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Figure 3. Statistical analysis of precipitation data from different sources: (a) percentage of precipitation
events in each precipitation dataset, and (b) cumulative probability distribution of observed and
forecast precipitation under different intensities (exclusion intensity < 1 mm/day).

Figure 4 shows the precipitation detection efficiency (i.e., POD, FAR, CSI) and intensity
forecast capability (i.e., Corr, BIAS, RMSE) of the MSWX members at various lead times.
In terms of the POD metric, all MSWX ensemble members had significant performance
fluctuations, ranging from 0.14 to 0.97. Similarly, the performance fluctuations of MSWX
members on the FAR, CSI, Corr, BIAS, and RMSE metrics ranged from 0.27 to 0.92, 0.05
to 0.66, −0.20 to 0.90, −6.51 to 10.12 mm, and 3.57 to 29.15 mm, respectively. These
fluctuations are also summarized in Figure 5. Overall, MSWX 00 exhibited relatively
satisfactory performance with best performance values of 0.64, 0.14, and 11.33 mm in terms
of medium POD, Corr, and RMSE, respectively. In addition, from the perspective of lead
time, the error in MSWX members did not increase with the lead time. Therefore, MSWX
had satisfactory value in supporting seasonal applications.

Figure 6 shows the performance characteristics of the MSWX members at different ele-
vations. Generally, MSWX members tended to have worse accuracy at higher elevations. For
example, MSWX 00 had CSI values of 0.46 and 0.35 at 229.254 m (BS station) and 968.824 m (DH
station), respectively; MSWX 01 had CSI values of 0.43 and 0.28 at 229.254 m and 968.824 m,
respectively. The decrease in performance along the elevation was also found for all other
metrics. Overall, the MSWX 00 had the best performance with the smallest RMSE and relatively
satisfying CSI and Corr.

4.2. Calibration and Validation of SWAT Hydrological Model

Before evaluating the hydrological performance of MSWX in runoff forecasting, the ap-
plicability of the SWAT hydrological model in the CR basin was investigated. In particular, a
multi-site calibration approach was adopted to enhance the SWAT model to account for the
spatial heterogeneity in hydrological behavior. Meanwhile, the gauge-based precipitation
was used as input, and the SWAT was calibrated against runoff measurements. In addition,
the NSE metric was used to qualitatively evaluate SWAT performance as this metric has
a relatively clear benchmark (NSE = 0) [49]. The performance of SWAT is summarized in
Table 4. Generally, the NSE values for SWAT during the calibration stage ranged from 0.61
to 0.80, while during the validation stage, the range was 0.68 to 0.79. The performance of
the SWAT model in the XJ station was lower than that of the PT and BS stations, which may
be attributed to the karst landscape distribution in the CR basin. Specifically, the control
hydrological area of XJ Station is a karst landscape with complex underground culverts and
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karst pipelines, which increases the challenge of hydrological modeling. Overall, the SWAT
had satisfactory performance (NSE ≥ 0.61), demonstrating its suitability for hydrologic
modeling in CR Basin.

Atmosphere 2024, 15, x FOR PEER REVIEW 9 of 20 
 

 

0.05 to 0.66, −0.20 to 0.90, −6.51 to 10.12 mm, and 3.57 to 29.15 mm, respectively. These 

fluctuations are also summarized in Figure 5. Overall, MSWX 00 exhibited relatively sat-

isfactory performance with best performance values of 0.64, 0.14, and 11.33 mm in terms 

of medium POD, Corr, and RMSE, respectively. In addition, from the perspective of lead 

time, the error in MSWX members did not increase with the lead time. Therefore, MSWX 

had satisfactory value in supporting seasonal applications. 

 

Figure 4. Performance characteristics of MSWX members at different lead times. Figure 4. Performance characteristics of MSWX members at different lead times.



Atmosphere 2024, 15, 236 10 of 18Atmosphere 2024, 15, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 5. Statistical analysis of the accuracy fluctuation of different MSWX members. The upper and 
lower lines of the box and the middle line represent the 25th and 75th percentile and median, re-
spectively, while “whiskers” indicate extreme values. The (a,b,c,d,e,f) represent POD, FAR, CSI, 
Corr, Bias, and RMSE metrics, respectively. 

Figure 6 shows the performance characteristics of the MSWX members at different 
elevations. Generally, MSWX members tended to have worse accuracy at higher eleva-
tions. For example, MSWX 00 had CSI values of 0.46 and 0.35 at 229.254 m (BS station) and 
968.824 m (DH station), respectively; MSWX 01 had CSI values of 0.43 and 0.28 at 229.254 
m and 968.824 m, respectively. The decrease in performance along the elevation was also 
found for all other metrics. Overall, the MSWX 00 had the best performance with the 
smallest RMSE and relatively satisfying CSI and Corr. 

 
Figure 6. Scatterplot and the fitted line of accuracy metrics versus elevation for various MSWX mem-
berships. 

Figure 5. Statistical analysis of the accuracy fluctuation of different MSWX members. The upper
and lower lines of the box and the middle line represent the 25th and 75th percentile and median,
respectively, while “whiskers” indicate extreme values. The (a–f) represent POD, FAR, CSI, Corr,
Bias, and RMSE metrics, respectively.
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Table 4. Performance of SWAT based on multi-site calibration during calibration and validation stages.

Station Stage NSE

XJ Calibration (2003–2010) 0.61
Validation (2011–2017) 0.68

PT Calibration (2003–2010) 0.80
Validation (2011–2019) 0.79

BS Calibration (2003–2010) 0.76
Validation (2011–2019) 0.71

Note: Only these stations (i.e., XJ, PT, and BS) measure runoff information and, therefore, were selected for
hydrologic modeling.
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To further demonstrate the applicability of the SWAT model, the modeled runoff at
the outlet of the CR basin was investigated. As shown in Figure 7, the modeled runoff
was close to the observed runoff. Meanwhile, the modeled runoff reproduced the trend
and seasonal cycle of measured runoff, albeit with a slight deviation in runoff peaks. For
example, the modeled runoff exhibited flood peaks and peak occurrence times similar to
measured runoff from 2011 to 2014. However, it is also important to note that the SWAT
model also suffers from errors, especially in the simulation of high-runoff events from 2017
to 2019. Overall, the SWAT model based on multi-site calibration had good applicability
in the CR basin and, hence, can be used for evaluating the hydrological performance of
MSWX in runoff forecasting.
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4.3. Hydrological Performance of MSWX in Runoff Forecasting

To evaluate the performance of MSWX in runoff forecasting, three precipitation input
scenarios were considered in this study. Scenario 1, in which MSWX 00 forecasts were
used as input precipitation. In Scenario 2, it was assumed that no new precipitation was
generated during the forecast period, and this assumption is widely used in practical
applications [50]. In Scenario 3, gauge-observed precipitation was used as the input. These
runoff forecasting scenarios (methods) were referred to as MSWX-precipitation forecast,
no-precipitation forecast, and station-precipitation simulation.

The forecast performance of different methods was evaluated four times per year
(initialized at 0000 UTC on 1 January, 1 April, 1 July, and 1 October) from January 2014
through 2019. For the sake of convenience, these initialization times are numbered T1 to
T24. For example, T1 and T24 stand for 1 January 2014 and 1 October 2019, respectively. In
addition, the SWAT parameters were kept consistent with Section 4.2. These scenarios and
methods are summarized in Table 5.

Table 5. Summary of different runoff prediction scenarios and methods.

Scenario Number Method Name Precipitation Input Initialization Time Lead Time (d)

1 MSWX-precipitation forecast MSWX 00 1 January, 1 April, 1 July, and 1
October from January 2014

through 2019, which are numbered
chronologically as T1 through T24.

1–902 No-precipitation forecast None

3 Station-precipitation
simulation Gauge observations

Figure 8 shows the forecast and measured runoff for the CR watershed outlet (BS station).
Generally, the MSWX precipitation-based forecast could reflect the runoff trend to a certain
extent compared with gauge observation. For example, at the T17, the MSWX forecast runoff
exhibited a decreasing trend consistent with gauge observation. Similarly, at T6, T10, and T16,
the MSWX forecast runoff exhibited an increasing trend consistent with gauge observation.
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Interestingly, MSWX performed better at moderate runoff events [runoff ~100 m3/s to 200 m3/s,
e.g., Figure 8(T10)], but performed poorly at large runoff events [runoff > 250 m3/s; e.g.,
Figure 8(T4)]. In addition, compared with the No-precipitation forecast, there was less error
in the MSWX forecast. The similarity between the No-precipitation forecast and observed
runoff decreased with increasing lag time. For example, at the T17, the similarity between
the No-precipitation forecast and the measured runoff decreased rapidly with time, while the
MSWX-precipitation forecast captured the fluctuation of measured runoff. Similarly, at T7, T9,
and T23, the MSWX-precipitation forecast exhibited better performance than the no-precipitation
forecasts. Therefore, MSWX had some potential to be utilized in runoff forecasting with a long
lag time.
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The hydrological performance of MSWX in runoff forecasting was also quantitatively
evaluated using multiple metrics. In particular, the specific runoff events are summarized
in Table 6. As shown in Table 6, MSWX achieved satisfactory performance in nine runoff
forecasts, which accounted for 22% of the total forecast events. Among the nine runoff
events, the MSWX-based approach had Biases ranging from −10.62 to 65.37 m3/s with an
average bias of 19.82 m3/s, suggesting that the approach tended to underestimate runoff. This
underestimation was also verified in Figure 8. In addition to Bias, the Corr and RMSE of the
MSWX-based approach ranged from 0.34 to 0.77 and from 24.46 to 164.28 m3/s, respectively.

Table 6. Performance of MSWX product in runoff forecasting against gauge runoff measurements.

Runoff Event Initialization Time NSE Corr Bias (m3/s) RMSE (m3/s) PPTS (90)(%)

T1 1 January 2014 −0.04 0.44 5.65 13.08 75.60
T2 1 March 2014 0.07 0.34 11.46 50.65 76.10
T3 1 July 2014 −1.81 −0.39 −34.45 86.27 52.95
T4 1 October 2014 0.08 0.40 20.92 70.68 82.86
T5 1 January 2015 −0.50 0.18 8.39 14.08 85.83
T6 1 March 2015 0.05 0.67 70.26 141.21 90.69
T7 1 July 2015 −0.83 0.57 97.92 123.61 65.21
T8 1 October 2015 −0.43 0.01 19.81 40.33 93.33
T9 1 January 2016 −0.23 0.28 −4.94 10.81 75.02
T10 1 March 2016 0.34 0.68 −0.27 29.04 25.19
T11 1 July 2016 −0.84 −0.36 −6.36 44.23 68.70
T12 1 October 2016 −4.14 −0.15 −9.26 13.13 40.38
T13 1 January 2017 −18.97 0.06 −6.41 8.03 68.01
T14 1 March 2017 0.50 0.74 11.50 63.68 64.56
T15 1 July 2017 −0.92 −0.02 132.60 204.67 83.85
T16 1 October 2017 0.33 0.72 −10.62 24.64 11.56
T17 1 January 2018 −0.61 −0.03 −4.90 8.64 87.03
T18 1 March 2018 −0.37 −0.05 46.08 92.35 89.32
T19 1 July 2018 −0.57 0.20 112.68 180.99 87.17
T20 1 October 2018 0.55 0.77 −3.72 25.38 25.03
T21 1 January 2019 −0.06 0.02 −1.36 15.00 86.80
T22 1 March 2019 0.18 0.68 65.37 164.28 91.93
T23 1 July 2019 0.28 0.54 13.50 96.82 88.37
T24 1 October 2019 −0.14 0.24 −2.71 10.49 66.80

To analyze the skills of MSWX for runoff forecasting further, we compared its per-
formance difference with that of the no-precipitation forecast. In particular, in the no-
precipitation forecast scenario, station-measured precipitation at lag time = 0 was used
as input of the SWAT model to forecast runoff at lag time = 0, 1, . . ., n, and no new pre-
cipitation was generated during the forecast period (i.e., t = 0, 1, . . ., n.). Meanwhile,
station-precipitation simulation was used as a reference to evaluate the performance of
the MSWX-precipitation forecast and No-precipitation forecast. As can be seen from
Figure 8, the Bias of both the MSWX-precipitation forecast and the No-precipitation forecast
increased with the increase of the lag times. However, the MSWX-precipitation forecast
had a relatively small magnitude of increase. Similarly, the MSWX-precipitation forecast
performed better than the No-precipitation forecast in terms of Bias and RMSE metrics.
Overall, the MSWX-precipitation forecast had competitive performance in the short term
(lead time ≤ 20 days) while showing significant advantages in the long-term runoff predic-
tion (Figure 9).
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5. Discussion
5.1. Unique Hydrometeorological Insights and Their Attributions

MSWX has provided new opportunities for reliable precipitation forecasts with fine
horizontal resolution and long lead time. However, few studies have comprehensively
evaluated the performance of MSWX in hill-karst basins. Therefore, we further discussed the
accuracy characteristics of MSWX at different elevations and the skill of MSWX in supporting
runoff forecasting. This study found that the MSWX tended to have lower accuracy at
higher altitudes (Figure 6), which may be attributed to the regional precipitation system and
the production strategy adopted in MSWX. Specifically, under the effect of mountainous
terrain, the precipitation intensity of CR Basin tended to increase with increasing altitude
(Table 1). Similar elevation-dependent patterns were also found in references [51,52]. However,
the precipitation gauges near to CR basin used for error reduction in the MSWX product
are located at low elevations (altitude ≤ 500 m) [20,53], thereby potentially resulting in
better accuracy at low elevations. In addition, climatic processes at higher altitudes typically
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exhibited greater instability than at lower altitudes [54]. Specifically, the atmosphere is
thinner at high altitudes, leading to a rapid spread of solar radiation and a pronounced
heat dissipation effect [55]. This characteristic leads to large temperature variations at high
altitudes, thereby leading to climate instability and increasing the technical difficulty of
precipitation forecasting. Interestingly, the error of MSWX did not significantly increase with
the increased lead time, which differs significantly from evaluations for similar precipitation
products [56]. The possible reason for this is that a cumulative distribution correction is an
effective approach to reducing the systematic bias that grows with lead times. Therefore,
MSWX had satisfactory value in supporting meteorological applications. However, we
found that the MSWX had limited skill in hydrological modeling. The probable cause of
this phenomenon is the accumulation of errors in runoff forecasting. Fortunately, compared
with precipitation-free runoff forecasting (Figures 8 and 9), MSWX provided a significant
advantage with a small increase in error with lag time. Therefore, MSWX is still useful in
supporting runoff forecasting with non-negligible value.

5.2. Suggestions for MSWX Development and Applications

This study comprehensively evaluated the performance of MSWX for precipitation
forecasting and hydrologic modeling, which can provide feedback to the development of
MSWX and inform its applications. For example, MSWX tended to have lower accuracy
at higher altitudes. However, the elevation-dependent phenomenon is highly non-linear
(Figure 6). Therefore, machine learning techniques may be a suitable alternative for im-
proving MSWX accuracy due to their strong non-linear modeling capabilities [57]. Some
of the alternatives include support vector machines, regression trees, and artificial neural
networks. In addition, this study found that the error in precipitation forecasting had not
significantly increased with the increased lead time. Therefore, MSWX had satisfactory
value in supporting long-term weather-related applications, including drought prevention
and irrigation planning for agriculture. In addition, we found that MSWX provided a
significant hydrological advantage compared with the no-precipitation forecast approach
but increased in error with lag time (Figure 8). Therefore, the hydrological performance of
MSWX may be improved by using post-processing methods, e.g., Bayesian model averag-
ing [58] and Kalman filters [59]. Overall, attention needs to be paid to error accumulation
in runoff forecasting applications.

5.3. Limitation and Future Research

Although this study provides some new hydrometeorological insights into the fore-
casting performance of MSWX, some limitations and further directions still need to be
discussed. It should be specifically explained that owing to the lack of data, MSWX evalua-
tion had to be conducted only in the CR basin. Errors in the SWAT model also introduced
some uncertainty in the MSWX performance evaluation. Therefore, it is unrealistic to
extrapolate the findings of this study to other regions with different topographies and
climates; more similar evaluations should be conducted. In addition, accuracy and consis-
tency tests were not conducted in this study due to limitations in the number and length
of gauge data. Therefore, it is also important to evaluate MSWX performance over longer
time scales to gain more reliable insights. In addition to precipitation, other MSWX forecast
variables (e.g., pressure and humidity) are also worth evaluating in future studies.

6. Conclusions

The performance of multi-source weather was evaluated in terms of precipitation
forecasting and runoff modeling in the Chengbi River Basin, a typical hill-karst region in
southwest China. Meanwhile, multiple statistical metrics, the Soil and Water Assessment
Tool (SWAT), and a multi-site calibration strategy were used in the evaluation process. We
found that:
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(1) MSWX ensemble members tended to underestimate the number of no-precipitation
events. Meanwhile, MSWX products tended to have worse accuracy at higher eleva-
tions. However, the error in MSWX members did not increase with the lead time.

(2) The SWAT model based on multi-site calibration had good applicability in the CR
Basin and performed well, with NSE values of 0.76 and 0.71 at the calibration and
validation stages, respectively. Therefore, the model can be used for assessing the
hydrological performance of MSWX in runoff forecasting.

(3) MSWX provided a significant hydrological advantage compared with the traditional
runoff forecast with precipitation-free assumption. Meanwhile, MSWX achieved
satisfactory performance (NSE > 0) in 22% of runoff event predictions. However, the
error increased with lag time.

MSWX has significant value in precipitation forecasting but limited skill in hydrologic
modeling. Post-processing methods using elevation information should be considered in
the future to improve MSWX performance. In addition, other MSWX variables are also
worth evaluation.
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